173
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Surface integrity and accuracy based aspects in EDM of Cu-based SMA: an experimental investigation with microstructural analysis

, ORCID Icon &
Pages 99-112 | Accepted 05 Jul 2022, Published online: 12 Jul 2022

References

  • JM J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Mater Design (1980-2015). 2014;56:1078–1113.
  • Sun L, Huang WM, Ding Z, et al. Stimulus-responsive shape memory materials: a review. Mater Design. 2012;33:577–640.
  • Ölander A. An electrochemical investigation of solid cadmium-gold alloys. J Amer Chem Soc. 1932;54(10):3819–3833.
  • Lb V, HM V. US patent and trademark office. Vol. 234 993. Washington DC; 1941. US Patent No. 2
  • Gao XY, Huang WM. Transformation start stress in non-textured shape memory alloys. Smart Mater Str. 2002;11(2):256–268.
  • El-Feninat F, Laroche G, Fiset M. Fiset M and Mantovani D. Shape memory materials for biomedical applications. Adv Eng Mat. 2002;4(3):91–104.
  • Zider RB, Krumme JF. US patent and trademark office. Vol. 772 112. Washington DC; 1988. US Patent No. 4
  • Hautcoeur A, Eberhardt A. US patent and trademark office. Vol. 640 217. Washington DC; 1997. US Patent No. 5
  • Furuya Y. Design and material evaluation of shape memory composites. J Intel Mater Sys Str. 1996;7(3):321–330.
  • Jani JM, Leary M, Subic A. Leary M and Subic A. Shape memory alloys in automotive applications. Appl Mech Mater. 2014;663:248–253.
  • Leo DJ, Weddle C, and Naganathan G, et al. Vehicular applications of smart material systems. In Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies.1998; 3326:106-116.
  • Copaci D. Blanco D and Moreno LE. Flexible shape-memory alloy-based actuator: mechanical design optimization according to application. Multidisc Digit Publish Inst. 2019;8(3):63.
  • Alidoosti A, Ghafari-Nazari A, Moztarzadeh F, et al. Electrical discharge machining characteristics of nickel titanium shape memory alloy based on full factorial design. J Intel Mater Sys Str. 2013;24(13):1546–1556.
  • Abidi MH, Al-Ahmari AM, Umer U, et al. Multi-objective optimization of micro-electrical discharge machining of nickel-titanium-based shape memory alloy using Moga-II. Meas J Int Meas Confed. 2018;125:336–349.
  • Gaikwad MU, A K, Jatti VS. Krishnamoorthy A and Jatti VS. Investigation and optimization of process parameters in electrical discharge machining (EDM) process for NiTi 60. Mater Res Exp. 2019;6(6):065707.
  • Daneshmand S, Kahrizi EF, Abedi E, et al. Influence of machining parameters on electro discharge machining of NiTi shape memory alloys. Int J Electro Sci. 2013;8(3):3095–3104.
  • Gaikwad V, Jatti VKS. Optimization of material removal rate during electrical discharge machining of cryo-treated NiTi alloys using Taguchi’s method. J King Saud Univ Eng Sci. 2018;30(3):266–272.
  • Altas E, Khosravi F, Gokkaya H, et al. Finite element simulation and experimental investigation on the effect of temperature on pseudoelastic behavior of perforated Ni–Ti shape memory alloy strips. Smart Mater Struc. 2022 Jan 20;31(2):025031.
  • Altas E, Altin Karatas M, Gokkaya H, et al. Surface integrity of NiTi shape memory alloy in milling with cryogenic heat treated cutting tools under different cutting conditions. J Mater Eng Perf. 2021 Dec;30(12):9426–9439.
  • Altas E, Gokkaya H, Karatas MA, et al. Analysis of surface roughness and flank wear using the Taguchi method in milling of NiTi shape memory alloy with uncoated tools. Coatings. 2020 Dec;10(12):1259.
  • Altas E, Erkan O, Ozkan D, et al. Optimization of cutting conditions, parameters, and cryogenic heat treatment for surface roughness in milling of NiTi shape memory alloy. J Mater Eng Perf. 2022 Mar;18:1–3.
  • Bil C, Massey K, Abdullah EJ. Massey K and Abdullah EJ. Wing morphing control with shape memory alloy actuators. J Intel Mater Sys Str. 2013;24(7):879–898.
  • Hartl DJ, Lagoudas DC. Aerospace applications of shape memory alloys. Proc I Mech Eng Part G J of Aerosp Eng. 2007;221(4):535–552.
  • Sellitto A, Riccio A. Overview and future advanced engineering applications for morphing surfaces by shape memory alloy materials. Material. 2019;12(5):708.
  • Jani JM. Leary M and Subic A. Shape memory alloys in automotive applications. Trans Tech Publ. 2014;663:248–253.
  • Kahn H, Huff MA, Heuer AH. Huff MA and Heuer AH. The TiNi shape-memory alloy and its applications for MEMS. J Micromech Microeng. 1998;8(3):213.
  • Bisaria H, Shandilya P. Experimental study on response parameters of Ni-Rich NiTi shape memory alloy during wire electric discharge machining. IOP Conf Ser Mater Sci Eng. 2018;330(1):3316–3324.
  • Pradhan MK, Das R. Recurrent neural network estimation of material removal rate in electrical discharge machining of AISI D2 tool steel. Proc I Mech E Part B J Eng Manuf. 2011;225(3):414–421.
  • Tosun N, Cogun C. Analysis of wire erosion and workpiece surface roughness in wire electrical discharge machining. Proc I Mech E Part B J Eng Manuf. 2003;217(5):633–642.
  • Beck RJ, Aspinwall DK, and Soo SL, et al. Fatigue performance of surface ground and wire electrical discharge machined TiNi shape memory alloy.Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2022;236(4):355-62.
  • Ama A-A, Rasheed MS, Mohammed MK, et al. A Hybrid machining process combining micro-EDM and laser beam machining of nickel–titanium-based shape memory alloy. Mater Manuf Process. 2020;13(3):447–455.
  • Bisaria H, Shandilya P. The machining characteristics and surface integrity of Ni-rich NiTi shape memory alloy using wire electric discharge machining. Proc IMechE Part C: J Mech Eng Sci. 2019;233(3):1068–1078.
  • Bisaria H, Shandilya P. Study on crater depth during material removal in WEDC of Ni-rich nickel–titanium shape memory alloy. J Brazil Soc Mech Sci Eng. 2019;41(3):157.
  • Takale A, Chougule N. Optimization of process parameters of wire electro discharge machining for Ti49.4Ni50.6 shape memory alloys using the Taguchi technique. Int J Str Integ. 2019;10(4):548–568.
  • Zhou H, Ding WF, Li Z, et al. Predicting the grinding force of titanium matrix composites using the genetic algorithm optimizing back-propagation neural network model. Proc IMechE, Part B: J Eng Manuf. 2019;233(4):1157–1167.
  • Kiran P, Mohanty S, Das AK. Surface modification through sustainable micro-EDM process using powder mixed bio-dielectrics. Mater Manuf Process. 2021;1–12. DOI:10.1080/10426914.2021.1967976
  • Sharma N, Gupta K. Wire spark erosion machining of Ni rich NiTi shape memory alloy for bio-medical applications. Proc Manuf. 2019;35:401–406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.