109
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Surface integrity assessment techniques in EDM process for enhancement of product’s performance : a review

ORCID Icon & ORCID Icon
Pages 167-185 | Accepted 30 Nov 2022, Published online: 13 Dec 2022

References

  • Dewangan S, Kumar SD, Jha SK, et al. Optimization of Micro-EDM drilling parameters of Ti-6al-4V alloy. Mater Today Proc. 2020;33:5481–5485.
  • Yeo H, Aligiri E, Tan PC, et al. An Adaptive Speed Control System for Micro Electro Discharge Machining. in Third Manufacturing Engineering Society International Conference, 2009, pp. 61–72, doi: 10.1063/1.3273682.
  • D’Urso G, Ravasio C. Material-Technology Index to evaluate micro-EDM drilling process. J Manuf Process. 2017;26:13–21.
  • Sapkal SU, Jagtap PS. Optimization of Micro EDM Drilling Process Parameters for Titanium Alloy by Rotating Electrode. Procedia Manuf. 2018;20:119–126.
  • Quarto M, D’Urso G, Giardini C. Micro-EDM optimization through particle swarm algorithm and artificial neural network. Precis eng. 2022 Jan;73:63–70. DOI:10.1016/J.PRECISIONENG.2021.08.018.
  • Pant P, Bharti PS. Experimental Investigation on Micro-Electrical Discharge Machining process for heat treated Nickel-based Nimonic 80A. Mater Manuf Process. 2022 Aug;1–12. DOI:10.1080/10426914.2022.2105889
  • Tamura T, Akiyama R, Ichiro Tanaka R, et al. Groove fabrication on surface of soft gelatin gel utilizing micro-electrical discharge machining (Micro-EDM). J Food Eng. 2020;277(109919). DOI:10.1016/j.jfoodeng.2020.109919
  • Singh AK, Kumar MA, Kumar R, et al. Optimization of micro EDM parameters for fabrication of micro rod. Mater Today Proc. 2021;46(18):8968–8972.
  • Bharti PS, Maheshwari S, Sharma C. Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II. J Mech Sci Technol. 2012;26(6):1875–1883.
  • Pant P, Bharti PS. Electrical Discharge Machining (EDM) of nickel-based nimonic alloys : a review. Mater Today Proc. 2020;25(4):765–772.
  • Liu Q, Zhang Q, Zhang M, et al. Review of size effects in micro electrical discharge machining. Precis eng. 2016;44:29–40.
  • Klink A, Schneider S, Bergs T. Development of a process signature for electrical discharge machining. CIRP Ann. 2022 Apr;71(1):177–180. DOI:10.1016/J.CIRP.2022.03.043.
  • Kowalczyk M, Tomczyk K. Assessment of measurement uncertainties for energy signals stimulating the selected NiTi alloys during the wire electrical discharge machining. Precis eng. 2022 Jul;76:133–140. DOI:10.1016/J.PRECISIONENG.2022.03.005.
  • Mu X, Zhou M, Zhang J, et al. Intelligent electrical discharge machining (EDM) molybdenum‑titanium‑zirconium alloy by an extended adaptive control system. J Manuf Process. 2022 May;77:207–218. DOI:10.1016/J.JMAPRO.2022.03.003.
  • Coelho F, Koshy P. Vibration damping capability of electrical discharge machined surfaces: characteristics, mechanism and application. Int J Mach Tools Manuf. 2022 Jun;177:103888. DOI:10.1016/J.IJMACHTOOLS.2022.103888.
  • Gong S, Sun Y. Experimental study on forming consistent accuracy and tool electrode wear involved in fabricating array microelectrodes and array micro holes using electrical discharge machining. J Manuf Process. 2022 Jul;79:126–141. DOI:10.1016/J.JMAPRO.2022.04.046.
  • Tseng K, Chen K, Chang C, et al. Implementation of a micro-electrical discharge machining system to. Mechatronics. 2021;79:102649.
  • Grigoriev SN, Hamdy K, Volosova MA, et al. Electrical discharge machining of oxide and nitride ceramics : a review. Mater Des. 2021;209:109965.
  • Thakur SS, Patel B, Upadhyay RK, et al. Machining characteristics of metal matrix composite in powder-mixed electrical discharge machining – a review. Aust J Mech Eng. 2022;1–23. DOI:10.1080/14484846.2022.2030089.
  • Kumar R, Yadav V, Rawal L, et al. Analysis of over cut in electrical discharge machining of nickel-based alloy using Taguchi approach. Mater Manuf Process. 2022;1–9. DOI:10.1080/10426914.2022.2105887
  • Şimşek Ü, Çoğun C, Esen Z. Effects of electrolytic copper and copper alloy electrodes on machining performance in electrical discharge machining (EDM). Mach Sci Technol. 2022;26(2):229–244.
  • Shyn CS, Rajesh R, Dev Anand M. Optimization-Based Hybrid Intelligent Model for Decision Making on Electrical Discharge Machining (EDM) Process of A6061/6%B4C and A6061/9%sic Composite Materials. Cybern Syst. 2022;1–23. DOI:10.1080/01969722.2022.2110685
  • Siva M, Arunkumar N, Subramanian M, et al. Influence of micro-electrical discharge machining parameters on the surface morphology of the nickel-coated electrode. Mater Manuf Process. 2022;1–16. DOI:10.1080/10426914.2022.2105869.
  • Singh M, Tripathi P, Ramkumar J. Electrical discharge micro-texturing using compound tool electrodes for tribological and wettability applications. Surf Eng. 2022;38(4):448–464.
  • Gupta V, Singh B, Mishra RK. Machinability assessment of AA7075 composite reinforced with rice husk ash using spark erosion machining process. Adv Mater Process Technol. 2022 Sep;1–12. DOI:10.1080/2374068X.2022.2121075
  • Wazed Ibne Noor MS, Saleh T, Akmam Noor Rashid M, et al. Dual-stage artificial neural network (ANN) model for sequential LBMM-μEDM-based micro-drilling. 2021;117(11–12):3343–3365. DOI:10.1007/s00170-021-07910-w
  • Kumar S, Verma A. Surface modification during electrical discharge machining process – a review. Mater Today Proc. 2021;46(11):5228–5232.
  • Tonday HR, Tigga AM. Characterization of surface integrity of ti6al4v alloy machined by using wire electrical discharge machining process. Mater Today Proc. 2019;11(2):A8–14.
  • Pramanik A, AK B, Littlefair G, et al. Methods and variables in Electrical discharge machining of titanium alloy – a review. Heliyon. 2020;6(12):e05554.
  • Xie XN, Chung HJ, Sow CH, et al. Nanoscale materials patterning and engineering by atomic force microscopy nanolithography. Mater Sci Eng R Rep. 2006;54(1–2):1–48.
  • Prabhu S, Vinayagam BK. Optimization of carbon nanotube based electrical discharge machining parameters using full factorial design and genetic algorithm. Aust J Mech Eng. 2016;14(3):161–173.
  • Zhao W, Song W, LZ C, et al. Beyond imaging: applications of atomic force microscopy for the study of Lithium-ion batteries. Ultramicroscopy. 2019;204:34–48.
  • Bai CY, Lee JL, Wen TM, et al. The characteristics of chromized 1020 steel with electrical discharge machining and Ni electroplating pretreatments. Appl Surf Sci. 2011;257(8):3529–3537.
  • Wang CC, Lin YC. Feasibility study of electrical discharge machining for W/Cu composite. Int J Refract Met Hard Mater. 2009;27(5):872–882.
  • Thankachan T, KS P, Malini R, et al. Prediction of Surface roughness and Material removal rate in Wire Electrical Discharge Machining on Aluminum Based Alloys/Composites using Taguchi Coupled Grey Relational Analysis and Artificial Neural Networks. Appl Surf Sci. 2018;472:22–35.
  • Goyal A, Rahman HUR, Ghani SAC. Experimental investigation & optimisation of wire electrical discharge machining process parameters for Ni 49 Ti 51 shape memory alloy. J King Saud Univ - Eng Sci. 2020;33(2):129–135.
  • Vikas KSR, Raghu Ram N, Sai Charan B, et al. Hot pressing of copper and copper-based composites: microstructure and suitability as electrodes for electric discharge machining. Mater Today Proc. 2019;41(5):1001–1007.
  • Chalisgaonkar R, Kumar J, Pant P. Prediction of machining characteristics of finish cut WEDM process for pure titanium using feed forward back propagation neural network. Mater Today Proc. 2020;25(4):592–601.
  • Hrituc A, Coteaţă M, Dodun O, et al. Wear of the tool electrode at simultaneous electrical discharge machining of different materials. Procedia CIRP. 2020;95:419–421.
  • Borinaga-Treviño R, Orbe A, Canales J, et al. Experimental evaluation of cement mortars with recycled brass fibres from the electrical discharge machining process. Constr Build Mater. 2020;246:118522.
  • Li C, Xu M, Yu Z, et al. Electrical discharge-assisted milling for machining titanium alloy. J Mater Process Technol. 2020;285:116785.
  • Tsui HP, Lee PH, Yeh CC, et al. Ultrasonic vibration-assisted electrical discharge machining on Fe-based metallic glass by adding conductive powder. Procedia CIRP. 2020;95:425–430.
  • Uğur A, Nas E, Gökkaya H. Investigation of the machinability of SiC reinforced MMC materials produced by molten metal stirring and conventional casting technique in die-sinking electrical discharge machine. Int J Mech Sci. 2020;186:105875.
  • Qi Y, Nguyen V, Melkote S, et al. Wear of WC inserts textured by shot peening and electrical discharge machining. Wear. 2020;452–453:203279.
  • Bangash MK, Casalegno V, Das AK, et al. Surface machining of Ti6Al4V by means of Micro-Electrical Discharging to improve adhesive joining. J Mater Process Technol. 2020;286(June):116813.
  • Roy T, Sharma A, Datta D, et al. Molecular dynamics study on the effect of discharge on adjacent craters on micro EDMed surface. Precis eng. 2018;52:469–476.
  • He ZR, Liu CS, Jie XH, et al. Preparation of anti-fouling heat transfer surface by magnetron sputtering a-C film on electrical discharge machining Cu surface. Surf Coat Technol. 2019 March;369:44–51. DOI:10.1016/j.surfcoat.2019.03.075.
  • Roth R, Coemert S, Burkhardt S, et al. A process towards eliminating cytotoxicity by removal of surface contamination from electrical discharge machined nitinol. Procedia CIRP. 2020;89:45–51.
  • Wang H, Chi G, Wang Y, et al. Fabrication of superhydrophobic metallic surface on the electrical discharge machining basement. Appl Surf Sci. 2019;478(December 2018):110–118.
  • Guo C, Koshy P, Coelho F, et al. Sink electrical discharge machining of hydrophobic surfaces. CIRP Ann. 2019;68(1):185–188.
  • Malek O, Vleugels J, Vanmeensel K, et al. Electrical discharge machining of (NbxZr1-x) B 2-SiC composites. Procedia CIRP. 2013;6:186–191.
  • Thomas SOOS, Kalarikkal N, Wu J, et al. editors. Nanomaterials for Solar Cell Applications. Elsevier; 2019.
  • Wang YH, Liao CC, Chen YC, et al. The feasibility of eco-friendly electrical discharge machining for surface modification of Ti: a comparison study in surface properties, bioactivity, and cytocompatibility. Mater Sci Eng C. 2020;108:110192.
  • Murray JW, Fay MW, Kunieda M, et al. TEM study on the electrical discharge machined surface of single-crystal silicon. J Mater Process Technol. 2013;213(5):801–809.
  • Sahu RK, Hiremath SS, Manivannan PV, et al. Generation and Characterization of Copper Nanoparticles Using Micro-Electrical Discharge Machining. Mater Manuf Process. 2014;29(4):477–486.
  • Zhang W, Farooq A, Wang W. Generating Silicon Nanoparticles Using Spark Erosion by Flushing High-Pressure Deionized Water. Mater Manuf Process. 2016;31(2):113–118.
  • Mouralova K, Benes L, Zahradnicek R, et al. Analysis of cut orientation through half-finished product using WEDM. Mater Manuf Process. 2019;34(1):70–82.
  • Katiyar JK, Sharma AK, Pandey B. Synthesis of iron-copper alloy using electrical discharge machining. Mater Manuf Process. 2018;33(14):1531–1538.
  • Mouralova K, Benes L, Prokes T, et al. Machining of pure molybdenum using WEDM. Measurement. 2020 Oct;163:108010.
  • Srinivasan VP, Palani PK. Surface integrity, fatigue performance and dry sliding wear behaviour of Si3N4–TiN after wire-electro discharge machining. Ceram Int. 2020;46(8):10734–10739.
  • Marichamy S, Stalin B, Ravichandran M, et al. Optimization of machining parameters of EDM for α-β Brass using response surface methodology. Mater Today Proc. 2020;24:1400–1409.
  • Pattnaik S, Sutar MK. Advanced Taguchi-Neural Network Prediction Model for Wire Electrical Discharge Machining Process. Process Integ Optim Sustain. 2021;5(1):159–172.
  • Liu H, Wang Z, Chi G, et al. Influence of Open-circuit Voltage on Micro Electrical Discharge Machining of Ni-Al2O3 Functionally Graded Materials. Procedia CIRP. 2018;68:5–10.
  • Sivakumar M, Dasgupta A. Selected Area Electron Diffraction, a technique for determination of crystallographic texture in nanocrystalline powder particle of Alloy 617 ODS and comparison with Precession Electron Diffraction. Mater Charact. 2019;157(August):109883.
  • Ayoola HO, House SD, Bonifacio CS, et al. Evaluating the accuracy of common γ-Al2O3 structure models by selected area electron diffraction from high-quality crystalline γ-Al2O3. Acta Mater. 2020;182:257–266.
  • Sahu RK, Somashekhar SH, Manivannan PV. Investigation on copper nanofluid obtained through micro electrical discharge machining for dispersion stability and thermal conductivity. Procedia Eng. 2013;64:946–955.
  • Kumar S, Singh R, Singh TP, et al. Surface modification by electrical discharge machining: a review. J Mater Process Technol. 2009;209(8):3675–3687.
  • Pandey SK, Gupta S, Acharya U, et al. Adaptive neuro fuzzy interference system modeling for wire electric discharge machining of Al7075/B4C composite. Mater Today Proc. 2021;46(19):9223–9228.
  • Shabgard MR, Alenabi H. Ultrasonic Assisted Electrical Discharge Machining of Ti–6Al–4V Alloy. Mater Manuf Process. 2015;30(8):991–1000.
  • Greczynski G, Hultman L. X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog Mater Sci. 2020;107(April 2019):100591.
  • Gadalla AM, Petrofes NF. SURFACES OF ADVANCED CERAMIC COMPOSITES FORMED BY ELECTRICAL DISCHARGE MACHINING. Mater Manuf Process. 1990;5(2):253–271.
  • Rao X, Zhang F, Lu Y, et al. Surface and subsurface damage of reaction-bonded silicon carbide induced by electrical discharge diamond grinding. Int J Mach Tools Manuf. 2020;154(April):103564.
  • Tan TH, Yan J. Atomic-scale characterization of subsurface damage and structural changes of single-crystal silicon carbide subjected to electrical discharge machining. Acta Mater. 2017;123:362–372.
  • Rahim MZ, Ding S, Mo J. Electrical discharge grinding of polycrystalline diamond – Effect of wheel rotation. Mach Sci Technol. 2016;20(1):62–78.
  • Ehle LC, Schneider S, Schwedt A, et al. Electron microscopic characterization of surface zones thermo-chemically modified by electrical discharge machining. J Mater Process Technol. 2020;280(January):116596.
  • Wu X, Suo H, Ji Y, et al. Systematical analysis on the grain orientation evolution of pure nickel under plastic deformation by using in-situ EBSD. Mater Sci Eng A. 2020;792:139722.
  • Muránsky O, Balogh L, Tran M, et al. On the measurement of dislocations and dislocation substructures using EBSD and HRSD techniques. Acta Mater. 2019;175:297–313.
  • Shamanian M, Valehi M, Kangazian J, et al. EBSD characterization of the L-605 Co-based alloy welds processed by pulsed Nd:yAG laser welding. Opt Laser Technol. 2020 March;128:106256. DOI:10.1016/j.optlastec.2020.106256.
  • Liu JF, Guo YB, Butler TM, et al. Crystallography, compositions, and properties of white layer by wire electrical discharge machining of nitinol shape memory alloy. Mater Des. 2016;109:1–9.
  • Kumar Roy B, Kumar A, Ranjan Sahu D, et al. Wire Electrical Discharge Machining characteristics of Nitinol-60 Shape Memory Alloy. Mater Today Proc. 2019;22:2860–2869.
  • Tavakkoli Yaraki M, Tan YN. Recent advances in metallic nanobiosensors development: colorimetric, dynamic light scattering and fluorescence detection. Sensors Int. 2020;1(October):100049.
  • Ramos R, Valdez B, Nedev N, et al. Electric discharge synthesis of nickel nanoparticles with virtual instrument control. Instrum Sci Technol. 2021;49(5):499–508.
  • Tiwary AP, Pradhan BB, Bhattacharyya B. Influence of various metal powder mixed dielectric on micro-EDM characteristics of Ti-6al-4V. Mater Manuf Process. 2019;34(10):1–17.
  • Shah S, Saha P. Investigation on performance characteristics of micro-EDM dressing for the fabrication of micro- rod (s) on Ti-6al-7nb biomedical material. Mach Sci Technol. 2020;25(3):398–421.
  • Zhou C, Wu X, Lu Y, et al. Fabrication of hydrophobic Ti 3 SiC 2 surface with micro-grooved structures by wire electrical discharge machining. Ceram Int. 2018;44(15):18227–18234.
  • Yan J, Watanabe K, Aoyama T. Micro-electrical discharge machining of polycrystalline diamond using rotary cupronickel electrode. CIRP Ann Manuf Technol. 2014;63(1):209–212.
  • Sivaprakasam P, Hariharan P. Surface characteristics of nano powder mixed micro-wire electrical discharge machining on inconel alloy. Mater Today Proc. 2021;38(2):494–498.
  • Sahu RK, Hiremath SS. Role of stabilizers on agglomeration of debris during micro-electrical discharge machining. Mach Sci Technol. 2019;23(3):339–367.
  • Sahu MSRK, Hiremath SS, Manivannan PV. An innovative approach for generation of aluminium nanoparticles using micro electrical discharge machining. Procedia Mater Sci. 2014;5:1205–1213.
  • Siddique AR, Mohanty S, Das AK. Micro-electrical discharge coating of Titanium alloy using WS 2 and Brass P/M electrode. Mater Manuf Process. 2019;34(15):1761–1774.
  • Saquib M, Dahmardeh M, Nojeh A, et al. Batch-mode micropatterning of carbon nanotube forests using UV-LIGA assisted micro-electro-discharge machining. J Mater Process Tech. 2014;214(11):2537–2544.
  • Thao O, Joshi SS. Analysis of heat affected zone in the micro-electric discharge machining. Int J Manuf Technol Manag. 2008;13(2–4):201–213.
  • da Silva SP, Abrão AM, da Silva E, et al. Surface modification of AISI H13 steel by die-sinking electrical discharge machining and TiAln coating: a promising hybrid technique to improve wear resistance. Wear. 2020;462–463:203509.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.