1,375
Views
24
CrossRef citations to date
0
Altmetric
Review Article

A review of the immunopathogenesis of Brucellosis

, , , &
Pages 321-333 | Received 10 Aug 2018, Accepted 04 Jan 2019, Published online: 18 Feb 2019

References

  • Buttigieg SC, Savic S, Cauchi D. Brucellosis control in Malta and Serbia: a one health evaluation. Front Vet Sci. 2018;5:147.
  • Yagupsky P. Detection of Brucellae in blood cultures. J Clin Microbiol. 1999;37:3437–3442.
  • Young EJ. An overview of human brucellosis. Clin Infect Dis. 1995;21:283–289.
  • Aparicio ED. Epidemiology of brucellosis in domestic animals caused by Brucella melitensis, Brucella suis and Brucella abortus. Rev Sci Tech Off Int Epiz. 2013;32:53–60.
  • Thakur S, Vaid R, Panda A. Marine mammal brucellosis: a new dimension to an old zoonosis. Curr Sci. 2012;902–910.
  • Ceran N, Turkoglu R, Erdem I, et al. Neurobrucellosis: clinical, diagnostic, therapeutic features and outcome. Unusual clinical presentations in an endemic region. Braz J Infect Dis. 2011;15:52–59.
  • De BK, Stauffer L, Koylass MS, et al. Novel Brucella strain (BO1) associated with a prosthetic breast implant infection. J Clin Microbiol. 2008;46:43–49.
  • Tiller RV, Gee JE, Frace MA, et al. Characterization of novel Brucella strains originating from wild native rodent species in North Queensland, Australia. Appl Environ Microbiol. 2010;76:5837–5845.
  • Rittig MG, Kaufmann A, Robins A, et al. Smooth and rough lipopolysaccharide phenotypes of Brucella induce different intracellular trafficking and cytokine/chemokine release in human monocytes. J Leukoc Biol. 2003;74:1045–1055.
  • Bossi P, Tegnell A, Baka A, et al. Bichat guidelines for the clinical management of brucellosis and bioterrorism-related brucellosis. Euro Surveill. 2004;9:E15–EE6.
  • Klietmann WF, Ruoff KL. Bioterrorism: implications for the clinical microbiologist. Clin Microbiol Rev. 2001;14:364–381.
  • Celli J. Surviving inside a macrophage: the many ways of Brucella. Res Microbiol. 2006;157:93–98.
  • Gopalakrishnan A, Dimri U, Saminathan M, et al. Virulance factors intracellular survuvability and mechanism of evasion from host immune response by Brucella: an overview. Anim Plant Sci. 2016;12:26.
  • de Figueiredo P, Ficht TA, Rice-Ficht A, et al. Pathogenesis and immunobiology of brucellosis: review of Brucella–host interactions. Am J Pathol. 2015;185:1505–1517.
  • Kaygusuz TO, Kaygusuz I, Kilic SS, et al. Investigation of hearing loss in patients with acute brucellosis by standard and high-frequency audiometry. Clin Microbiol Infect. 2005;11:559–563.
  • Doganay M, Aygen B. Human brucellosis: an overview. Int J Infect Dis. 2003;7:173–182.
  • Rossetti CA, Galindo CL, Garner HR, et al. Transcriptional profile of the intracellular pathogen Brucella melitensis following HeLa cells infection. Microb Pathog. 2011;51:338–344.
  • Castaneda-Roldan EI, Avelino-Flores F, Dall’Agnol M, et al. Adherence of Brucella to human epithelial cells and macrophages is mediated by sialic acid residues. Cell Microbiol. 2004;6:435–445.
  • Castaneda-Roldan EI, Ouahrani-Bettache S, Saldana Z, et al. Characterization of SP41, a surface protein of Brucella associated with adherence and invasion of host epithelial cells. Cell Microbiol. 2006;8:1877–1887.
  • Swanson JA, Baer SC. Phagocytosis by zippers and triggers. Trends Cell Biol. 1995;5:89–93.
  • Bellaire BH, Roop RM 2nd, Cardelli JA. Opsonized virulent Brucella abortus replicates within nonacidic, endoplasmic reticulum-negative, LAMP-1-positive phagosomes in human monocytes. Infect Immun. 2005;73:3702–3713.
  • Campbell GA, Adams LG, Sowa BA. Mechanisms of binding of Brucella abortus to mononuclear phagocytes from cows naturally resistant or susceptible to brucellosis. Vet Immunol Immunopathol. 1994;41:295–306.
  • Watarai M, Makino S, Fujii Y, et al. Modulation of Brucella-induced macropinocytosis by lipid rafts mediates intracellular replication. Cell Microbiol. 2002;4:341–355.
  • Harmon BG, Adams LG, Templeton JW, et al. Macrophage function in mammary glands of Brucella abortus-infected cows and cows that resisted infection after inoculation of Brucella abortus. Am J Vet Res. 1989;50:459–465.
  • Rittig MG, Alvarez-Martinez M-T, Porte F, et al. Intracellular Survival of Brucella spp. in human monocytes involves conventional uptake but special phagosomes. Infect Immun. 2001;69:3995–4006.
  • Roop RM, 2nd, Bellaire BH, Valderas MW, et al. Adaptation of the Brucellae to their intracellular niche. Mol Microbiol. 2004;52:621–630.
  • Ko J, Splitter GA. Molecular host–pathogen interaction in brucellosis: current understanding and future approaches to vaccine development for mice and humans. Clin Microbiol Rev. 2003;16:65–78.
  • Gorvel JP, Moreno E. Brucella intracellular life: from invasion to intracellular replication. Vet Microbiol. 2002;90:281–297.
  • Lapaque N, Takeuchi O, Corrales F, et al. Differential inductions of TNF-alpha and IGTP, IIGP by structurally diverse classic and non-classic lipopolysaccharides. Cell Microbiol. 2006;8:401–413.
  • Band VI, Weiss DS. Mechanisms of antimicrobial peptide resistance in gram-negative bacteria. Antibiotics. 2014;4:18–41.
  • Porte F, Naroeni A, Ouahrani-Bettache S, et al. Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages. Infect Immun. 2003;71:1481–1490.
  • Lapaque N, Moriyon I, Moreno E, et al. Brucella lipopolysaccharide acts as a virulence factor. Curr Opin Microbiol. 2005;8:60–66.
  • Goldstein J, Hoffman T, Frasch C, et al. Lipopolysaccharide (LPS) from Brucella abortus is less toxic than that from Escherichia coli, suggesting the possible use of B. abortus or LPS from B. abortus as a carrier in vaccines. Infect Immun. 1992;60:1385–1389.
  • de Bagüés MPJ, Terraza A, Gross A, et al. Different responses of macrophages to smooth and rough Brucella spp.: relationship to virulence. Infect Immun. 2004;72:2429–2433.
  • Den Hartigh AB, Rolán HG, De Jong MF, et al. VirB3 to VirB6 and VirB8 to VirB11, but not VirB7, are essential for mediating persistence of Brucella in the reticuloendothelial system. J Bacteriol. 2008;190:4427–4436.
  • Lopez-Goni I, Guzman-Verri C, Manterola L, et al. Regulation of Brucella virulence by the two-component system BvrR/BvrS. Vet Microbiol. 2002;90:329–339.
  • Manterola L, Guzman-Verri C, Chaves-Olarte E, et al. BvrR/BvrS-controlled outer membrane proteins Omp3a and Omp3b are not essential for Brucella abortus virulence. Infect Immun. 2007;75:4867–4874.
  • Arenas GN, Staskevich AS, Aballay A, et al. Intracellular trafficking of Brucella abortus in J774 macrophages. Infect Immun. 2000;68:4255–4263.
  • Boschiroli ML, Foulongne V, O’Callaghan D. Brucellosis: a worldwide zoonosis. Curr Opin Microbiol. 2001;4:58–64.
  • Del Giudice MG, Dohmer PH, Spera JM, et al. VirJ is a Brucella virulence factor involved in the secretion of type IV secreted substrates. J Biol Chem. 2016;291:12383–12393.
  • Arellano-Reynoso B, Lapaque N, Salcedo S, et al. Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat Immunol. 2005;6:618–625.
  • Watarai M, Kim S, Erdenebaatar J, et al. Cellular prion protein promotes Brucella infection into macrophages. J Exp Med. 2003;198:5–17.
  • Sha Z, Stabel TJ, Mayfield JE. Brucella abortus catalase is a periplasmic protein lacking a standard signal sequence. J Bacteriol. 1994;176:7375–7377.
  • Seleem MN, Boyle SM, Sriranganathan N. Brucella: a pathogen without classic virulence genes. Vet Microbiol. 2008;129:1–14.
  • Jacobson FS, Morgan RW, Christman MF, et al. An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J Biol Chem. 1989;264:1488–1496.
  • Kim S, Watarai M, Kondo Y, et al. Isolation and characterization of mini-Tn5Km2 insertion mutants of Brucella abortus deficient in internalization and intracellular growth in HeLa cells. Infect Immun. 2003;71:3020–3027.
  • Stevanin TM, Moir JW, Read RC. Nitric oxide detoxification systems enhance survival of Neisseria meningitidis in human macrophages and in nasopharyngeal mucosa. Infect Immun. 2005;73:3322–3329.
  • Lavigne JP, Patey G, Sangari FJ, et al. Identification of a new virulence factor, BvfA, in Brucella suis. Infect Immun. 2005;73:5524–5529.
  • Blackwell JM, Searle S, Goswami T, et al. Understanding the multiple functions of Nramp1. Microbes Infect. 2000;2:317–321.
  • Hackam DJ, Rotstein OD, Zhang W-j, et al. Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J Exp Med. 1998;188:351–364.
  • Kuballa P, Nolte WM, Castoreno AB, et al. Autophagy and the immune system. Annu Rev Immunol. 2012;30:611–646.
  • Skendros P, Mitroulis I. Host cell autophagy in immune response to zoonotic infections. Clin Dev Immunol. 2012;2012:1.
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5:987–995.
  • Surendran N, Hiltbold EM, Heid B, et al. Role of TLRs in Brucella mediated murine DC activation in vitro and clearance of pulmonary infection in vivo. Vaccine. 2012;30:1502–1512.
  • Kim DG, Simborio HLT, Reyes AWB, et al. The key roles of Toll-like receptor (TLR) for intracellular survival of Brucella. J Prev Vet Med. 2013;37:185–192.
  • Nauseef WM. How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev. 2007;219:88–102.
  • Moreno E, Moriyón I. The prokaryotes: a handbook on the biology of bacteria. 2006.
  • Skendros P, Boura P. Immunity to brucellosis. Rev Off Int Epizoot. 2013;32:137–147.
  • Dieli F, Ivanyi J, Marsh P, et al. Characterization of lung gamma delta T cells following intranasal infection with Mycobacterium bovis Bacillus-Calmette-Guerin. J Immunol. 2003;170:463–469.
  • Bertotto A, Gerli R, Spinozzi F, et al. Lymphocytes bearing the gamma delta T cell receptor in acute Brucella melitensis infection. Eur J Immunol. 1993;23:1177–1180.
  • Oliaro J, Dudal S, Liautard J, et al. Vgamma9Vdelta2 T cells use a combination of mechanisms to limit the spread of the pathogenic bacteria Brucella. J Leukoc Biol. 2005;77:652–660.
  • Trotta A, Velásquez LN, Milillo MA, et al. Platelets promote Brucella abortus monocyte invasion by establishing complexes with monocytes. Front Immunol. 2018;9:1000.
  • Manetti R, Parronchi P, Giudizi MG, et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med. 1993;177:1199–1204.
  • Saito S, Sakai M, Sasaki Y, et al. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and preeclampsia. Clin Exp Immunol. 1999;117:550–555.
  • Yingst S, Hoover DL. T cell immunity to brucellosis. Crit Rev Microbiol. 2003;29:313–331.
  • Rafiei A, Ardestani SK, Kariminia A, et al. Dominant Th1 cytokine production in early onset of human brucellosis followed by switching towards Th2 along prolongation of disease. J Infect. 2006;53:315–324.
  • Skendros P, Pappas G, Boura P. Cell-mediated immunity in human brucellosis. Microbes Infect. 2011;13:134–142.
  • Ghaznavi-Rad E, Khosravi K, Zarinfar N, et al. Reduced IFN-gamma production in chronic brucellosis patients. Iranian J Immunol. 2017;14:215–222.
  • Golding B, Scott DE, Scharf O, et al. Immunity and protection against Brucella abortus. Microbes Infect. 2001;3:43–48.
  • Durward M, Radhakrishnan G, Harms J, et al. Active evasion of CTL mediated killing and low quality responding CD8+ T cells contribute to persistence of brucellosis. PLoS One. 2012;7:e34925.
  • Goenka R, Guirnalda PD, Black SJ, et al. B Lymphocytes provide an infection niche for intracellular bacterium Brucella abortus. J Infect Dis. 2012;206:91–98.
  • Goenka R, Parent MA, Elzer PH, et al. B cell-deficient mice display markedly enhanced resistance to the intracellular bacterium Brucella abortus. J Infect Dis. 2011;203:1136–1146.
  • Ganji A, Mosayebi G, Ghaznavi-Rad E, et al. Evaluation of regulatory T cells in patients with acute and chronic brucellosis. Rep Biochem Mol Biol. 2017;5:91–96.
  • Hasanjani MR, Bayani M, Soleimani SA, et al. Evaluation of CD4+ CD25+ FoxP3+ regulatory T cells during treatment of patients with brucellosis. J Biol Regul Homeost Agents. 2016;30:675–682.
  • Skendros P, Boura P, Chrisagis D, et al. Diminished percentage of CD4+ T-lymphocytes expressing interleukine-2 receptor alpha in chronic brucellosis. J Infect. 2007;54:192–197.
  • Corsetti P, de Almeida L, Gonçalves A, et al. miR-181a-5p regulates TNF-α and miR-21a-5p influences gualynate-binding protein 5 and IL-10 expression in macrophages affecting host control of Brucella abortus infection. Front Immunol. 2018;9:1331.
  • Lacey CA, Mitchell WJ, Dadelahi AS, et al. Caspases-1 and caspase-11 mediate pyroptosis, inflammation, and control of Brucella joint infection. Infect Immun. 2018;IAI00361-18.
  • Martirosyan A, Moreno E, Gorvel JP. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev. 2011;240:211–234.
  • Barquero-Calvo E, Chaves-Olarte E, Weiss DS, et al. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One. 2007;2:e631.
  • Tsolis RM, Young GM, Solnick JV, et al. From bench to bedside: stealth of enteroinvasive pathogens. Nat Rev Microbiol. 2008;6:883–892.
  • Wilson RP, Winter SE, Spees AM, et al. The VI capsular polysaccharide prevents complement receptor 3-mediated clearance of Salmonella enterica serotype Typhi. Infect Immun. 2011;79:830–837.
  • Pei J, Turse JE, Ficht TA. Evidence of Brucella abortus OPS dictating uptake and restricting NF-κB activation in murine macrophages. Microbes Infect. 2008;10:582–590.
  • Sengupta D, Koblansky A, Gaines J, et al. Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter, MAL. J Immunol. 2010;184:956–964.
  • Spera JM, Ugalde JE, Mucci J, et al. A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection. Proc Natl Acad Sci USA. 2006;103:16514–16519.
  • Karaoglan I, Pehlivan S, Namiduru M, et al. TNF-α, TGF-β, IL-10, IL-6 and IFN-γ gene polymorphisms as risk factors for brucellosis. New Microbiol. 2009;32:173–178.
  • Rafiei A, Hajilooi M, Vahedi M, et al. The Ser128Arg polymorphism for E-selectin gene and brucellosis. Infect Genet Evol. 2007;7:494–498.
  • Rafiei A, Hajilooi M, Shakib RJ, et al. Association between the Phe206Leu polymorphism of L-selectin and brucellosis. J Med Microbiol. 2006;55:511–516.
  • Rafiei A, Hajilooi M, Shakib R, et al. Transforming growth factor‐β1 polymorphisms in patients with brucellosis: an association between codon 10 and 25 polymorphisms and brucellosis. Clin Microbiol Infect. 2007;13:97–100.
  • Bravo MJ, Colmenero JD, Queipo-Ortuño MI, et al. TGF-beta1 and IL-6 gene polymorphism in Spanish brucellosis patients. Cytokine. 2008;44:18–21.
  • Sepanjnia A, Eskandari-Nasab E, Moghadampour M, et al. TGFβ1 genetic variants are associated with an increased risk of acute brucellosis. Infect Dis. 2015;47:458–464.
  • Hedayatizadeh-Omran A, Rafiei A, Hajilooi M, et al. Interferon-gamma low producer genotype +5644 over presented in patients with focal brucellosis. Pak J Biol Sci. 2010;13:1036–1041.
  • Rasouli M, Kiany S. Association of interferon-gamma and interleukin-4 gene polymorphisms with susceptibility to brucellosis in Iranian patients. Cytokine. 2007;38:49–53.
  • Bravo M, de Dios Colmenero J, Alonso A, et al. Polymorphisms of the interferon gamma and interleukin 10 genes in human brucellosis. Eur J Immunogenet. 2003;30:433–435.
  • Eskandari‐Nasab E, Moghadampour M, et al. Relationship between γ‐interferon gene polymorphisms and susceptibility to brucellosis infection. Microbiol Immunol. 2013;57:785–791.
  • Rezazadeh M, Hajilooi M, Haidari M, et al. Association of susceptibility to brucellosis and interleukin-4 promoter polymorphism. Scand J Infect Dis. 2006;38:1045–1049.
  • Hajilooi M, Rafiei A, Reza Zadeh M, et al. Association of interleukin-1 receptor antagonist gene polymorphism and susceptibility to human brucellosis. Tissue Antigens. 2006;68:331–334.
  • Haidari M, Hajilooi M, Rezazadeh M, et al. Polymorphism in the promoter region of the CD14 gene and susceptibility to brucellosis. Immunol Invest. 2006;35:239–245.
  • Rezazadeh M, Hajilooi M, Rafiei A, et al. TLR4 polymorphism in Iranian patients with brucellosis. J Infect. 2006;53:206–210.
  • Rafiei AGR, Hosseini khah Z, Ajami A. Association of FC gamma RIIA polymorphism with brucellosis. Res Mol Med. 2014;2:17–23.
  • Rasouli M, Kiany S, Behbin M. Interleukin-10 gene polymorphisms and susceptibility to brucellosis in Iranian patients. Iran J Immunol. 2008;5:131–135.
  • Budak F, Göral G, Heper Y, et al. IL-10 and IL-6 gene polymorphisms as potential host susceptibility factors in brucellosis. Cytokine. 2007;38:32–36.
  • Rasouli M, Kiany S, Moravej A, et al. Interleukin-12 and tumor necrosis factor-b gene polymorphisms as genetic susceptibility factors for brucellosis in Iranian patients. Iran Red Crescent Med J. 2010;12:266.
  • Asaei S, Rasouli M, Moravej A. Interleukin-8 but not interleukin-6 variant may affect susceptibility to brucellosis. Iran J Immunol. 2013;10:158–166.
  • Rasouli M, Kalani M, Moravej A, et al. Interleukin-18 single nucleotide polymorphisms contribute to the susceptibility to brucellosis in Iranian patients. Cytokine. 2011;54:272–276.
  • Kalani M, Rasouli M, Moravej A, et al. Association of interleukin-15 single nucleotide polymorphisms with resistance to brucellosis among Iranian patients. Tissue Antigens. 2011;78:352–358.
  • Rasouli M, Asaei S, Kalani M, et al. Interleukin-17A genetic variants can confer resistance to brucellosis in Iranian population. Cytokine. 2013;61:297–303.
  • Batikhan H, Gokcan MK, Beder E, et al. Association of the tumor necrosis factor-alpha -308 G/A polymorphism with nasal polyposis. Eur Arch Otorhinolaryngol. 2010;267:903–908.
  • Caballero A, Bravo M, Nieto A, et al. TNFA promoter polymorphism and susceptibility to brucellosis. Clin Exp Immunol. 2000;121:480–483.
  • Davoudi S, Amirzargar A, Hajiabdolbaghi M, et al. Th-1 cytokines gene polymorphism in human brucellosis. Int J Immunogenet. 2006;33:355–359.
  • Bravo MJ, Colmenero JD, Martin J, et al. Polymorphism of the transmembrane region of the MICA gene and human brucellosis. Tissue Antigens. 2007;69:358–360.
  • Bayram N, Ozkinay F, Onay H, et al. Mannose-binding lectin gene codon 54 polymorphism susceptible to brucellosis in Turkish children. Turkish J Pediatr. 2012;54:234–238.
  • Eskandari-Nasab E, Moghadampour M, Najibi H, et al. Investigation of CTLA-4 and CD86 gene polymorphisms in Iranian patients with brucellosis infection. Microbiol Immunol. 2014;58:135–141.
  • Khorvash F, Keshteli AH, Behjati M, et al. An unusual presentation of brucellosis, involving multiple organ systems, with low agglutinating titers: a case report. J Med Case Rep. 2007;1:53.
  • Mantur B, Amarnath S, Shinde R. Review of clinical and laboratory features of human brucellosis. Indian J Med Microbiol. 2007;25:188.
  • Pabuccuoglu O, Ecemis T, El S, et al. Evaluation of serological tests for diagnosis of brucellosis. Jpn J Infect Dis. 2011;64:272–276.
  • Budak F, Bal SH, Tezcan G, et al. The microRNA expression signature of CD4+ T cells in the transition of brucellosis into chronicity. PLoS One. 2018;13:e0198659
  • Castaño MJ, Solera J. Chronic brucellosis and persistence of Brucella melitensis DNA. J Clin Microbiol. 2009;47:2084–2089.
  • SeyedMohammad A, MohammadEsmaeil M. A review of epidemiology, diagnosis and management of brucellosis for general physicians working in the Iranian health network. Jundishapur J Microbiol. 2012;2012:384–387.
  • Zhao ZJ, Li Q, Ma L, et al. The early diagnostic value of serum neopterin and cartilage oligomeric matrix protein for osteoarticular changes among brucellosis patients at an early period. J Orthop Surg Res. 2018;13:222.
  • Gönen S, Dizbay M, Söylemezoğlu O. Investigation of human leukocyte antigen in osteoarticular brucellosis. Turk J Med Sci. 2017;47:1505–1508.
  • Hashemi SH, Esna-Ashari F, Nemat Gorgani F, et al. Increased serum levels of hepcidin and C-reactive protein in patients with brucellosis. Trans R Soc Trop Med Hyg. 2018;112:509–512.
  • Aon M, Al-Enezi T. Acute brucellosis presenting with bleeding tendency due to isolated severe thrombocytopenia. Case Rep Infect Dis. 2018;2018;7867435.
  • Sahinturk H, Baran B, Sisman G, et al. Liver involvement is associated with blood culture positivity and high agglutination titre in patients with brucellosis in Turkey. J Med Microbiol. 2018;67:1078–1082.
  • Hodinka L, Gömör B, Merétey K, et al. HLA-B27-associated spondylarthritis in chronic brucellosis. Lancet. 1978;1:499.
  • Pourfathollah A, Eslami M, Yalda A, et al. Alteration of T-lymphocyte subpopulations in subacute and chronic brucellosis. Med J Islam Repub Iran. 1996;10:191–194.
  • Akbulut H, Celik I, Akbulut A. Cytokine levels in patients with brucellosis and their relations with the treatment. Indian J Med Microbiol. 2007;25:387.
  • Fernandes DM, Baldwin CL. Interleukin-10 downregulates protective immunity to Brucella abortus. Infect Immun. 1995;63:1130–1133.
  • Kariminia A, Kavoossy G, Khatami S, et al. Study of interleukin-10 and interleukin-12 productions in response to lipopolysaccharides extracted from two different Brucella strains. Comp Immunol Microbiol Infect Dis. 2002;25:85–93.
  • Doyle AG, Herbein G, Montaner LJ, et al. Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-γ. Eur J Immunol. 1994;24:1441–1445.
  • Vitry M-A, De Trez C, Goriely S, et al. Crucial role of IFN-γ-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2 and Th17 responses in the control of Brucella melitensis infection in mice. Infect Immun. 2012;IAI00761-12.
  • Ghaznavi-Rad E, Khosravi K, Zarinfar N, et al. Reduced IFN-γ production in chronic brucellosis patients. Iranian J Immunol. 2017;14:215–222.
  • Araj GF. Profiles of Brucella-specific immunoglobulin G subclasses in sera of patients with acute and chronic brucellosis. Serodiagn Immunother Infect Dis. 1988;2:401–410.
  • Zumla A, James DG. Granulomatous infections: etiology and classification. Clin Infect Dis. 1996;23:146–158.
  • Rolán HG, Xavier MN, Santos RL, et al. Natural antibody contributes to host defense against an attenuated Brucella abortus virB mutant. Infect Immun. 2009;77:3004–3013.
  • de Jong MF, Rolan HG, Tsolis RM. Innate immune encounters of the (Type) 4th kind: Brucella. Cell Microbiol. 2010;12:1195–1202.
  • Provatopoulou S, Papasotiriou M, Papachristou E, et al. Membranoproliferative glomerulonephritis in a patient with chronic brucellosis. Kidney Res Clin Pract. 2018;37:298–303.
  • Andriopoulos P, Antoniou C, Manolakou P, et al. Brucella endocarditis as a late onset complication of brucellosis. Case Rep Infect Dis. 2015;2015:836826.
  • Vallianou NG, Melaki K, Constantinou F, et al. Testicular abscesses due to Brucella melitensis. New Microbes New Infect. 2018;26:1–2.
  • Sudulagunta SR, Kumbhat M, Sodalagunta MB, et al. Isolated splenic abscess in brucellosis. Oxf Med Case Rep. 2017;2017:omx001.
  • Sazegari MA, Bahramian F, Mirzaee F, et al. Loosening of total knee arthroplasty after brucellosis infection: a case report. Arch Bone Jt Surg. 2017;5:70–72.
  • Alfouzan W, Al-Sahali S, Sultan H, et al. Classical presentation of acute pyelonephritis in a case of brucellosis. Case Rep Nephrol Dial. 2016;6:83–88.
  • Korkmaz P, Kidir M, Namdar ND, et al. A case of brucellosis with recurrent attacks of vasculitis. Case Rep Infect Dis. 2016;2016:5740589.
  • Ozturk M, Yavuz F, Altun D, et al. Postpartum bilateral sacroiliitis caused by Brucella infection. J Clin Diagn Res. 2015;9:Qd07–Qd08.
  • Al-Kharashi AS. Endogenous endophthalmitis caused by Brucella melitensis. Retin Cases Brief Rep. 2016;10:165–167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.