1,007
Views
62
CrossRef citations to date
0
Altmetric
Review Article

Helicobacter pylori: molecular basis for colonization and survival in gastric environment and resistance to antibiotics. A short review

ORCID Icon & ORCID Icon
Pages 399-408 | Received 28 Dec 2018, Accepted 20 Feb 2019, Published online: 25 Mar 2019

References

  • Warren JR, Marshall BJ. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet. 1983;i:1273–1275.
  • Pellicano R, Ribaldone DG, Fagoonee S. A 2016 panorama of Helicobacter pylori infection: key messages for clinicians. Panminerva Med. 2016;58:304–317.
  • Ansari S, Yamaoka Y. Survival of Helicobacter pylori in gastric acidic territory. Helicobacter. 2017;22:e12386.
  • Suerbaum S, Josenhans C, Labigne A. Cloning and genetic characterization of the Helicobacter pylori and Helicobacter mustelae flaB flagellin genes and construction of H. pylori flaA- and flaB-negative mutants by electroporation-mediated allelic exchange. J Bacteriol. 1993;175:3278–3288.
  • Josenhans C, Labigne A, Suerbaum S. Comparative ultrastructural and functional studies of Helicobacter pylori and Helicobacter mustelae flagellin mutants: both flagellin subunits, FlaA and FlaB, are necessary for full motility in Helicobacter species. J Bacteriol. 1995;177:3010–3020.
  • Isaeva GS, Fagoonee S. Biological properties and pathogenicity factors of Helicobacter pylori. Minerva Gastroenterol Dietol. 2018;64:255–266.
  • Zarei M, Mosayebi G, Khansarinejad B, et al. Antigenic and immunogenic evaluation of Helicobacter pylori FlaA epitopes. Iran J Basic Med Sci. 2017;20:920–926.
  • Dossumbekova A, Prinz C, Gerhard M, et al. Helicobacter pylori outer membrane proteins and gastric inflammation. Gut. 2006;55:1360–1361.
  • Cole SP, Cirillo D, Kagnoff MF, et al. Coccoid and spiral Helicobacter pylori differ in their abilities to adhere to gastric epithelial cells and induce interleukin-8 secretion. Infect Immun. 1997;65:843–846.
  • Ilver D, Arnqvist A, Ogren J, et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science. 1998;279:373–377.
  • Kalali B, Mejías-Luque R, Javaheri A, et al. H. pylori virulence factors: influence on immune system and pathology. Mediators Inflamm. 2014;2014:426309.
  • Odenbreit S, Swoboda K, Barwig I, et al. Outer membrane protein expression profile in Helicobacter pylori clinical isolates. Infect Immun. 2009;77:3782–3790.
  • Portal-Celhay C, Perez-Perez GI. Immune responses to Helicobacter pylori colonization: mechanisms and clinical outcomes. Clin Sci. 2006;110:305–314.
  • Sheu BS, Wu JJ. Type 1 and 2 Lewis antigens of Helicobacter pylori-a potential marker of the human geographical distribution. J Med Microbiol. 2008;57:543–544.
  • Senkovich OA, Yin J, Ekshyyan V, et al. Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils. Infect Immun. 2011;79:3106–3116.
  • Shan Y, Lu X, Han Y, et al. Helicobacter pylori outer membrane protein 18 (Hp1125) is involved in persistent colonization by evading Interferon-γ signaling. BioMed Res Intern. 2015;2015:571280.
  • Álvarez A, Uribe F, Canales J, et al. KCTD5 and ubiquitin proteasome signaling are required for Helicobacter pylori adherence. Front Cell Infect Microbiol. 2017;7:450.
  • Clayton CL, Pallen MJ, Kleanthous H, et al. Nucleotide sequence of two genes from Helicobacter pylori encoding for urease subunits. Nucleic Acids Res. 1990;18:362.
  • Labigne A, Cussac V, Courcoux P. Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity. J Bacteriol. 1991;173:1920–1931.
  • Hu LT, Mobley HL. Purification and N-terminal analysis of urease from Helicobacter pylori. Infect Immun. 1990;58:992–998.
  • Cussac V, Ferrero RL, Labigne A. Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions. J Bacteriol. 1992;174:2466–2473.
  • Nolan KJ, McGee DJ, Mitchell HM, et al. In vivo behavior of a Helicobacter pylori SS1 nixA mutant with reduced urease activity. Infect Immun. 2002;70:685–691.
  • Fisher F, Robbe-Saule M, Turlin E, et al. Characterization in Helicobacter pylori of a nickel transporter essential for colonization that was acquired during evolution by gastric Helicobacter species. PLoS Pathog. 2016;12:e1006018.
  • Hendricks JK, Mobley HL. Helicobacter pylori ABC transporter: effect of allelic exchange mutagenesis on urease activity. J Bacteriol. 1997;79:5892–5902.
  • Bellucci M, Zambelli B, Musiani F, et al. Helicobacter pylori UreE, a urease accessory protein: specific Ni(2+)- and Zn(2+)-binding properties and interaction with its cognate UreG. Biochem J. 2009;422:91–100.
  • Weeks DL, Eskandari S, Scott DR, et al. A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science. 2000;287:482–485.
  • Lee JH, Jun SH, Kim JM, et al. Morphological changes in human gastric epithelial cells induced by nuclear targeting of Helicobacter pylori urease subunit A. J Microbiol. 2015;53:406–414.
  • Zavan L, Bitto NJ, Johnston EL, et al. Helicobacter pylori growth stage determines the size, protein composition, and preferential cargo packaging of outer membrane vesicles. Proteomics. 2018;28:e1800209.
  • Debowski AW, Walton SM, Chua E-G, et al. Helicobacter pylori gene silencing in vivo demonstrates urease is essential for chronic infection. PLoS Pathog. 2017;13:e1006464.
  • Mcgee DJ, Radcliff FJ, Mendz GL, et al. Helicobacter pylori rocF is required for arginase activity and acid protection in vitro but is not essential for colonization of mice or for urease activity. J Bacteriol. 1999;181:7314–7322.
  • Skouloubris S, Labigne A, De Reuse H. The AmiE aliphatic amidase and AmiF formamidase of Helicobacter pylori: natural evolution of two enzyme paralogues. Mol Microbiol. 2001;40:596–609.
  • Scott DR, Marcus EA, Wen Y, et al. Gene expression in vivo shows that Helicobacter pylori colonizes an acidic niche on the gastric surface. Proc Natl Acad Sci U S A. 2007;104:7235–7240.
  • van Vliet AH, Stoof J, Poppelaars SW, et al. Differential regulation of amidase- and formamidase-mediated ammonia production by the Helicobacter pylori fur repressor. J Biol Chem. 2003;278:9052–9057.
  • Bijlsma JJ, Waidner B, van Vliet AHM, et al. The ferric uptake regulator (Fur) homologue of Helicobacter pylori is involved in acid resistance. Infect Immun. 2002;70:606–611.
  • Vannini A, Pinatel E, Costantini PE, et al. Comprehensive mapping of the Helicobacter pylori NikR regulon provides new insights in bacterial nickel responses. Sci Rep. 2017;7:45458.
  • Gancz H, Censini S, Merrell DS. Iron and pH homeostasis intersect at the level of Fur regulation in the gastric pathogen Helicobacter pylori. Infect Immun. 2006;74:602–614.
  • Lee AY, Kao CY, Wang YK, et al. Inactivation of ferric uptake regulator (Fur) attenuates Helicobacter pylori J99 motility by disturbing the flagellar motor switch and autoinducer-2 production. Helicobacter. 2017;22:e12388.
  • Wüstner S, Anderl F, Wanisch A, et al. Helicobacter pylori γ-glutamyl transferase contributes to colonization and differential recruitment of T cells during persistence. Sci Rep. 2017;7:13636.
  • Marcus EA, Moshfegh AP, Sachs G, et al. The periplasmic alpha-carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation. J Bacteriol. 2005;187:729–738.
  • Ang S, Lee CZ, Peck K, et al. Acid-induced gene expression in Helicobacter pylori: study in genomic scale by microarray. Infect Immun. 2001;69:1679–1686.
  • Marcus EA, Sachs G, Scott DR. The role of ExbD in periplasmic pH homeostasis in Helicobacter pylori. Helicobacter. 2013;18:363–372.
  • Ollis AA, Manning M, Held KG, et al. Cytoplasmic membrane proton motive force energizes periplasmic interactions between ExbD and TonB. Mol Microbiol. 2009;73:466–481.
  • Postle K, Larsen RA. TonB-dependent energy transduction between outer and cytoplasmic membranes. Biometals. 2007;20:453–465.
  • Marcus EA, Sachs G, Wen Y, et al. Phosphorylation-dependent and phosphorylation-independent regulation of Helicobacter pylori acid acclimation by the ArsRS two-component system. Helicobacter. 2016;21:69–81.
  • Krishna U, Romero-Gallo J, Suarez G, et al. Genetic evolution of a Helicobacter pylori acid-sensing histidine kinase and gastric disease. J Infect Dis. 2016;214:644–648.
  • O'Rourke EJ, Chevalier C, Pinto AV, et al. Pathogen DNA as target for host generated oxidative stress: role for repair of bacterial DNA damage in Helicobacter pylori colonization. Proc Natl Acad Sci U S A. 2003;100:2789–2794.
  • Wang G, Alamuri P, Maier RJ. The diverse antioxidant systems of Helicobacter pylori. Mol Microbiol. 2006;61:847–860.
  • Marsin S, Mathieu A, Kortulewski T, et al. Unveiling novel RecO distant orthologues involved in homologous recombination. PLoS Genet. 2008;4:e1000146.
  • Wang G, Lo LF, Maier RJ. The RecRO pathway of DNA recombinational repair in Helicobacter pylori and its role in bacterial survival in the host. DNA Repair (Amst). 2011;10:373–379.
  • Álvarez A, Toledo H. The histone-like protein HU has a role in gene expression during the acid adaptation response in Helicobacter pylori. Helicobacter. 2017;22:e12381.
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318–327.
  • Mégraud F, Coenen S, Versporten A, et al. Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut. 2013;62:34–42.
  • Vakil N, Mégraud F. Eradication therapy for Helicobacter pylori. Gastroenterology. 2007;133:985–1001.
  • Alba C, Blanco A, Alarcòn T. Antibiotic resistance in Helicobacter pylori. Curr Opin Infect Dis. 2017;30:489–497.
  • Pina M, Occhialini A, Monteiro L, et al. Detection of point mutations associated with resistance of Helicobacter pylori to clarithromycin by hybridization in liquid phase. J Clin Microbiol. 1998;36:3285–3290.
  • Heep M, Odenbreit S, Beck D, et al. Mutations at four distinct regions of the rpoB gene can reduce the susceptibility of Helicobacter pylori to rifamycins. Antimicrob Agents Chemother. 2000;44:1713–1715.
  • Hays C, Burucoa C, Lehours P, et al. Molecular characterization of Helicobacter pylori resistance to rifamycins. Helicobacter. 2017;22:e12451.
  • Actis GC. Helicobacter pylori 2017: revitalized therapies for an ever-challenging bug. Panminerva Med. 2017;59:198.
  • He X, Liao X, Li H, et al. Bismuth-induced inactivation of ferric uptake regulator from Helicobacter pylori. Inorg Chem. 2017;56:15041–15048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.