740
Views
0
CrossRef citations to date
0
Altmetric
Reviews

High-resolution correlative imaging in ultrafast electron microscopy

ORCID Icon, ORCID Icon, & ORCID Icon
Article: 2316710 | Received 31 Oct 2023, Accepted 05 Feb 2024, Published online: 18 Feb 2024

References

  • Svergun DI, Richard S, Koch MHJ, et al. Protein hydration in solution: experimental observation by X-ray and neutron scattering. Proc Natl Acad Sci, USA. 1998;95:2267–2272. doi: 10.1073/pnas.95.5.2267
  • Cheng X, Schoenborn BP. Neutron diffraction study of carbonmonoxymyoglobin. J Mol Biol. 1991;220:381–399. doi: 10.1016/0022-2836(91)90020-7
  • Schoenborn BP, Garcia A, Knott R. Hydration in protein crystallography. Prog Biophys Mol Biol. 1995;64:105–119. doi: 10.1016/0079-6107(95)00012-7
  • Derome AE. Modern NMR techniques for chemistry research. United States: Pergamon Books Inc; 1987.
  • Knoll M, Ruska E. Das Elektronenmikroskop. Z Phys. 1932;78:318–339. doi: 10.1007/BF01342199
  • Crewe AV, Wall J, Langmore J. Visibility of single atoms. Science. 1970;168:1338–1340. doi: 10.1126/science.168.3937.1338
  • Haider M, Uhlemann S, Schwan E, et al. Electron microscopy image enhanced. Nature. 1998;392:768–769. doi: 10.1038/33823
  • Muller DA, Kourkoutis LF, Murfitt M, et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science. 2008;319:1073–1076. doi: 10.1126/science.1148820
  • Batson PE, Dellby N, Krivanek OL. Sub-Ångstrom resolution using aberration corrected electron optics. Nature. 2002;418:617–620. doi: 10.1038/nature00972
  • Kimoto K, Asaka T, Nagai T, et al. Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature. 2007;450:702–704. doi: 10.1038/nature06352
  • O’Keefe MA. Seeing atoms with aberration-corrected sub-Ångström electron microscopy. Ultramicroscopy. 2008;108:196–209. doi: 10.1016/j.ultramic.2007.07.009
  • Wolter B, Pullen MG, Le A-T, et al. Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene. Science. 2016;354:308–312. doi: 10.1126/science.aah3429
  • Allen PB. Theory of thermal relaxation of electrons in metals. Phys Rev Lett. 1987;59:1460–1463. doi: 10.1103/PhysRevLett.59.1460
  • Ahmadi TS, Logunov SL, El-Sayed MA. Picosecond dynamics of colloidal gold nanoparticles. J Phys Chem. 1996;100:8053–8056. doi: 10.1021/jp960484e
  • Elsayed-Ali HE, Norris TB, Pessot MA, et al. Time-resolved observation of electron-phonon relaxation in copper. Phys Rev Lett. 1987;58:1212–1215. doi: 10.1103/PhysRevLett.58.1212
  • Hodak JH, Martini I, Hartland GV. Spectroscopy and dynamics of nanometer-sized noble metal particles. J Phys Chem B. 1998;102:6958–6967. doi: 10.1021/jp9809787
  • Reis DA, DeCamp MF, Bucksbaum PH, et al. Probing impulsive strain propagation with X-ray pulses. Phys Rev Lett. 2001;86:3072–3075. doi: 10.1103/PhysRevLett.86.3072
  • Najafi E, Liao B, Scarborough T, et al. Imaging surface acoustic wave dynamics in semiconducting polymers by scanning ultrafast electron microscopy. Ultramicroscopy. 2018;184:46–50. doi: 10.1016/j.ultramic.2017.08.011
  • Lindorff-Larsen K, Best RB, DePristo MA, et al. Simultaneous determination of protein structure and dynamics. Nature. 2005;433:128–132. doi: 10.1038/nature03199
  • Rose-Petruck C, Jimenez R, Guo T, et al. Picosecond–milliångström lattice dynamics measured by ultrafast X-ray diffraction. Nature. 1999;398:310–312. doi: 10.1038/18631
  • Siders CW, Cavalleri A, Sokolowski-Tinten K, et al. Detection of nonthermal melting by ultrafast X-ray diffraction. Science. 1999;286:1340–1342. doi: 10.1126/science.286.5443.1340
  • Ihee H, Lorenc M, Kim TK, et al. Ultrafast X-ray diffraction of transient molecular structures in solution. Science. 2005;309:1223–1227. doi: 10.1126/science.1114782
  • Rousse A, Rischel C, Gauthier J-C. Femtosecond X-ray crystallography. Rev Mod Phys. 2001;73:17–31. doi: 10.1103/RevModPhys.73.17
  • Ischenko AA, Weber PM, Miller RJD. Capturing chemistry in action with electrons: realization of atomically resolved reaction dynamics. Chem Rev. 2017;117:11066–11124. doi: 10.1021/acs.chemrev.6b00770
  • Filippetto D, Musumeci P, Li RK, et al. Ultrafast electron diffraction: visualizing dynamic states of matter. Rev Mod Phys. 2022;94:045004. doi: 10.1103/RevModPhys.94.045004
  • Emma P, Akre R, Arthur J, et al. First lasing and operation of an Ångstrom-wavelength free-electron laser. Nat Photonics. 2010;4:641–647. doi: 10.1038/nphoton.2010.176
  • Nam I, Min C-K, Oh B, et al. High-brightness self-seeded X-ray free-electron laser covering the 3.5 keV to 14.6 keV range. Nat Photonics. 2021;15:435–441. doi: 10.1038/s41566-021-00777-z
  • Decking W, Abeghyan S, Abramian P, et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat Photonics. 2020;14:391–397. doi: 10.1038/s41566-020-0607-z
  • Prat E, Abela R, Aiba M, et al. A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nat Photonics. 2020;14:748–754. doi: 10.1038/s41566-020-00712-8
  • Ishikawa T, Aoyagi H, Asaka T, et al. A compact X-ray free-electron laser emitting in the sub-Ångström region. Nat Photonics. 2012;6:540–544. doi: 10.1038/nphoton.2012.141
  • Zewail AH. Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (nobel lecture). Angew Chem Int Ed. 2000;39:2586–2631. doi: 10.1002/1521-3773(20000804)39:15<2586:AID-ANIE2586>3.0.CO;2-O
  • Bostanjoglo O, Rosin T. Stroboscopic study on ultrasonic activity in electron-microscope. Mikroskopie; Spengergasse 39, A-1051. Vienna, Austria: Verlag Georg Fromme & Co.; 1976. pp. 190–190.
  • Bostanjoglo O, Rosin T. Ultrasonically induced magnetic reversals observed by stroboscopic electron microscopy. Opt Acta. 1977;24:657–664. doi: 10.1080/713819603
  • Zewail AH. Four-dimensional electron microscopy. Science. 2010;328:187–193. doi: 10.1126/science.1166135
  • Cao G, Sun S, Li Z, et al. Clocking the anisotropic lattice dynamics of multi-walled carbon nanotubes by four-dimensional ultrafast transmission electron microscopy. Sci Rep. 2015;5:8404. doi: 10.1038/srep08404
  • Bücker K, Picher M, Crégut O, et al. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode. Ultramicroscopy. 2016;171:8–18. doi: 10.1016/j.ultramic.2016.08.014
  • Feist A, Bach N, Rubiano da Silva N, et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam. Ultramicroscopy. 2017;176:63–73. doi: 10.1016/j.ultramic.2016.12.005
  • Ryabov A, Thurner JW, Nabben D, et al. Attosecond metrology in a continuous-beam transmission electron microscope. Sci Adv. 2020;6:eabb1393. doi: 10.1126/sciadv.abb1393
  • Wang K, Dahan R, Shentcis M, et al. Coherent interaction between free electrons and a photonic cavity. Nature. 2020;582:50–54. doi: 10.1038/s41586-020-2321-x
  • Nakamura A, Shimojima T, Chiashi Y, et al. Nanoscale imaging of unusual photoacoustic waves in thin flake VTe2. Nano Lett. 2020;20:4932–4938. doi: 10.1021/acs.nanolett.0c01006
  • Lee YM, Kim YJ, Kim Y-J, et al. Ultrafast electron microscopy integrated with a direct electron detection camera. Struct Dyn. 2017;4:044023. doi: 10.1063/1.4983226
  • Sun J, Melnikov VA, Khan JI, et al. Real-space imaging of carrier dynamics of materials surfaces by second-generation four-dimensional scanning ultrafast electron microscopy. J Phys Chem Lett. 2015;6:3884–3890. doi: 10.1021/acs.jpclett.5b01867
  • Ji S, Piazza L, Cao G, et al. Influence of cathode geometry on electron dynamics in an ultrafast electron microscope. Struct Dyn. 2017;4:054303. doi: 10.1063/1.4994004
  • Vanacore GM, Berruto G, Madan I, et al. Ultrafast generation and control of an electron vortex beam via chiral Plasmonic near fields. Nat Mater. 2019;18:573–579. doi: 10.1038/s41563-019-0336-1
  • Olshin PK, Drabbels M, Lorenz UJ. Characterization of a time-resolved electron microscope with a schottky field emission gun. Struct Dyn. 2020;7:054304. doi: 10.1063/4.0000034
  • Cremons DR, Plemmons DA, Flannigan DJ. Femtosecond electron imaging of defect-modulated phonon dynamics. Nat Commun. 2016;7:11230. doi: 10.1038/ncomms11230
  • Fu X, Wang E, Zhao Y, et al. Direct visualization of electromagnetic wave dynamics by laser-free ultrafast electron microscopy. Sci Adv. 2020;6:eabc3456. doi: 10.1126/sciadv.abc3456
  • Liu H, Gage TE, Singh P, et al. Visualization of plasmonic couplings using ultrafast electron microscopy. Nano Lett. 2021;21:5842–5849. doi: 10.1021/acs.nanolett.1c01824
  • Kim Y-J, Jung H, Han SW, et al. Ultrafast electron microscopy visualizes acoustic vibrations of plasmonic nanorods at the interfaces. Matter. 2019;1:481–495. doi: 10.1016/j.matt.2019.03.004
  • Tong L, Yuan J, Zhang Z, et al. Nanoscale subparticle imaging of vibrational dynamics using dark-field ultrafast transmission electron microscopy. Nat Nanotech. 2023;18:145–152. doi: 10.1038/s41565-022-01255-5
  • Valley DT, Ferry VE, Flannigan DJ. Imaging intra- and interparticle acousto-plasmonic vibrational dynamics with ultrafast electron microscopy. Nano Lett. 2016;16:7302–7308. doi: 10.1021/acs.nanolett.6b03975
  • Madan I, Vanacore GM, Pomarico E, et al. Holographic imaging of electromagnetic fields via electron-light quantum interference. Sci Adv. 2019;5:eaav8358. doi: 10.1126/sciadv.aav8358
  • Lummen TTA, Lamb RJ, Berruto G, et al. Imaging and controlling plasmonic interference fields at buried interfaces. Nat Commun. 2016;7:13156. doi: 10.1038/ncomms13156
  • Fu X, Barantani F, Gargiulo S, et al. Nanoscale-femtosecond dielectric response of mott insulators captured by two-color near-field ultrafast electron microscopy. Nat Commun. 2020;11:5770. doi: 10.1038/s41467-020-19636-6
  • Feist A, Echternkamp KE, Schauss J, et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature. 2015;521:200–203. doi: 10.1038/nature14463
  • Dahan R, Nehemia S, Shentcis M, et al. Resonant phase-matching between a light wave and a free-electron wavefunction. Nat Phys. 2020;16:1123–1131. doi: 10.1038/s41567-020-01042-w
  • McKenna AJ, Eliason JK, Flannigan DJ. Spatiotemporal evolution of coherent elastic strain waves in a single MoS2 flake. Nano Lett. 2017;17:3952–3958. doi: 10.1021/acs.nanolett.7b01565
  • Reisbick SA, Zhang Y, Chen J, et al. Coherent phonon disruption and lock-in during a photoinduced charge-density-wave phase transition. J Phys Chem Lett. 2021;12:6439–6447. doi: 10.1021/acs.jpclett.1c01673
  • Nakamura A, Shimojima T, Ishizaka K. Visualizing optically-induced strains by five-dimensional ultrafast electron microscopy. Faraday Discuss. 2022;237:27–39. doi: 10.1039/D2FD00062H
  • Kim Y-J, Nho H-W, Ji S, et al. Femtosecond-resolved imaging of a single-particle phase transition in energy-filtered ultrafast electron microscopy. Sci Adv. 2023;9:eadd5375. doi: 10.1126/sciadv.add5375
  • Danz T, Domröse T, Ropers C. Ultrafast nanoimaging of the order parameter in a structural phase transition. Science. 2021;371:371–374. doi: 10.1126/science.abd2774
  • Kim Y-J, Kwon O-H. Cathodoluminescence in ultrafast electron microscopy. ACS Nano. 2021;15:19480–19489. doi: 10.1021/acsnano.1c06260
  • Dömer H, Bostanjoglo O. High-speed transmission electron microscope. Rev Sci Instrum. 2003;74:4369–4372. doi: 10.1063/1.1611612
  • LaGrange T, Armstrong MR, Boyden K, et al. Single-shot dynamic transmission electron microscopy. Appl Phys Lett. 2006;89:044105. doi: 10.1063/1.2236263
  • King WE, Campbell GH, Frank A, et al. Ultrafast electron microscopy in materials science, biology, and chemistry. J Appl Phys. 2005;97:111101. doi: 10.1063/1.1927699
  • Yang D-S, Mohammed OF, Zewail AH. Scanning ultrafast electron microscopy. Proc Natl Acad Sci, USA. 2010;107:14993–14998. doi: 10.1073/pnas.1009321107
  • Mohammed OF, Yang D-S, Pal SK, et al. 4D scanning ultrafast electron microscopy: visualization of materials surface dynamics. J Am Chem Soc. 2011;133:7708–7711. doi: 10.1021/ja2031322
  • Adhikari A, Eliason JK, Sun J, et al. Four-dimensional ultrafast electron microscopy: insights into an emerging technique. ACS Appl Mater Interfaces. 2017;9:3–16. doi: 10.1021/acsami.6b12301
  • Liao B, Najafi E. Scanning ultrafast electron microscopy: a novel technique to probe photocarrier dynamics with high spatial and temporal resolutions. Mater Today Phys. 2017;2:46–53. doi: 10.1016/j.mtphys.2017.07.003
  • Tao Z, Zhang H, Duxbury PM, et al. Space charge effects in ultrafast electron diffraction and imaging. J Appl Phys. 2012;111:044316. doi: 10.1063/1.3685747
  • Gahlmann A, Park ST, Zewail AH. Ultrashort electron pulses for diffraction, crystallography and microscopy: theoretical and experimental resolutions. PCCP. 2008;10:2894–2909. doi: 10.1039/b802136h
  • van Oudheusden T, de Jong EF, van der Geer SB, et al. Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range. J Appl Phys. 2007;102:093501. doi: 10.1063/1.2801027
  • Plemmons DA, Flannigan DJ. Ultrafast electron microscopy: instrument response from the single-electron to high bunch-charge regimes. Chem Phys Lett. 2017;683:186–192. doi: 10.1016/j.cplett.2017.01.055
  • Ischenko AA, Kochikov IV, Miller RJD. The effect of Coulomb repulsion on he space-time resolution limits for ultrafast electron diffraction. J Chem Phys. 2019;150:054201. doi: 10.1063/1.5060673
  • Kassier GH, Haupt K, Erasmus N, et al. Achromatic reflectron compressor design for bright pulses in femtosecond electron diffraction. J Appl Phys. 2009;105:113111. doi: 10.1063/1.3132834
  • Wang Y, Gedik N. Electron pulse compression with a practical reflectron design for ultrafast electron diffraction. IEEE J Sel Top Quantum Electron. 2012;18:140–147. doi: 10.1109/JSTQE.2011.2112339
  • Weber PM, Carpenter SD, Lucza T. Reflectron design for femtosecond electron guns. San Diego, CA, United States: SPIE; 1995 Sep 1.
  • Baum P, Zewail AH. Attosecond electron pulses for 4D diffraction and microscopy. Proc Natl Acad Sci, USA. 2007;104:18409–18414. doi: 10.1073/pnas.0709019104
  • Kozák M, Schönenberger N, Hommelhoff P. Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys Rev Lett. 2018;120:103203. doi: 10.1103/PhysRevLett.120.103203
  • Williams J, Zhou F, Sun T, et al. Active control of bright electron beams with RF optics for femtosecond microscopy. Struct Dyn. 2017;4:044035. doi: 10.1063/1.4999456
  • Rosenzweig JB, Cahill A, Dolgashev V, et al. Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode sources. Phys Rev Accel Beams. 2019;22:023403. doi: 10.1103/PhysRevAccelBeams.22.023403
  • van Oudheusden T, Pasmans PLEM, van der Geer SB, et al. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Phys Rev Lett. 2010;105:264801. doi: 10.1103/PhysRevLett.105.264801
  • Otto MR, René de Cotret LP, Stern MJ, et al. Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: robust sub-50 fs cavity-laser phase stabilization. Struct Dyn. 2017;4:051101. doi: 10.1063/1.4989960
  • Ehberger D, Mohler KJ, Vasileiadis T, et al. Terahertz compression of electron pulses at a planar mirror membrane. Phys Rev Appl. 2019;11:024034. doi: 10.1103/PhysRevApplied.11.024034
  • Kealhofer C, Schneider W, Ehberger D, et al. All-optical control and metrology of electron pulses. Science. 2016;352:429–433. doi: 10.1126/science.aae0003
  • Li RK, Hoffmann MC, Nanni EA, et al. Terahertz-based subfemtosecond metrology of relativistic electron beams. Phys Rev Accel Beams. 2019;22:012803. doi: 10.1103/PhysRevAccelBeams.22.012803
  • Barwick B, Flannigan DJ, Zewail AH. Photon-induced near-field electron microscopy. Nature. 2009;462:902–906. doi: 10.1038/nature08662
  • Grinolds MS, Lobastov VA, Weissenrieder J, et al. Four-dimensional ultrafast electron microscopy of phase transitions. Proc Natl Acad Sci, USA. 2006;103:18427–18431. doi: 10.1073/pnas.0609233103
  • Pomarico E, Kim Y-J, García de Abajo FJ, et al. Ultrafast electron energy-loss spectroscopy in transmission electron microscopy. MRS Bull. 2018;43:497–503. doi: 10.1557/mrs.2018.148
  • Carbone F, Barwick B, Kwon O-H, et al. EELS femtosecond resolved in 4D ultrafast Eeectron microscopy. Chem Phys Lett. 2009;468:107–111. doi: 10.1016/j.cplett.2008.12.027
  • Piazza L, Masiel DJ, LaGrange T, et al. Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology. Chem Phys. 2013;423:79–84. doi: 10.1016/j.chemphys.2013.06.026
  • Kwon O-H, Barwick B, Park HS, et al. Nanoscale mechanical drumming visualized by 4D electron microscopy. Nano Lett. 2008;8:3557–3562. doi: 10.1021/nl8029866
  • Lorenz UJ, Zewail AH. Biomechanics of DNA structures visualized by 4D electron microscopy. Proc Natl Acad Sci, USA. 2013;110:2822–2827. doi: 10.1073/pnas.1300630110
  • Fitzpatrick AWP, Park ST, Zewail AH. Exceptional rigidity and biomechanics of amyloid revealed by 4D electron microscopy. Proc Natl Acad Sci, USA. 2013;110:10976–10981. doi: 10.1073/pnas.1309690110
  • Flannigan DJ, Park ST, Zewail AH. Nanofriction visualized in space and time by 4D electron microscopy. Nano Lett. 2010;10:4767–4773. doi: 10.1021/nl103589p
  • Kwon O-H, Zewail AH. 4D electron tomography. Science. 2010;328:1668–1673. doi: 10.1126/science.1190470
  • Baskin JS, Park HS, Zewail AH. Nanomusical systems visualized and controlled in 4D electron microscopy. Nano Lett. 2011;11:2183–2191. doi: 10.1021/nl200930a
  • Flannigan DJ, Samartzis PC, Yurtsever A, et al. Nanomechanical motions of cantilevers: direct imaging in real space and time with 4D electron microscopy. Nano Lett. 2009;9:875–881. doi: 10.1021/nl803770e
  • van der Veen RM, Kwon O-H, Tissot A, et al. Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy. Nat Chem. 2013;5:395–402. doi: 10.1038/nchem.1622
  • Liu H, Kwon O-H, Tang J, et al. 4D imaging and diffraction dynamics of single-particle phase transition in heterogeneous ensembles. Nano Lett. 2014;14:946–954. doi: 10.1021/nl404354g
  • Barwick B, Park HS, Kwon O-H, et al. 4D imaging of transient structures and morphologies in ultrafast electron microscopy. Science. 2008;322:1227–1231. doi: 10.1126/science.1164000
  • Carbone F, Kwon O-H, Zewail AH. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science. 2009;325:181–184. doi: 10.1126/science.1175005
  • van der Veen RM, Penfold TJ, Zewail AH. Ultrafast core-loss spectroscopy in four-dimensional electron microscopy. Struct Dyn. 2015;2:024302. doi: 10.1063/1.4916897
  • Nakamura A, Shimojima T, Ishizaka K. Characterizing an optically induced sub-micrometer gigahertz acoustic wave in a silicon thin plate. Nano Lett. 2023;23:2490–2495. doi: 10.1021/acs.nanolett.2c03938
  • Zong A, Zhang Q, Zhou F, et al. Spin-mediated shear oscillators in a van der Waals antiferromagnet. Nature. 2023;620:988–993. doi: 10.1038/s41586-023-06279-y
  • Yannai M, Dahan R, Gorlach A, et al. Ultrafast electron microscopy of nanoscale charge dynamics in semiconductors. ACS Nano. 2023;17:3645–3656. doi: 10.1021/acsnano.2c10481
  • Shimojima T, Nakamura A, Yu X, et al. Nano-to-micro spatiotemporal imaging of magnetic skyrmion’s life cycle. Sci Adv. 2021;7:eabg1322. doi: 10.1126/sciadv.abg1322
  • Möller M, Gaida JH, Schäfer S, et al. Few-nm tracking of current-driven magnetic vortex orbits using ultrafast Lorentz microscopy. Commun Phys. 2020;3:36. doi: 10.1038/s42005-020-0301-y
  • Zong A, Shen X, Kogar A, et al. Ultrafast manipulation of mirror domain walls in a charge density wave. Sci Adv. 2018;4:eaau5501. doi: 10.1126/sciadv.aau5501
  • Han T-RT, Zhou F, Malliakas CD, et al. Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography. Sci Adv. 2015;1:e1400173. doi: 10.1126/sciadv.1400173
  • Zhang Y, Flannigan DJ. Imaging nanometer phonon softening at crystal surface steps with 4D ultrafast electron microscopy. Nano Lett. 2021;21:7332–7338. doi: 10.1021/acs.nanolett.1c02524
  • Zhang Y, Flannigan DJ. Observation of anisotropic strain-wave dynamics and few-layer dephasing in MoS2 with ultrafast electron microscopy. Nano Lett. 2019;19:8216–8224. doi: 10.1021/acs.nanolett.9b03596
  • Reisbick SA, Zhang Y, Flannigan DJ. Influence of discrete defects on observed acoustic–phonon dynamics in layered materials probed with ultrafast electron microscopy. J Phys Chem A. 2020;124:1877–1884. doi: 10.1021/acs.jpca.9b12026
  • Kim Y-J, Lee Y, Kim K, et al. Light-induced anisotropic morphological dynamics of black phosphorus membranes visualized by dark-field ultrafast electron microscopy. ACS Nano. 2020;14:11383–11393. doi: 10.1021/acsnano.0c03644
  • Madan I, Dias EJC, Gargiulo S, et al. Charge dynamics electron microscopy: nanoscale imaging of femtosecond plasma dynamics. ACS Nano. 2023;17:3657–3665. doi: 10.1021/acsnano.2c10482
  • Wang H, Li B, Kim Y-J, et al. Intermediate states of molecular self-assembly from liquid-cell electron microscopy. Proc Natl Acad Sci, USA. 2020;117:1283–1292. doi: 10.1073/pnas.1916065117
  • Adrian M, Dubochet J, Lepault J, et al. Cryo-electron microscopy of viruses. Nature. 1984;308:32–36. doi: 10.1038/308032a0
  • Voss JM, Harder OF, Olshin PK, et al. Rapid melting and revitrification as an approach to microsecond time-resolved cryo-electron microscopy. Chem Phys Lett. 2021;778:138812. doi: 10.1016/j.cplett.2021.138812
  • Yang X, Wan W, Wu L, et al. Toward monochromated sub-nanometer UEM and femtosecond UED. Sci Rep. 2020;10:16171. doi: 10.1038/s41598-020-73168-z
  • Zhang L, Hoogenboom JP, Cook B, et al. Photoemission sources and beam blankers for ultrafast electron microscopy. Struct Dyn. 2019;6:051501. doi: 10.1063/1.5117058
  • Reed BW, Armstrong MR, Browning ND, et al. The evolution of ultrafast electron microscope instrumentation. Microsc Microanal. 2009;15:272–281. doi: 10.1017/S1431927609090394
  • Baum P. On the physics of ultrashort single-electron pulses for time-resolved microscopy and diffraction. Chem Phys. 2013;423:55–61. doi: 10.1016/j.chemphys.2013.06.012
  • Zhu C, Zheng D, Wang H, et al. Development of analytical ultrafast transmission electron microscopy based on laser-driven schottky field emission. Ultramicroscopy. 2020;209:112887. doi: 10.1016/j.ultramic.2019.112887
  • Portman J, Zhang H, Tao Z, etal. Computational and experimental characterization of high-brightness beams for femtosecond electron imaging and spectroscopy. Appl Phys Lett. 2013;103:253115. doi: 10.1063/1.4855435
  • Siwick BJ, Dwyer JR, Jordan RE, et al. Ultrafast electron optics: propagation dynamics of femtosecond electron packets. J Appl Phys. 2002;92:1643–1648. doi: 10.1063/1.1487437
  • Zhou F, Williams J, Ruan C-Y. Femtosecond electron spectroscopy in an electron microscope with high brightness beams. Chem Phys Lett. 2017;683:488–494. doi: 10.1016/j.cplett.2017.03.019
  • Park ST, Kwon O-H, Zewail AH. Chirped imaging pulses in four-dimensional electron microscopy: femtosecond pulsed hole burning. New J Phys. 2012;14:053046. doi: 10.1088/1367-2630/14/5/053046
  • Schönhense G, Medjanik K, Tusche C, et al. Correction of the deterministic part of space–charge interaction in momentum microscopy of charged particles. Ultramicroscopy. 2015;159:488–496. doi: 10.1016/j.ultramic.2015.05.015
  • Schönhense B, Medjanik K, Fedchenko O, et al. Multidimensional photoemission spectroscopy—the space-charge limit. New J Phys. 2018;20:033004. doi: 10.1088/1367-2630/aaa262
  • Locatelli A, Menteş TO, Niño MÁ, et al. Image blur and energy broadening effects in XPEEM. Ultramicroscopy. 2011;111:1447–1454. doi: 10.1016/j.ultramic.2010.12.020
  • Boersch H. Experimentelle Bestimmung der Energieverteilung in Thermisch Ausgelösten Elektronenstrahlen. Z Phys. 1954;139:115–146. doi: 10.1007/BF01375256
  • Kruit P, Jansen GH. Space charge and statistical coulomb effects. In: Orloff J, editor. Handbook of charged particle optics. Boca Raton: CRC Press; 2017. pp. 341–389.
  • Egerton RF. Outrun radiation damage with electrons? Adv Struct Chem Imaging. 2015;1:5. doi: 10.1186/s40679-014-0001-3
  • Xu X, Liu N, Raman PS, et al. Design considerations for a compact proton beam writing system aiming for fast sub-10nm direct write lithography. Nucl Instrum Methods Phys Res B. 2017;404:243–249. doi: 10.1016/j.nimb.2016.12.031
  • Mankos M, Shadman K, Siwick BJ. A novel electron mirror pulse compressor. Ultramicroscopy. 2017;183:77–83. doi: 10.1016/j.ultramic.2017.05.004
  • Bach N, Domröse T, Feist A, et al. Coulomb interactions in high-coherence femtosecond electron pulses from tip emitters. Struct Dyn. 2019;6:014301. doi: 10.1063/1.5066093
  • Passlack S, Mathias S, Andreyev O, et al. Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source. J Appl Phys. 2006;100:024912. doi: 10.1063/1.2217985
  • Lassise A, Mutsaers PHA, Luiten OJ. Compact, low power radio frequency cavity for femtosecond electron microscopy. Rev Sci Instrum. 2012;83. doi: 10.1063/1.3703314
  • Verhoeven W, van Rens JFM, Kieft ER, et al. High quality ultrafast transmission electron microscopy using resonant microwave cavities. Ultramicroscopy. 2018;188:85–89. doi: 10.1016/j.ultramic.2018.03.012
  • Verhoeven W, van Rens JFM, Kemper AH, et al. Design and characterization of dielectric filled TM110 microwave cavities for ultrafast electron microscopy. Rev Sci Instrum. 2019;90. doi: 10.1063/1.5080003
  • van Rens JFM, Verhoeven W, Franssen JGH, et al. Theory and particle tracking simulations of a resonant radiofrequency deflection cavity in TM110 mode for ultrafast electron microscopy. Ultramicroscopy. 2018;184:77–89. doi: 10.1016/j.ultramic.2017.10.004
  • van Rens JFM, Verhoeven W, Kieft ER, et al. Dual mode microwave deflection cavities for ultrafast electron microscopy. Appl Phys Lett. 2018;113. doi: 10.1063/1.5049806
  • Li RK, Musumeci P. Single-shot MeV transmission electron microscopy with picosecond temporal resolution. Phys Rev Appl. 2014;2:024003. doi: 10.1103/PhysRevApplied.2.024003
  • Xiang D, Fu F, Zhang J, et al. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution. Nucl Instrum Methods Phys Res A. 2014;759:74–82. doi: 10.1016/j.nima.2014.05.068
  • Dowell DH, Joly S, Loulergue A, et al. Observation of space-charge driven beam instabilities in a radio frequency photoinjector. Phys Plasmas. 1997;4:3369–3379. doi: 10.1063/1.872477
  • Loeffler KH. Energy-spread generation in electron-optical instruments. Z Angew Phys. 1969;27:145–149.
  • Armstrong MR, Boyden K, Browning ND, et al. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy. Ultramicroscopy. 2007;107:356–367. doi: 10.1016/j.ultramic.2006.09.005
  • Spehr R. Limitations on the performance of charged particle beams in microlithography. Microelectron Eng. 1985;3:61–68. doi: 10.1016/0167-9317(85)90010-3
  • Weidenhauser A, Spehr R, Rose H. Stochastic ray deflections in focused charged particle beams. Optik. 1984;69:126–134.
  • Melngailis J, Mondelli AA, Berry IL, et al. A review of ion projection lithography. J Vac Sci Technol B. 1998;16:927–957. doi: 10.1116/1.590052
  • Yang J, Yoshida Y, Yasuda H. Ultrafast electron microscopy with relativistic femtosecond electron pulses. Microscopy. 2018;67:291–295. doi: 10.1093/jmicro/dfy032
  • Feng LW, Lin L, Huang SL, et al. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector. Appl Phys Lett. 2015;107. doi: 10.1063/1.4936192
  • Hastings JB, Rudakov FM, Dowell DH, et al. Ultrafast time-resolved electron diffraction with megavolt electron beams. Appl Phys Lett. 2006;89. doi: 10.1063/1.2372697
  • Kim HW, Vinokurov NA, Baek IH, et al. Towards jitter-free ultrafast electron diffraction technology. Nat Photonics. 2020;14:245–249. doi: 10.1038/s41566-019-0566-4
  • Musumeci P, Li R. High-energy time-resolved electron diffraction. In: Hawkes P Spence J, editors Springer handbook of microscopy. Cham: Springer International Publishing; 2019. pp. 971–1008.
  • Shen X, Li RK, Lundström U, et al. Femtosecond mega-electron-volt electron microdiffraction. Ultramicroscopy. 2018;184:172–176. doi: 10.1016/j.ultramic.2017.08.019
  • Zou Y, Cui Y, Yun V, et al. Compact high-resolution retarding field energy analyzer for space-charge-dominated electron beams. Phys Rev ST Accel Beams. 2002;5:072801. doi: 10.1103/PhysRevSTAB.5.072801
  • Kuwahara M, Nambo Y, Aoki K, et al. The Boersch effect in a picosecond pulsed electron beam emitted from a semiconductor photocathode. Appl Phys Lett. 2016;109. doi: 10.1063/1.4955457
  • Kuwahara M, Kusunoki S, Nambo Y, et al. Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope. Appl Phys Lett. 2014;105. doi: 10.1063/1.4901745
  • Knauer W. Boersch effect in electron‐optical instruments. J Vac Sci Technol. 1979;16:1676–1679. doi: 10.1116/1.570271
  • Hage FS, Radtke G, Kepaptsoglou DM, et al. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science. 2020;367:1124–1127. doi: 10.1126/science.aba1136
  • Nelayah J, Kociak M, Stéphan O, et al. Mapping surface plasmons on a single metallic nanoparticle. Nat Phys. 2007;3:348–353. doi: 10.1038/nphys575
  • Krivanek OL, Lovejoy TC, Dellby N, et al. Vibrational spectroscopy in the electron microscope. Nature. 2014;514:209–212. doi: 10.1038/nature13870
  • Tan H, Verbeeck J, Abakumov A, et al. Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy. 2012;116:24–33. doi: 10.1016/j.ultramic.2012.03.002
  • Tao R, Todorovic R, Liu J, et al. Electron energy-loss spectroscopy study of metallic Nb and Nb oxides. J Appl Phys. 2011;110:124313. doi: 10.1063/1.3665193
  • Ellis TH, Dubois LH, Kevan SD, et al. Time-resolved electron energy loss spectroscopy. Science. 1985;230:256–261. doi: 10.1126/science.230.4723.256
  • Lopatin S, Cheng B, Liu W-T, et al. Optimization of monochromated TEM for ultimate resolution imaging and ultrahigh resolution electron energy loss spectroscopy. Ultramicroscopy. 2018;184:109–115. doi: 10.1016/j.ultramic.2017.08.016
  • Portman J, Zhang H, Makino K, et al. Untangling the contributions of image charge and laser profile for optimal photoemission of high-brightness electron beams. J Appl Phys. 2014;116:174302. doi: 10.1063/1.4900582
  • Sun X, Sun S, Ruan C-Y. Toward nonthermal control of excited quantum materials: framework and investigations by ultrafast electron scattering and imaging. C R Phys. 2021;22:15–73. doi: 10.5802/crphys.86
  • Flannigan DJ, Curtis WA, VandenBussche EJ, et al. Low repetition-rate, high-resolution femtosecond transmission electron microscopy. J Chem Phys. 2022;157. doi: 10.1063/5.0128109
  • Alcorn FM, Jain PK, van der Veen RM. Time-resolved transmission electron microscopy for nanoscale chemical dynamics. Nat Rev Chem. 2023;7:256–272. doi: 10.1038/s41570-023-00469-y
  • Cremons DR, Du DX, Flannigan DJ. Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy. Phys Rev Mater. 2017;1:073801. doi: 10.1103/PhysRevMaterials.1.073801
  • Olshin PK, Bongiovanni G, Drabbels M, et al. Atomic-resolution imaging of fast nanoscale dynamics with bright microsecond electron pulses. Nano Lett. 2021;21:612–618. doi: 10.1021/acs.nanolett.0c04184
  • Ji S, Grånäs O, Prasad AK, et al. Influence of strain on an ultrafast phase transition. Nanoscale. 2023;15:304–312. doi: 10.1039/D2NR03395J
  • Rubiano da Silva N, Möller M, Feist A, et al. Nanoscale mapping of ultrafast magnetization dynamics with femtosecond Lorentz microscopy. Phys Rev X. 2018;8:031052. doi: 10.1103/PhysRevX.8.031052
  • Park HS, Baskin JS, Kwon O-H, et al. Atomic-scale imaging in real and energy space developed in ultrafast electron microscopy. Nano Lett. 2007;7:2545–2551. doi: 10.1021/nl071369q
  • Schmidt MM, Farley EA, Engevik MA, et al. High-speed spectral characterization of single-molecule SERS fluctuations. ACS Nano. 2023;17:6675–6686. doi: 10.1021/acsnano.2c12457
  • Nord M, Webster RWH, Paton KA, et al. Fast pixelated detectors in scanning transmission electron microscopy. Part I: data acquisition, live processing, and storage. Microsc Microanal. 2020;26:653–666. doi: 10.1017/S1431927620001713
  • Liao H-G, Zherebetskyy D, Xin H, et al. Facet development during platinum nanocube growth. Science. 2014;345:916–919. doi: 10.1126/science.1253149
  • Ruskin AI, Yu Z, Grigorieff N. Quantitative characterization of electron detectors for transmission electron microscopy. J Struct Biol. 2013;184:385–393. doi: 10.1016/j.jsb.2013.10.016
  • Faruqi AR. Direct electron detectors for electron microscopy. In: Hawkes P, editor. Advances in imaging and electron physics. Vol. 145. Amsterdam: Elsevier; 2007. pp. 55–93.
  • Groeneveld RHM, Sprik R, Lagendijk A. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Phys Rev B. 1995;51:11433–11445. doi: 10.1103/PhysRevB.51.11433
  • Linic S, Aslam U, Boerigter C, et al. Photochemical transformations on plasmonic metal nanoparticles. Nat Mater. 2015;14:567–576. doi: 10.1038/nmat4281
  • Linic S, Chavez S, Elias R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat Mater. 2021;20:916–924. doi: 10.1038/s41563-020-00858-4
  • Kaplan M, Yoo B-K, Tang J, et al. Photon-induced near-field electron microscopy of eukaryotic cells. Angew Chem Int Ed. 2017;56:11498–11501. doi: 10.1002/anie.201706120
  • Kurman Y, Dahan R, Sheinfux HH, et al. Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons. Science. 2021;372:1181–1186. doi: 10.1126/science.abg9015
  • Yurtsever A, Baskin JS, Zewail AH. Entangled nanoparticles: discovery by visualization in 4D electron microscopy. Nano Lett. 2012;12:5027–5032. doi: 10.1021/nl302824f
  • Pomarico E, Madan I, Berruto G, et al. meV resolution in laser-assisted energy-filtered transmission electron microscopy. ACS Photonics. 2018;5:759–764. doi: 10.1021/acsphotonics.7b01393
  • Schnell M, García-Etxarri A, Huber AJ, et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Photonics. 2009;3:287–291. doi: 10.1038/nphoton.2009.46
  • Spektor G, Kilbane D, Mahro AK, et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science. 2017;355:1187–1191. doi: 10.1126/science.aaj1699
  • Baum P, Zewail A. Femtosecond diffraction with chirped electron pulses. Chem Phys Lett. 2008;462:14–17. doi: 10.1016/j.cplett.2008.07.072
  • Krause FF, Rosenauer A, Barthel J, et al. Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction. Ultramicroscopy. 2017;181:173–177. doi: 10.1016/j.ultramic.2017.06.004
  • Atre AC, Brenny BJM, Coenen T, et al. Nanoscale optical tomography with cathodoluminescence spectroscopy. Nat Nanotech. 2015;10:429–436. doi: 10.1038/nnano.2015.39
  • Schmidt F-P, Losquin A, Horák M, et al. Fundamental limit of plasmonic cathodoluminescence. Nano Lett. 2021;21:590–596. doi: 10.1021/acs.nanolett.0c04084
  • Zheng S, So J-K, Liu F, et al. Giant enhancement of cathodoluminescence of monolayer transitional metal dichalcogenides semiconductors. Nano Lett. 2017;17:6475–6480. doi: 10.1021/acs.nanolett.7b03585
  • Prigozhin MB, Maurer PC, Courtis AM, et al. Bright sub-20-nm cathodoluminescent nanoprobes for electron microscopy. Nat Nanotech. 2019;14:420–425. doi: 10.1038/s41565-019-0395-0
  • Zagonel LF, Mazzucco S, Tencé M, et al. Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure. Nano Lett. 2011;11:568–573. doi: 10.1021/nl103549t
  • Müller N, Hock V, Koch H, et al. Broadband coupling of fast electrons to high-Q whispering-gallery mode resonators. ACS Photonics. 2021;8:1569–1575. doi: 10.1021/acsphotonics.1c00456
  • Osorio CI, Coenen T, Brenny BJM, et al. Angle-resolved cathodoluminescence imaging polarimetry. ACS Photonics. 2016;3:147–154. doi: 10.1021/acsphotonics.5b00596
  • Mauser KW, Solà-Garcia M, Liebtrau M, et al. Employing cathodoluminescence for nanothermometry and thermal transport measurements in semiconductor nanowires. ACS Nano. 2021;15:11385–11395. doi: 10.1021/acsnano.1c00850
  • Losquin A, Kociak M. Link between cathodoluminescence and electron energy loss spectroscopy and the radiative and full electromagnetic local density of states. ACS Photonics. 2015;2:1619–1627. doi: 10.1021/acsphotonics.5b00416
  • Davoodi F, Talebi N. Plasmon–exciton interactions in nanometer-thick gold-WSe2 multilayer structures: implications for photodetectors, sensors, and light-emitting devices. ACS Appl Nano Mater. 2021;4:6067–6074. doi: 10.1021/acsanm.1c00889
  • Kawasaki N, Meuret S, Weil R, et al. Extinction and scattering properties of high-order surface plasmon modes in silver nanoparticles probed by combined spatially resolved electron energy loss spectroscopy and cathodoluminescence. ACS Photonics. 2016;3:1654–1661. doi: 10.1021/acsphotonics.6b00257
  • Merano M, Sonderegger S, Crottini A, et al. Probing carrier dynamics in nanostructures by picosecond cathodoluminescence. Nature. 2005;438:479–482. doi: 10.1038/nature04298
  • Meuret S, Solà Garcia M, Coenen T, et al. Complementary cathodoluminescence lifetime imaging configurations in a scanning electron microscope. Ultramicroscopy. 2019;197:28–38. doi: 10.1016/j.ultramic.2018.11.006
  • Yanagimoto S, Yamamoto N, Sannomiya T, et al. Purcell effect of nitrogen-vacancy centers in nanodiamond coupled to propagating and localized surface plasmons revealed by photon-correlation cathodoluminescence. Phys Rev B. 2021;103:205418. doi: 10.1103/PhysRevB.103.205418
  • Iyer V, Roccapriore K, Ng J, et al. Photon bunching in cathodoluminescence induced by indirect electron excitation. Nanoscale. 2023;15:9738–9744. doi: 10.1039/D3NR00376K
  • Meuret S, Tizei LHG, Cazimajou T, et al. Photon bunching in cathodoluminescence. Phys Rev Lett. 2015;114:197401. doi: 10.1103/PhysRevLett.114.197401
  • Meuret S, Tizei LHG, Auzelle T, et al. Lifetime measurements well below the optical diffraction limit. ACS Photonics. 2016;3:1157–1163. doi: 10.1021/acsphotonics.6b00212
  • Meuret S, Tizei LHG, Houdellier F, et al. Time-resolved cathodoluminescence in an ultrafast transmission electron microscope. Appl Phys Lett. 2021;119. doi: 10.1063/5.0057861
  • Flannigan DJ, VandenBussche EJ. Pulsed-beam transmission electron microscopy and radiation damage. Micron. 2023;172:103501. doi: 10.1016/j.micron.2023.103501
  • Dukes MD, Krans NA, Marusak K, et al. A machine-vision approach to transmission electron microscopy workflows. Results analysis and data management. JoVE. 2023;2023:e65446. doi: 10.3791/65446
  • Lee Y, Lee J, Chung H, et al. In situ scanning transmission electron microscopy study of MoS2 formation on graphene with a deep-learning framework. ACS Omega. 2021;6:21623–21630. doi: 10.1021/acsomega.1c03002
  • Lin R, Zhang R, Wang C, et al. TEMImageNet training library and AtomSegNet deep-learning models for high-precision atom segmentation, localization, denoising, and deblurring of atomic-resolution images. Sci Rep. 2021;11:5386. doi: 10.1038/s41598-021-84499-w
  • Roels J, Vernaillen F, Kremer A, et al. An interactive ImageJ plugin for semi-automated image denoising in electron microscopy. Nat Commun. 2020;11:771. doi: 10.1038/s41467-020-14529-0