46
Views
0
CrossRef citations to date
0
Altmetric
Articles

An account of doping in carbon dots for varied applications

&
Pages 5-12 | Received 14 Nov 2017, Accepted 08 Dec 2017, Published online: 12 Apr 2018

References

  • Atchudan R, Nesakumar T, Edison IJ, Lee YR. 2016. Nitrogen-doped carbon dots originating from unripe peach for fluorescent bioimaging and electrocatalytic oxygen reduction reaction. J Colloid Interface Sci. 482:8–18.10.1016/j.jcis.2016.07.058
  • Bhunia SK, Saha A, Maity AR, Ray SC, Jana NR. 2013. Carbon nanoparticle-based fluorescent bioimaging probes. Sci Rep. 3:6726.10.1038/srep01473
  • Bourlinos AB, Trivizas G, Karakassides MA, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, et al. 2015. Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon. 83:173–179.10.1016/j.carbon.2014.11.032
  • Bu D, Zhuang HS, Yang GX, Ping XX. 2014. An immunosensor designed for polybrominated biphenyl detection based on fluorescence resonance energy transfer (FRET) between carbon dots and gold nanoparticles. Sens Actuators B. 195:540–548.10.1016/j.snb.2014.01.079
  • Chandra S, Das P, Bag S, Laha D, Pramanik P. 2011. Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale. 3:1533–1540.10.1039/c0nr00735 h
  • Chandra S, Patra P, Pathan SH, Roy S, Mitra S, Layek A, Bhar R, Pramanik P, Goswami A. 2013. Luminescent S-doped carbon dots: an emergent architecture for multimodal applications. J Mater Chem B. 1:2375–2375.10.1039/c3tb00583f
  • Cheng J, Wang CF, Zhang Y, Yang S, Chen S. 2016. Zinc ion-doped carbon dots with strong yellow photoluminescence. RSC Adv. 6:37189–37194.10.1039/C5RA27808B
  • Demchenko AP, Dekaliuk MO. 2013. Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods Appl Fluoresc. 1:042001.10.1088/2050-6120/1/4/042001
  • Ding H, Wei JS, Xiong HM. 2014. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale. 6:13817–13823.10.1039/C4NR04267 K
  • Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T. 2013. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed Engl. 52:7800–7804.10.1002/anie.v52.30
  • Feng T, Ai X, An G, Yang P, Zhao Y. 2016. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano. 10:4410–4420.10.1021/acsnano.6b00043
  • Gao N, Yang W, Nie H, Gong Y, Jing J, Gao L, Zhang X. 2017. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosens Bioelectron. 96:300–307.10.1016/j.bios.2017.05.019
  • Gordon J, Michel G. 2008. Analytical sensitivity limits for lateral flow immunoassays. Clin Chem. 54:1250–1251.10.1373/clinchem.2007.102491
  • Guo X, Wang CF, Yu ZY, Chen L, Chen S. 2012. Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chem Commun. 48:2692–2694.10.1039/c2cc17769b
  • Hu S, Tian R, Dong Y, Yang J, Liu J, Chang Q. 2013. Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots. Nanoscale. 5:11665–11675.10.1039/c3nr03893a
  • Jahan S, Mansoor F, Naz S, Lei J, Kanwal S. 2013. Oxidative synthesis of highly fluorescent boron/nitrogen co-doped carbon nanodots enabling detection of photosensitizer and carcinogenic dye. Anal Chem. 85(21):10232–10239.10.1021/ac401949 k
  • Jana D, Sun CL, Chen LC, Chen KH. 2013. Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes. Prog Mater Sci. 58:565–635.10.1016/j.pmatsci.2013.01.003
  • Jana J, Aditya T, Ganguly M, Mehetor SK, Pal T. 2018. Fluorescence enhancement via varied long-chain thiol stabilized gold nanoparticles: a study of far-field effect. Spectrochim Acta Part A. 188:551–560.10.1016/j.saa.2017.07.045
  • Jana J, Ganguly M, Chandrakumar KRS, Mohan Rao G, Pal T. 2017. Boron precursor dependent evolution of differently emitting carbon dots. Langmuir. 33:573–584.10.1021/acs.langmuir.6b04100
  • Jana J, Ganguly M, Das B, Dhara S, Negishi Y, Pal T. 2016. One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging. Talanta. 150:253–264.10.1016/j.talanta.2015.12.047
  • Kwon W, Do S, Kim JH, Jeong MS, Rhee SW. 2015. Control of photoluminescence of carbon nanodots via surface functionalization using para-substituted anilines. Scientific Reports. 5: 12604. doi:10.1038/srep12604.
  • Li F, Liu C, Yang J, Wang Z, Liu W, Tian F. 2014. Mg/N double doping strategy to fabricate extremely high luminescent carbon dots for bioimaging. RSC Adv. 4:3201–3205.10.1039/C3RA43826 K
  • Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee ST. 2010. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed. 49:4430–4434.10.1002/anie.200906154
  • Li H, Sun C, Ali M, Zhou F, Zhang X, MacFarlane DR. 2015. Sulfated carbon quantum dots as efficient visible-light switchable acid catalysts for room-temperature ring-opening reactions. Angew Chem Int Ed. 54:8420–8424.10.1002/anie.201501698
  • Li LB, Yu B, You TY. 2015. Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (II) ions. Biosens Bioelectron. 74:263–269.10.1016/j.bios.2015.06.050
  • Lingam K, Podila R, Qian H, Serkiz S, Rao AM. 2013. Evidence for edge-state photoluminescence in graphene quantum dots. Adv Funct Mater. 23:5062–5065.10.1002/adfm.v23.40
  • Liu T, Li N, Dong JX, Luo HQ, Li NB. 2016. Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and IMPLICATION logic gate operation. Sens Actuators B. 231:147–153.10.1016/j.snb.2016.02.141
  • Liu Y, Duan W, Song W, Liu J, Ren C, Wu J, Liu D, Chen H. 2017. Red emission B, N, S- co -doped carbon dots for colorimetric and fluorescent dual mode detection of Fe 3+ ions in complex biological fluids and living cells. ACS Appl Mater Interfaces. 9:12663–12672.10.1021/acsami.6b15746
  • Lu W, Li Y, Li R, Shuang S, Dong C, Cai Z. 2016. Facile synthesis of N-doped carbon dots as a new matrix for detection of hydroxy-polycyclic aromatic hydrocarbons by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. ACS Appl Mater Interfaces. 8:12976–12984.10.1021/acsami.6b01510
  • Ma Z, Ming H, Huang H, Liu Y, Kang Z. 2012. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J Chem. 36:861–864.10.1039/c2nj20942j
  • Mao Y, Bao Y, Han DX, Li FH, Niu L. 2012. Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing. Biosens Bioelectron. 38:55–60.10.1016/j.bios.2012.04.043
  • Martindale BCM, Hutton GAM, Caputo CA, Reisner E. 2015. Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. J Am Chem Soc. 137:6018–6025.10.1021/jacs.5b01650
  • Niu JJ, Gao H. 2014. Synthesis and drug detection performance of nitrogen-doped carbon dots. J Lumin. 149:159–162.10.1016/j.jlumin.2014.01.026
  • Park Y, Yoo J, Lim B, Kwon W, Rhee SWJ. 2016. Improving the functionality of carbon nanodots: doping and surface functionalization. J Mater Chem A. 4:11582–11603.10.1039/C6TA04813G
  • Peng H, Li Y, Jiang C, Luo C, Qi R, Huang R, Duan CG, Sejdic JT. 2016. Tuning the properties of luminescent nitrogen-doped carbon dots by reaction precursors. Carbon. 100:386–394.10.1016/j.carbon.2016.01.029
  • Qian Z, Ma J, Shan X, Feng H, Shao L, Chen J. 2014. Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chem – Eur J. 20:2254–2263.10.1002/chem.201304374
  • Qian Z, Shan X, Chai L, Ma J, Chen J, Feng H. 2014. Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl Mater Interfaces. 6:6797–6805.10.1021/am500403n
  • Ravi S, Vadukumpully S. 2016. Sustainable carbon nanomaterials: Recent advances and its applications in energy and environmental remediation. J Environ Chem Eng. 4:835–856.10.1016/j.jece.2015.11.026
  • Sadhanala HK, Nanda KK. 2015. Boron and nitrogen co-doped carbon nanoparticles as photoluminescent probes for selective and sensitive detection of picric acid. J Phys Chem C. 119:13138–13143.
  • Sadhanala HK, Nanda KK. 2016. Boron-doped carbon nanoparticles: size-independent color tunability from red to blue and bioimaging applications. Carbon. 96:166–173.10.1016/j.carbon.2015.08.096
  • Shi W, Guo F, Han M, Yuan S, Guan W, Li H, Huang H, Liu Y, Kang Z. 2017. N, S co-doped carbon dots as a stable bio-imaging probe for detection of intracellular temperature and tetracycline. J Mater Chem B. 5:3293–3299.10.1039/C7TB00810D
  • Song Y, Zhu C, Song J, Li H, Du D, Lin Y. 2017. Drug-derived bright and color-tunable N-doped carbon dots for cell imaging and sensitive detection of Fe3+ in living cells. ACS Appl Mater Interfaces. 9:7399–7405.10.1021/acsami.6b13954
  • Su ZC, Ye HG, Xiong Z, Lou Q, Zhang Z, Tang F, Tang JY, Dai JY, Shan CX, Xu SJ. 2018. Understanding and manipulating luminescence in carbon nanodots. Carbon. 126:58–64.10.1016/j.carbon.2017.10.013
  • Sun X, Bruckner C, Lei Y. 2015. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission. Nanoscale. 7:7278–17282.
  • Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, et al. 2006. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 128:7756–7757.10.1021/ja062677d
  • Suzuki K, Malfatti L, Carboni D, Loche D, Casula M, Moretto A, Maggini M, Takahashi M, Innocenzi P. 2015. Energy transfer induced by carbon quantum dots in porous zinc oxide nanocomposite films. J Phys Chem C. 119:2837–2843.
  • Tao H, Yang K, Ma Z, Wan J, Zhang Y, Kang Z, Liu Z. 2012. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small. 8:281–290.10.1002/smll.201101706
  • Travlouab NA, Secorc J, Bandosz TJ. 2017. Highly luminescent S-doped carbon dots for the selective detection of ammonia. Carbon. 114:544–556.
  • Wang H, Lu Q, Hou Y, Liu Y, Zhang Y. 2016. High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid. Talanta. 155:62–69.10.1016/j.talanta.2016.04.020
  • Wang R, Lu KQ, Tang ZR, Xu YJ. 2017. Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem A. 5:3717–3734.10.1039/C6TA08660H
  • Wang X, Cao L, Yang ST, Lu F, Meziani MJ, Tian L, Sun KW, Bloodgood MA, Sun YP. 2010. Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed. 49:5310–5314.10.1002/anie.v49:31
  • Wu ZL, Zhang P, Gao MX, Liu CF, Wang W, Leng F, Huang CZ. 2013. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk – natural proteins. J Mater Chem B. 1:2868–2873.10.1039/c3tb20418a
  • Xu Q, Kuang T, Liu Y, Cai L, Peng X, Sreeprasad TS, Zhao P, Yu Z, Li N. 2016. Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. J Mater Chem B. 4:7204–7219.10.1039/C6TB02131 J
  • Xu Q, Wei J, Wang J, Liu Y, Li N, Chen Y, Gao C, Zhang W, Sreeprased TS. 2016. Facile synthesis of copper doped carbon dots and their application as a ‘turn-off’ fluorescent probe in the detection of Fe3+ ions. RSC Adv. 6:28745–28750.10.1039/C5RA27658F
  • Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA. 2004. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Am Chem Soc. 126:12736–12737.10.1021/ja040082 h
  • Yang Y, Liu J, Han Y, Huang H, Liu N, Liu Y, Kang Z. 2014. Porous cobalt, nitrogen-codoped carbon nanostructures from carbon quantum dots and VB12 and their catalytic properties for oxygen reduction. Phys Chem Chem Phys. 16:25350–25357.10.1039/C4CP04119D
  • Yang Z, Li Z, Xu M, Ma Y, Zhang J, Su Y, Su Y, Gao F, Wei H, Zhang L. 2013. Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett. 5:247–259.10.1007/BF03353756
  • Zeng Q, Shao D, He X, Ren Z, Ji W, Shan C, Qu S, Li J, Chen L, Li Q. 2016. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. J Mater Chem B. 4:5119–5126.10.1039/C6TB01259 K

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.