Publication Cover
Ribagua
Revista Iberoamericana del Agua
Volume 10, 2023 - Issue 2
394
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Satellite monitoring of chlorophyll-a threshold levels during an exceptional cyanobacterial bloom (2018-2019) in the Río de la Plata

Monitoreo satelital de umbrales de clorofila-a durante una floración excepcional de cianobacterias (2018-2019) en el Río de la Plata

ORCID Icon, , , &
Pages 62-78 | Received 16 Aug 2022, Accepted 19 Jul 2023, Published online: 18 Oct 2023

References

  • Fossati M, Santoro P, Mosquera R, et al. Dinámica de flujo, del campo salino y de los sedimentos finos en el Río de la Plata. RIBAGUA. 2014;1(1):48–63.
  • Maciel FP, Santoro PE, Pedocchi F. Spatio-temporal dynamics of the Río de la Plata turbidity front; combining remote sensing with in-situ measurements and numerical modeling. Cont Shelf Res. 2021;213:104301.
  • Nagy GJ, Gómez-Erache M, López CH, et al. Distribution patterns of nutrients and symptoms of eutrophication in the Rio de la Plata River Estuary System. Hydrobiologia. 2002;475:125–139.
  • Bonilla S, Haakonsson S, Somma A, et al. Cianobacterias y cianotoxinas en ecosistemas límnicos de Uruguay. INNOTEC. 2015;10:9–22.
  • Kruk C, Martínez A, Martínez de la Escalera G, et al. Rapid freshwater discharge on the coastal ocean as a mean of long distance spreading of an unprecedented toxic cyanobacteria bloom. SciTotal Environ. 2021;754:142362.
  • Huisman J, Codd GA, Paerl HW, et al. Cyanobacterial blooms. Nature Rev Microbiol. 2018;16(8):471–483.
  • Aubriot L, Zabaleta B, Bordet F, et al. Assessing the origin of a massive cyanobacterial bloom in the Río de la Plata (2019): towards an early warning system. Water Res. 2020;181:115944.
  • Haakonsson S, Rodríguez MA, Carballo C, et al. Predicting cyanobacterial biovolume from water temperature and conductivity using a Bayesian compound Poisson-Gamma model. Water Res. 2020;176:115710.
  • Sathicq MB, Gómez N, Andrinolo D, et al. Temporal distribution of cyanobacteria in the coast of a shallow temperate estuary (Río de la Plata): some implications for its monitoring. Environ Monit Assess. 2014;186(11):7115–7125.
  • Blondeau-Patissier D, Gower JFR, Dekker AG, et al. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog Oceanogr. 2014;123:123–144.
  • Khan RM, Salehi B, Mahdianpari M, et al. A meta-analysis on harmful algal bloom (HAB) detection and monitoring: a remote sensing perspective. Remote Sens. 2021;13(21):4347.
  • Ruddick K, Lacroix G, Park Y, et al. Overview of ocean colour: theoretical background, sensors and applicability for the detection and monitoring of harmful algae blooms (capabilities and limitations) (Real-time coastal observing systems for marine ecosystem dynamics and harmful algal blooms. Oceanographic Methodology Series). Paris: UNESCO Publishing; 2008.
  • Gholizadeh MH, Melesse AM, Reddi L. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors. 2016;16(8):1298.
  • IOCCG. Earth observations in support of global water quality monitoring. Greb S, Dekker A, Binding C. Eds. IOCCG Report Series No. 17. International Ocean Colour Coordinating Group. Dartmouth:Canada; 2018.
  • Mouw CB, Greb S, Aurin D, et al. Aquatic color radiometry remote sensing of coastal and inland waters: challenges and recommendations for future satellite missions. Remote Sens Environ. 2015;160:15–30.
  • Morel A, Prieur L. Analysis of variations in ocean color. Limnol Oceanography. 1977;22(4):709–722.
  • Dogliotti AI, Gossn JI, Gonzalez C, et al. Evaluation of multi- and hyper- spectral chl-a algorithms in the Río de la Plata turbid waters during a cyanobacteria bloom. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS; July 11–16, 2021; Brussels, Belgium. 2021. p. 7442–7445. doi: 10.1109/IGARSS47720.2021.9553148
  • Bramich J, Bolch CJS, Fischer A. Improved red-edge chlorophyll-a detection for Sentinel 2. Ecol Indic. 2021;120:106876.
  • Gernez P, Doxaran D, Barille L. Shellfish aquaculture from space: potential of Sentinel 2 to monitor tide-driven changes in turbidity, chlorophyll concentration and oyster physiological response at the scale of an oyster farm. Front Mar Sci. 2017;4:137.
  • Pahlevan N, Smith B, Alikas K, et al. Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3. Remote Sens Environ. 2022;270:112860.
  • Oliver RL, Hamilton DP, Brookes JD, et al. Physiology, Blooms and Prediction of Planktonic Cyanobacteria. In: Whitton BA, editor. Ecology of Cyanobacteria II: their Diversity in Space and Time. Dordrecht: Springer; 2012. p. 155–194. doi: 10.1007/978-94-007-3855-3_6
  • Maciel FP, Haakonsson S, Ponce de León L, et al. Challenges for chlorophyll-a remote sensing in a highly variable turbidity estuary, an implementation with Sentinel-2. Geocarto International. 2023;38(1):21600.
  • Jaureguizar AJ, Solari A, Cortés F, et al. Fish diversity in the Río de la Plata and adjacent waters: an overview of environmental influences on its spatial and temporal structure. J Fish Biol. 2016;89(1):569–600.
  • Framiñan MB, Brown OB. Study of the Rio de la Plata turbidity front, Part I: spatial and temporal distribution. Cont Shelf Res. 1996;16(10):1259–1282.
  • Santoro P, Fossati M, Piedra-Cueva I. Study of the meteorological tide in the Río de la Plata. Cont Shelf Res. 2013;60:51–63.
  • ISO-10260. Water quality measurement of biochemical parameters: spectrophotometric determination of chlorophyll-a concentration (Standard No. 10260). International Organization for Standardization. Geneva: Switzerland; 1992.
  • Lee T, Tsuzuki M, Takeuchi T, et al. In-vivo fluorometric method for early detection of cyanobacterial water blooms. J Appl Phycol. 1994;6(5–6):489–495.
  • Cremella B, Huot Y, Bonilla S. Interpretation of total phytoplankton and cyanobacteria fluorescence from cross-calibrated fluorometers, including sensitivity to turbidity and colored dissolved organic matter. Limnol Oceanogr Methods. 2018;16(12):881–894.
  • Sournia A. Phytoplankton manual (Monographs on oceanographic methodology No. 6). Paris: UNESCO; 1978.
  • García-Alonso J, Lercari D, Defeo O, et al. Río de la Plata: a neotropical estuarine system. In: Wolanski E, Day JW, Elliott M, editors. Coasts and Estuaries. Chapter 3. Elsevier; 2019. p. 45–56. doi: 10.1016/B978-0-12-814003-1.00003-4
  • Giannuzzi L, Carvajal G, Corradini MG, et al. Occurrence of toxic cyanobacterial blooms in Rio de la Plata Estuary, Argentina: field study and data analysis. J Toxicol. 2012;2012:373618.
  • Hersbach H, Bell B, Berrisford P, et al. The ERA5 Global Reanalysis. Q J R Meteorol Soc. 2020;146(730):1999–2049.
  • Chin TM, Vazquez-Cuervo J, Armstrong EM. A multiscale high-resolution analysis of global sea surface temperature. Remote Sens Environ. 2017;200:154–169.
  • Trinchin R, Manta G, Santana R, et al. Hacia un monitoreo continuo de variables oceanográficas en el Parque Nacional Isla de Flores, Uruguay. INNOTEC. 2021;21:89–108.
  • Chorus I, Welker M. Exposure to cyanotoxins: understanding it and short-term interventions to prevent it. In: Chorus I, Welker M, editors. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. 2nd ed. London: CRC Press; 2021. p. 295–400.
  • Pilotto LS, Douglas RM, Burch MD, et al. Health effects of recreational exposure to cyanobacteria (blue-green) during recreational water-related activities. Aust N Zealand J Public Health. 1997;21(6)562–566.
  • Vanhellemont Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens Environ. 2019;225:175–192.
  • Maciel FP, Pedocchi F. Evaluation of ACOLITE atmospheric correction methods for Landsat-8 and Sentinel-2 in the Río de la Plata turbid coastal waters. Int J Remote Sens. 2022;43(1):215–240.
  • Dall’Olmo G, Gitelsona AA, Rundquist DC. Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters. Geophys Res Lett. 2003;30(18):1938.
  • Gitelson AA, Dall’Olmo G, Moses W, et al. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation. Remote Sens Environ. 2008;112(9):3582–3593.
  • Gitelson AA, Schalles JF, Hladik CM. Remote chlorophyll a retrieval in turbid, productive estuaries: chesapeake Bay case study. Remote Sens Environ. 2007;109(4):464–472.
  • Moses W, Gitelson A, Berdnikov S, et al. Satellite estimation of chlorophyll-a concentration using the red and NIR bands of MERIS - the Azov Sea case study. IEEE Geosci Remote Sens Lett. 2009;4(6):845–849.
  • Gower JFR, Doerffer R, Borstad GA. Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS. Int J Remote Sens. 1999;20(9):1771–1786.
  • Matthews MW, Bernard S, Robertson L. An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens Environ. 2012;124:637–652.
  • Lunetta RS, Schaeffer BA, Stumpf RP, et al. Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA. Remote Sens Environ. 2015;157:24–34.
  • Wynne TT, Stumpf RP, Tomlinson MC, et al. Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. Int J Remote Sens. 2008;29(12):3665–3672.
  • Mishra S, Mishra DR. Normalized difference chlorophyll index: a novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens Environ. 2012;117:394–406.
  • Junes R (2019). Personal communication.
  • Jackson M, Sienra G, Santoro P, et al. Temporal and spatial variability scales of salinity at a large microtidal estuary. J Mar Sci Eng. 2021;9(8):860.
  • Somma A, Bonilla S, Aubriot L. Nuisance phytoplankton transport is enhanced by high flow in the main river for drinking water in Uruguay. Environ Sci Pollut Res. 2022;29(4):5634–5647.
  • Silva CP, Marti CL, Imberger J. Physical and biological controls of algal blooms in the Río de la Plata. Environ Fluid Mech. 2014;14(5):1199–1228.
  • Nagy GJ, Muñoz N, Verocai JE, et al. Integrating Climate Science, Monitoring, and Management in the Rio de la Plata Estuarine Front (Uruguay). In: Leal Filho W, Alves F, Caeiro S, et al., editors. International Perspectives on Climate Change Climate Change Management. Switzerland: Springer; 2014. p. 79–92.
  • Zabaleta B, Haakonsson S, Achkar M, et al. High-frequency zones of phytoplankton blooms in the Río de la Plata Estuary associated with El Niño-Southern Oscillation. Estuar Coast Shelf Sci. 2023;286:108342. doi: 10.1016/j.ecss.2023.108342
  • Mishra D, Ramaswamy L, Kumar A, et al. A multi-cloud cyber infrastructure for monitoring global proliferation of cyanobacterial harmful algal blooms. 2018 IEEE International Geoscience and Remote Sensing Symposium IGARSS; July 22–27, 2018; Valencia, Spain. 2018. p. 9272–9275.
  • Mishra S, Stumpf RP, Schaeffer BA, et al. Measurement of cyanobacterial bloom magnitude using satellite remote sensing. Sci Rep. 2019;9(1):1–17.
  • Dogliotti AI, Piegari E, Rubinstein L, et al. Observaciones in situ automáticas para el monitoreo y validación de información satelital en el Río de la Plata: primeros datos y resultados. 19° Simposio Científico, Comisión Técnica Mixta del Frente Marítimo, noviembre 2022. Colonia del Sacramento: Uruguay; 2022.
  • Teta R, Romano V, Della Sala G, et al. Cyanobacteria as indicators of water quality in Campania coasts, Italy: a monitoring strategy combining remote/proximal sensing and in situ data. Environ Res Lett. 2017;12(2):024001.