750
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Feasibility of proton dosimetry overriding planning CT with daily CBCT elaborated through generative artificial intelligence tools

ORCID Icon, ORCID Icon, ORCID Icon, &

References

  • Bortfeld T. IMRT: a review and preview. Phys Med Biol. 2006;51(13):1–15. doi:10.1088/0031-9155/51/13/r21.
  • Joseph PM, Spital RD. The effects of scatter in x-ray computed tomography. Med Phys. 1982;9(4):464–472. doi:10.1118/1.595111.
  • Schulze R, Heil U, Gross D, et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011;40(5):265–273. doi:10.1259/dmfr/30642039.
  • Kurz C, Kamp F, Park Y-K, et al. Investigating deformable image registration and scatter correction for CBCT-based dose calculation in adaptive IMPT. Med Phys. 2016;43(10):5635–5646. doi:10.1118/1.4962933.
  • Thing RS, Bernchou U, Mainegra-Hing E, et al. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy. Phys Med Biol. 2016;61(15):5781–5802. doi:10.1088/0031-9155/61/15/5781.
  • Giacometti V, Hounsell AR, McGarry CK. A review of dose calculation approaches with cone beam CT in photon and proton therapy. Phys Med. 2020;76:243–276. doi:10.1016/j.ejmp.2020.06.017.
  • Sun M, Star-Lack JM. Improved scatter correction using adaptive scatter kernel superposition. Phys Med Biol. 2010;55(22):6695–6720. doi:10.1088/0031-9155/55/22/007.
  • Sisniega A, Zbijewski W, Badal A, et al. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions. Med Phys. 2013;40(5):051915. doi:10.1118/1.4801895.
  • Stankovic U, Ploeger LS, Herk M, et al. Optimal combination of anti-scatter grids and software correction for CBCT imaging. Med Phys. 2017;44(9):4437–4451. doi:10.1002/mp.12385.
  • Rusanov B, Hassan GM, Reynolds M, et al. Deep learning methods for enhancing cone-beam CT image quality toward adaptive radiation therapy: a systematic review. Med Phys. 2022;49(9):6019–6054. doi:10.1002/mp.15840.
  • Kida S, Nakamoto T, Nakano M, et al. Cone beam computed tomography image quality improvement using a deep convolutional neural network. Cureus. 2018;10(4):e2548. doi:10.7759/cureus.2548.
  • Jiang Y, Yang C, Yang P, et al. Scatter correction of cone-beam CT using a deep residual convolution neural network (DRCNN). Phys Med Biol. 2019;64(14):145003. doi:10.1088/1361-6560/ab23a6.
  • Landry G, Hansen D, Kamp F, et al. Comparing unet training with three different datasets to correct CBCT images for prostate radiotherapy dose calculations. Phys Med Biol. 2019;64(3):035011. doi:10.1088/1361-6560/aaf496.
  • Chen L, Liang X, Shen C, et al. Synthetic CT generation from CBCT images via deep learning. Med Phys. 2020;47(3):1115–1125. doi:10.1002/mp.13978.
  • Rossi M, Belotti G, Paganelli C, et al. Image-based shading correction for narrow-fov truncated pelvic cbct with deep convolutional neural networks and transfer learning. Med Phys. 2021;48(11):7112–7126. doi:10.1002/mp.15282.
  • Kida S, Kaji S, Nawa K, et al. Visual enhancement of cone-beam CT by use of CycleGAN. Med Phys. 2020;47(3):998–1010. doi:10.1002/mp.13963.
  • Eckl M, Hoppen L, Sarria GR, et al. Evaluation of a cycle-generative adversarial network-based cone-beam CT to synthetic CT conversion algorithm for adaptive radiation therapy. Phys Med. 2020;80:308–316. doi:10.1016/j.ejmp.2020.11.007.
  • Dong G, Zhang C, Liang X, et al. A deep unsupervised learning model for artifact correction of pelvis cone-beam CT. Front Oncol. 2021;11:686875. doi:10.3389/fonc.2021.686875.
  • Sun H, Fan R, Li C, et al. Imaging study of pseudo-CT synthesized from cone-beam CT based on 3d CycleGAN in radiotherapy. Front Oncol. 2021;11:603844. doi:10.3389/fonc.2021.603844.
  • Uh J, Wang C, Acharya S, et al. Training a deep neural network coping with diversities in abdominal and pelvic images of children and young adults for CBCT-based adaptive proton therapy. Radiother Oncol. 2021;160:250–258. doi:10.1016/j.radonc.2021.05.006.
  • Zhao J, Chen Z, Wang J, et al. MV CBCT-based synthetic CT generation using a deep learning method for rectal cancer adaptive radiotherapy. Front Oncol. 2021;11:655325. doi:10.3389/fonc.2021.655325.
  • Xie S, Liang Y, Yang T, et al. Contextual loss based artifact removal method on CBCT image. J Appl Clin Med Phys. 2020;21(12):166–177. doi:10.1002/acm2.13084.
  • Wu W, Qu J, Cai J, et al. Multiresolution residual deep neural network for improving pelvic CBCT image quality. Med Phys. 2022;49(3):1522–1534. doi:10.1002/mp.15460.
  • Rossi M, Cerveri P. Comparison of supervised and unsupervised approaches for the generation of synthetic ct from cone-beam CT. Diagnostics (Basel). 2021;11(8):1435. doi:10.3390/diagnostics11081435.
  • Zhang Y, Yue N, Su M-Y, et al. Improving CBCT quality to CT level using deep learning with generative adversarial network. Med Phys. 2021;48(6):2816–2826. doi:10.1002/mp.14624.
  • Landry G, Hua C-h Current state and future applications of radiological image guidance for particle therapy. Med Phys. 2018;45(11):e1086–e1095. doi:10.1002/mp.12744.
  • Lu W, Yan H, Zhou L, et al. TU-g-141-05: limited field-of-view cone-beam CT reconstruction for adaptive radiotherapy. Med Phys. 2013;40(6Part27):457–457. doi:10.1118/1.4815465.
  • Yu VY, Keyrilainen J, Suilamo S, et al. A multi-institutional analysis of a general pelvis continuous hounsfield unit synthetic ct software for radiotherapy. J Appl Clin Med Phys. 2021;22(3):207–215. doi:10.1002/acm2.13205.
  • Velten C, Goddard L, Jeong K, et al. Clinical assessment of a novel ring gantry linear accelerator-mounted helical fan-beam kvct system. Adv Radiat Oncol. 2022;7(2):100862. doi:10.1016/j.adro.2021.100862.
  • Clackdoyle R, Defrise M. Tomographic reconstruction in the 21st century. IEEE Signal Process Mag. 2010;27(4):60–80. doi:10.1109/MSP.2010.936743.
  • Fattori G, Riboldi M, Pella A, et al. Image guided particle therapy in CNAO room 2: implementation and clinical validation. Phys Med. 2015;31(1):9–15. doi:10.1016/j.ejmp.2014.10.075.
  • Hong J, Reyngold M, Crane C, et al. Breath-hold CT and cone-beam CT images with expert manual organ-at-risk segmentations from radiation treatments of locally advanced pancreatic cancer (Pancreatic-CT-CBCT-SEG). The Cancer Imaging Archive. 2021. 10.7937/TCIA.ESHQ-4D90
  • Poludniowski G, Evans PM, Hansen VN, et al. An efficient monte carlo-based algorithm for scatter correction in keV cone-beam CT. Phys Med Biol. 2009;54(12):3847–3864. doi:10.1088/0031-9155/54/12/016.
  • Jan S, Santin G, Strul D, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49(19):4543–4561. doi:10.1088/0031-9155/49/19/007.
  • Poludniowski G, Omar A, Bujila R, et al. Technical note: SpekPy v2.0—a software toolkit for modeling x-ray tube spectra. Med Phys. 2021;48(7):3630–3637. doi:10.1002/mp.14945.
  • Rit S, Oliva MV, Brousmiche S, et al. The reconstruction toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the insight toolkit (ITK). J Phys: Conf Ser. 2014;489:012079. doi:10.1088/1742-6596/489/1/012079.
  • Zhu J-Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks. In 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017. doi:10.1109/ICCV.2017.244.
  • Ulyanov D, Vedaldi A, Lempitsky V. Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022. 2016.
  • Sharma S, Sharma S, Athaiya A. Activation functions in neural networks. IJEAST. 2020;04(12):310–316. doi:10.33564/IJEAST.2020.v04i12.054.
  • Ronneberger O, Fischer P, Brox T. U-Net: convolutional Networks for Biomedical Image Segmentation. arXiv. 2015. doi:10.48550/ARXIV.1505.04597.
  • Isola P, Zhu J-Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks. In. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. doi:10.1109/CVPR.2017.632.
  • Chollet F, et al. Keras. https://keras.io. 2015.
  • Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org, 2015. Available from: http://tensorflow.org/.
  • Spadea MF, Maspero M, Zaffino P, et al. Deep learning based synthetic-CT generation in radiotherapy and PET: a review. Med Phys. 2021;48(11):6537–6566. doi:10.1002/mp.15150.
  • Horé A, Ziou D. Image quality metrics: PSNR vs. SSIM. In 2010 20th International Conference on Pattern Recognition, pp. 2366–2369, 2010. doi:10.1109/ICPR.2010.579.
  • Wang Z, Bovik AC, Sheikh HR, et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–612. doi:10.1109/tip.2003.819861.
  • Wieser H-P, Cisternas E, Wahl N, et al. Development of the open-source dose calculation and optimization toolkit matRad. Med Phys. 2017;44(6):2556–2568. doi:10.1002/mp.12251.
  • Dreher C, Habermehl D, Ecker S, et al. Optimization of carbon ion and proton treatment plans using the raster-scanning technique for patients with unresectable pancreatic cancer. Radiat Oncol. 2015;10(1). doi:10.1186/s13014-015-0538-x.
  • Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM task group no. 218. Med Phys. 2018;45(4):e53–e83. doi:10.1002/mp.12810.
  • Niu T, Al-Basheer A, Zhu L. Quantitative cone-beam CT imaging in radiation therapy using planning CT as a prior: first patient studies. Med Phys. 2012;39(4):1991–2000. doi:10.1118/1.3693050.
  • Kurz C, Maspero M, Savenije MHF, et al. CBCT correction using a cycle-consistent generative adversarial network and unpaired training to enable photon and proton dose calculation. Phys Med Biol. 2019;64(22):225004. doi:10.1088/1361-6560/ab4d8c.
  • Hansen DC, Landry G, Kamp F, et al. ScatterNet: a convolutional neural network for cone-beam CT intensity correction. Med Phys. 2018;45(11):4916–4926. doi:10.1002/mp.13175.
  • Thummerer A, Oria CS, Zaffino P, et al. Clinical suitability of deep learning based synthetic CTs for adaptive proton therapy of lung cancer. Med Phys. 2021;48(12):7673–7684. doi:10.1002/mp.15333.