514
Views
0
CrossRef citations to date
0
Altmetric
Research Article

SwinD-Net: a lightweight segmentation network for laparoscopic liver segmentation

, , &

References

  • Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation In International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS vol.9351. 2015. pp. 1–9.
  • Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, et al. UNet++: a nested U-net architecture for medical image segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, LNCS. vol. 11045; 2018. pp. 3–11.
  • Diakogiannis FI, Waldner F, Caccetta P, et al. ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data. ISPRS J Photogramm. 2020;162:94–114. doi: 10.1016/j.isprsjprs.2020.01.013.
  • Oktay O, Schlemper J, Folgoc LL, et al. Attention U-Net: learning where to look for the pancreas. arXiv preprint. arXiv:1804.03999. 2018.
  • Chen LC, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation In Proceedings of the European Conference on Computer Vision (ECCV). 2018. pp. 801–818.
  • Chen J, Lu Y, Yu Q, et al. TransUNet: transformers make strong encoders for medical image segmentation. arXiv Preprint. 2021.
  • Kolbinger FR, Rinner FM, Jenke AC, et al. Anatomy segmentation in laparoscopic surgery: comparison of machine learning and human expertise-an experimental study. Int J Surg. 2023;109(10):2962–2974. doi: 10.1097/JS9.0000000000000595.
  • Xie E, Wang W, Yu Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers. Adv Neural Inf Process Syst. 2021;34:12077–12090.
  • Fu Y, Robu MR, Koo B, et al. More unlabelled data or label more data? A study on semi-supervised laparoscopic image segmentation. Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data: First MICCAI Workshop, DART 2019, and First International Workshop, MIL3ID 2019, Shenzhen, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings 1. Springer International Publishing. Springer; 2019. pp. 173–180.
  • Gibson E, Robu MR, Thompson S, et al. Deep residual networks for automatic segmentation of laparoscopic videos of the liver. In SPIE Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling. vol. 10135. 2017. pp 423–428. doi: 10.1117/12.2255975.
  • Scheikl PM, Laschewski S, Kisilenko A, et al. Deep learning for semantic segmentation of organs and tissues in laparoscopic surgery. Curr Dir Biomed Eng. 2020;6(1):20200016. doi: 10.1515/cdbme-2020-0016.
  • Iglovikov V, Shvets A. Ternausnet: u -net with vgg11 encoder pre-trained on imagenet for image segmentation. arXiv preprint. arXiv:1801.05746. 2018.
  • Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–2495. doi: 10.1109/TPAMI.2016.2644615.
  • Chaurasia A, LinkNet CE. Exploiting encoder representations for efficient semantic segmentation. In: IEEE Visual Communications and Image Processing (VCIP). IEEE; 2017.
  • Lin M, Chen Q, Yan S. Network in network. arXiv:1312.4400. 2013.
  • Chollet F. Xception: Deep learning with depthwise separable convolutions In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR). 2017. pp. 1251–1258.
  • Iandola FN, Han S, Moskewicz MW, et al. SqueezeNet: alexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. In International Conference on Learning Representations (ICLR). 2017.
  • Howard AG, Zhu M, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861. 2017.
  • Zhang X, Zhou X, Lin M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2018. pp. 6848–6856.
  • Sandler M, Howard A, Zhu M, et al. MobileNetV2: Inverted residuals and linear bottlenecks In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2018. pp. 4510–4520.
  • Ma N, Zhang X, Zheng HT, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design In Proceedings of the European Conference on Computer Vision (ECCV). 2018. pp. 116–131.
  • Howard A, Sandler M, Chu G, et al. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2019. pp. 1314–1324.
  • Tan M, Le QV. EfficientNet: rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning. PMLR 97. 2019. pp. 6105–6114.
  • Valanarasu JMJ, Oza P, Hacihaliloglu I, et al. Medical transformer: gated axial-attention for medical image segmentation. In Proceedings of Medical Image Computing and Computer Assisted Intervention, LNCS. vol. 12091. 2021. p. 36–46.
  • Hong W-Y, Kao C-L, Kuo Y-H, et al. CholecSeg8k: a semantic segmentation dataset for laparoscopic cholecystectomy based on Cholec80. arXiv:2021.12453. 2020.
  • Valanarasu JMJ, Patel VM. UNeXt: MLP-based rapid medical image segmentation network. In Proceedings of Medical Image Computing and Computer Assisted Intervention, LNCS, vol.13435. 2022. p. 23–33.
  • Twinanda AP, Shehata S, Mutter D, et al. EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans Med Imaging. 2017;36(1):86–97. doi: 10.1109/TMI.2016.2593957.
  • Carstens M, Rinner FM, Bodenstedt S, et al. The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Sci Data. 2023;10(1):3. doi: 10.1038/s41597-022-01719-2.
  • Roß T, Reinke A, Full PM, et al. Comparative validation of multi-instance instrument segmentation in endoscopy: results of the ROBUST-MIS 2019 challenge. Med Image Anal. 2021;70:101920. doi: 10.1016/j.media.2020.101920.
  • Kirillov A, Mintun E, Ravi N, et al. Segment anything. In ICCV. 2023. pp. 4015–4026.
  • Ma J, He Y, Li F, et al. Segment anything in medical images. Nat Commun. 2024;15(1):654. doi: 10.1038/s41467-024-44824-z.
  • Bian C, Yuan C, Ma K, et al. Domain adaptation meets zero-shot learning: an annotation-efficient approach to multi-modality medical image segmentation. IEEE Trans Med Imaging. 2021;41(5):1043–1056. doi: 10.1109/TMI.2021.3131245.