Publication Cover
Mitochondrial DNA Part A
DNA Mapping, Sequencing, and Analysis
Volume 33, 2022 - Issue 1-8
35
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Complete chloroplast genome of Lamiophlomis rotata: comparative genome analysis and phylogenetic analysis

ORCID Icon, &
Pages 29-39 | Received 03 Mar 2021, Accepted 20 Nov 2023, Published online: 08 Jan 2024

References

  • Alexandros S. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30:1312–1313. doi: 10.1093/bioinformatics/btu033.
  • Azizian D, Moore DM. 1982. Morphological and palynological Studies in Phlomis L., Eremostachys Bunge and Paraphlomis Prain (Labiatae). Bot. J. Linn. Soc. 85(4):225–248. doi: 10.1111/j.1095-8339.1982.tb00372.x.
  • Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27(2):573–580. doi: 10.1093/nar/27.2.573.
  • Bock R. 2007. Structure, function, and inheritance of plastid genomes., In: Bock R., editor. Cell and molecular biology of plastids, Berlin, Germany: Springer, p. 29–63.
  • Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30(15):2114–2120. doi: 10.1093/bioinformatics/btu170.
  • Briquet J. 1897. Labiatae., In Die natürlichen Pflanzenfamilien, Engler A, and Prantl K. W, editors. Leipzig, Germany: Engelmann, p. 183–380.
  • Cantino PD, Sanders RW. 1986. Subfamilial classification of Labiatae. Syst. Bot. 11(1):163–185. doi: 10.2307/2418955.
  • Cantino PH, Harley RM, Wagstaff SJ. 1992. Genera of Labiatae: status and classification., in Advances in Labiate Science, Harley R. M. and Reynolds T, editors. London, British: Royal Botanic Gardens, Kew, p. 511–522.
  • Carbonell-Caballero J, Alonso R, Ibañez V, Terol J, Talon M, Dopazo J. 2015. A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus. Mol Biol Evol. 32(8):2015–2035. doi: 10.1093/molbev/msv082.
  • Civaň P, Foster PG, Embley MT, Séneca A, Cox CJ. 2014. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants. Genome Biol Evol. 6(4):897–911. doi: 10.1093/gbe/evu061.
  • Corriveau JL, Coleman AW. 1988. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. American J of Botany. 75(10):1443–1458. doi: 10.1002/j.1537-2197.1988.tb11219.x.
  • Cosner ME, Jansen RK, Palmer JD, Downie SR. 1997. The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr Genet. 31(5):419–429. doi: 10.1007/s002940050225.
  • Daniell H, Lin CS, Yu M, Chang WJ. 2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 17(1):134. doi: 10.1186/s13059-016-1004-2.
  • Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4):e18. doi: 10.1093/nar/gkw955.
  • Downie SR, Olmstead RG, Zurawski G, Soltis DE, Soltis PS, Watson JC, Palmer JD. 1991. Six independent loss of the chloroplast DNA rpl2 intron in Dicotyledons: molecular and phylogenetic implications. Evolution. 45(5):1245–1259. doi: 10.1111/j.1558-5646.1991.tb04390.x.
  • Doyle JJ. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11–15.
  • Dugas DV, Hernandez D, Koenen EJM, Schwarz E, Straub S, Hughes CE, Jansen RK, Nageswara-Rao M, Staats M, Trujillo JT, et al. 2015. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP. Sci Rep. 5(1):16958. doi: 10.1038/srep16958.
  • Fang LQ, Pan YZ, Gong X. 2007. A karyomorphological study in the monotypic genus Lamiophlomis and five species in Phlomis (Lamiaceae). Acta Phytotaxon. Sin. 45(05):627–632. doi: 10.1360/aps050192.
  • FastQC: a quality control tool for high-throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. [Accessed December 3, 2020].
  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. 2004. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32(Web Server issue):W273–W279. doi: 10.1093/nar/gkh458.
  • Haberle RC, Fourcade HM, Boore JL, Jansen RK. 2008. Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J Mol Evol. 66(4):350–361. doi: 10.1007/s00239-008-9086-4.
  • Hae-Lim L, Jansen RK, Chumley TW, Ki-Joong K. 2007. Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol. 24(5):1161–1180. doi: 10.1093/molbev/msm036.
  • Hagemann R. 2004. The sexual inheritance of plant organelles. In: Daniell H. and Chase C, editors. Molecular biology and biotechnology of plant organelles, Berlin, Germany: Springer Netherlands. p. 93–113.
  • Hipkins VD, Marshall KA, Neale DB, Rottmann WH, Strauss SH. 1995. A mutation hotspot in the chloroplast genome of a conifer (Douglas-fir: pseudotsuga) is caused by variability in the number of direct repeats derived from a partially duplicated tRNA gene. Curr Genet. 27(6):572–579. doi: 10.1007/BF00314450.
  • Hooker JD. 1885. Labiatae. In: Flora of British India. London, British: Reeve & Co, Vol. 4, p. 604–705.
  • Huang H, Shi C, Liu Y, Mao SY, Gao LZ. 2014. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evol Biol. 14(1):151. doi: 10.1186/1471-2148-14-151.
  • Huang Y, Wang J, Yang Y, Fan C, Chen J. 2017. Phylogenomic analysis and dynamic evolution of chloroplast genomes in salicaceae. Front Plant Sci. 8:1050. doi: 10.3389/fpls.2017.01050.
  • Jansen RK, Ruhlman TA. 2012. Plasti genomes of seed plants. In: Bock, R. and Knoop, V, editors. Genomics of chloroplasts and mitochondria Berlin, Germany: Springer Netherlands, p. 103–126.
  • Jiangsu New Medical College. 1977. The Chinese medicine dictionary. Shanghai: Shanghai People’s Publishing House.
  • Jiao Y, Jia H-m, Li X-w, Chai M-l, Jia H-j, Chen Z, Wang G-y, Chai C-y, van de Weg E, Gao Z-s 2012. Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry (Myrica rubra). BMC Genomics. 13(1):201. doi: 10.1186/1471-2164-13-201.
  • John R, Songling L, Mar AK, Standley DM, Kazutaka K. 2019. Mafft-dash: integrated protein sequence and structural alignment. Nucleic Acids Res. 47(W1):W5–W10. doi: 10.1093/nar/gkz342.
  • Kaundun SS, Matsumoto S. 2002. Heterologous nuclear and chloroplast microsatellite amplification and variation in tea, Camellia sinensis. Genome. 45(6):1041–1048. doi: 10.1139/g02-070.
  • Kudo Y. 1929. Labiatarum Sino-Japonicarum Prodromus. Memoirs of the Faculty of Science and Agriculture. Taihoku Imperial Unive. 2:1–332.
  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. 2001. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29(22):4633–4642. doi: 10.1093/nar/29.22.4633:.
  • Lenka D, Jan K, Cestmír V, Václav P. 2004. TrnL-trnF intergenic spacer and trnL intron define major clades within Luzula and Juncus (Juncaceae): Importance of structural mutations. J. Mol. Evol. 59:1–10. doi: 10.1007/s00239-004-2598-7.
  • Li M-M, Wang D-Y, Zhang L, Kang M-H, Lu Z-Q, Zhu R-B, Mao X-X, Xi Z-X, Tao M. 2019. Intergeneric relationships within the family salicaceae s.l. based on plastid phylogenomics. Int. Int J Mol Sci. 20(15):3788. doi: 10.3390/ijms20153788.
  • Li XW. 1989. The geographic distribution of Labiatae in Hengduan Mountains. Bull Botanical Res. 9:103–122.
  • Lin CP, Wu CS, Huang YY, Chaw SM. 2012. The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction. Genome Biol Evol. 4(3):374–381. doi: 10.1093/gbe/evs021.
  • Mao-Lun W, Blazier JC, Madhumita G, Jansen RK. 2014. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol Biol Evol. 31(3):645–659. doi: 10.1093/molbev/mst257.
  • Mathiesen C. 2006. [Phylogeny and biogeography of the lamioid mint genus Phlomis L]. [PhD thesis]. Sweden: Natural History Museum University of Oslo. p. 1–41.
  • Matthew K, Richard M, Amy W, Steven SH, Matthew C, Shane S. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28:1647–1649. doi: 10.1093/bioinformatics/bts199.
  • Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Gray JC, Morden CW, et al. 2001. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell. 13(3):645–658.,. doi: 10.2307/3871412.
  • Nguyen VB, Park HS, Lee SC, Lee J, Park JY, Yang TJ. 2017. Authentication markers for five major Panax species developed via comparative analysis of complete chloroplast genome sequences. J Agric Food Chem. 65(30):6298–6306. doi: 10.1021/acs.jafc.7b00925.
  • Nock CJ, Waters DLE, Edwards MA, Bowen SG, Rice N, Cordeiro GM, Henry RJ. 2011. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J. 9(3):328–333.,. doi: 10.1111/j.1467-7652.2010.00558.x.
  • Ogihara Y, Terachi T, Sasakuma T. 1988. Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc Natl Acad Sci U S A. 85(22):8573–8577. doi: 10.1073/pnas.85.22.8573.
  • Ohba H. 1986. The juvenile plants of Phlomis rotata (Labeatae), With a taxonomic note. J. Jpn. Bot. 61:321–325.
  • Palmer JD. 1991. Plastid chromosomes: structure and evolution. Mol. Biol. Plastids. 7:5–53. doi: 10.1016/B978-0-12-715007-9.50009-8.
  • Pan YZ, Fang LQ, Hao G, Cai J, Gong X. 2009. Systematic positions of lamiophlomis and paraphlomis (lamiaceae) based on nuclear and chloroplast sequences. J of Sytematics Evolution. 47(6):535–542. doi: 10.1111/j.1759-6831.2009.00050.x.
  • Parks M, Cronn R, Liston A. 2009. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol. 7(1):84. doi: 10.1186/1741-7007-7-84.
  • Pauwels M, Vekemans X, Godé C, Frérot H, Castric V, Saumitou-Laprade P. 2012. Nuclear and chloroplast DNA phylogeography reveals vicariance among European populations of the model species for the study of metal tolerance, Arabidopsis halleri (Brassicaceae). New Phytol. 193(4):916–928. doi: 10.1111/j.1469-8137.2011.04003.x.
  • Powell W, Morgante M, Mcdevitt R, Vendramin GG, Rafalski JA. 1995. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci U S A. 92(17):7759–7763. doi: 10.1073/pnas.92.17.7759.
  • Qu XJ, Moore MJ, Li DZ, Yi TS. 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods. 15(1):50. doi: 10.1186/s13007-019-0435-7.
  • Raubeson LA, Jansen RK. 2005. 4 Chloroplast genomes of plants. In: Henry R.J, editor. Plant diversity and evolution: genotypic and phenotypic variation in higher plants, Wallingford, British: CAB International, p. 45–68.
  • Sudhir K, Glen S, Michael S, Blair HS. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34:1812–1819. doi: 10.1093/molbev/msx116.
  • Sun H. 2002. Tethys retreat and Himalayans-Hengduanshan Mountains uplift and their significance on the origin and development of the Sino-Himalayan elements and alpine flora. Acta Botanica Yunnanica. 24:273–288.
  • Sun YZ. 1955. Notes on the Chinese species of Paraphlomis. Acta Phytotaxonomica Sinica. 4:47–53.
  • Thiel T, Michalek W, Varshney R, Graner A. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet. 106(3):411–422. doi: 10.1007/s00122-002-1031-0.
  • Thomas F, Massenet O, Dorne AM, Briat JF, Mache R. 1988. Expression of the rpl23, rpl2 and rps19 genes in spinach chloroplasts. Nucleic Acids Res. 16(6):2461–2472. doi: 10.1093/nar/16.6.2461.
  • Vieira MLC, Santini L, Diniz AL, Munhoz CF. 2016. Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol. 39(3):312–328. doi: 10.1590/1678-4685-GMB-2016-0027.
  • Vijverberg K, Bachmann K. 1999. Molecular evolution of a tandemly repeated trnF (GAA) gene in the chloroplast genomes of Microseris (Asteraceae) and the use of structural mutations in phylogenetic analyses. Mol Biol Evol. 16(10):1329–1340. doi: 10.1093/oxfordjournals.molbev.a026043.
  • Wang J, Luo J, Ma YZ, Mao XX, Liu JQ. 2019. Nuclear simple sequence repeat markers are superior to DNA barcodes for identification of closely related Rhododendron species on the same mountain. J Sytematics Evolution. 57(3):278–286. doi: 10.1111/jse.12460.
  • Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. 2011. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol. 76(3-5):273–297. doi: 10.1007/s11103-011-9762-4.
  • Wu CY, Li HW. 1982. On the evolution and distribution in Labiatae. Acta Botanica Yunnanica. 4:97–118.
  • Wu CY. 1985. Flora Xizangica. Beijing, China: science Press.
  • Wu F-H, Chan M-T, Liao D-C, Hsu C-T, Lee Y-W, Daniell H, Duvall MR, Lin C-S. 2010. Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol. 10(1):68. doi: 10.1186/1471-2229-10-68.
  • Xiong A-S, Peng R-H, Zhuang J, Gao F, Zhu B, Fu X-Y, Xue Y, Jin X-F, Tian Y-S, Zhao W, et al. 2009. Gene duplication, transfer, and evolution in the chloroplast genome. Biotechnol Adv. 27(4):340–347.,. doi: 10.1016/j.biotechadv.2009.01.012.
  • Yang JB, Tang M, Li HT, Zhang ZR, Li DZ. 2013. Complete chloroplast genome of the genus Cymbidium: lights into the species identification, phylogenetic implications and population genetic analyses. BMC Evol Biol. 13(1):84. doi: 10.1186/1471-2148-13-84.
  • Yang Y, Zhou T, Duan D, Yang J, Feng L, Zhao G. 2016. Comparative Analysis of the Complete Chloroplast Genomes of Five Quercus Species. Front Plant Sci. 7:959. doi: 10.3389/fpls.2016.00959.
  • Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24(8):1586–1591. doi: 10.1093/molbev/msm088.
  • Zhang, Quan, Liu, Yang, Sodmergen, (2003). Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol, 9. 44, 941–951. doi: 10.1111/j.1574-695X.2008.00405.x.
  • Zuo LH, Shang AQ, Zhang S, Yu XY, Ren YC, Yang MS, Wang JM. 2017. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: genome comparative and taxonomic position analysis. PLoS One. 12(2):e0171264. doi: 10.1371/journal.pone.0171264.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.