620
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Biogenic synthesis: a sustainable approach for nanoparticles synthesis mediated by fungi

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 460-473 | Received 11 Nov 2020, Accepted 25 Nov 2021, Published online: 19 Jan 2022

References

  • Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S. M.; Ali, S. Green Nanotechnology: A Review on Green Synthesis of Silver Nanoparticles – An Ecofriendly Approach. Int. J. Nanomed. 2019, 14, 5087–5107. DOI: 10.2147/IJN.S200254.
  • Guilger-Casagrande, M.; Lima, R. Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Front. Bioeng. Biotechnol. 2019, 7, 287. DOI: 10.3389/fbioe.2019.00287.
  • Pandey, S.; Giri, K.; Kumar, R.; Mishra, G.; Raja Rishi, R. Nanopesticides: Opportunities in Crop Protection and Associated Environmental Risks. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2018, 88, 1287–1308. DOI: 10.1007/s40011-016-0791-2.
  • Savary, S.; Willocquet, L.; Pethybridge, S. J.; Esker, P.; McRoberts, N.; Nelson, A. The Global Burden of Pathogens and Pests on Major Food Crops. Nat. Ecol. Evol. 2019, 3, 430–439. DOI: 10.1038/s41559-018-0793-y.
  • The Economic Survey of India 2017–18 Volume-1 Chapter 9 Reforming the Fertiliser Sector. https://www.indiabudget.gov.in/budget2016-2017/vol1_survey.asp.
  • McGillicuddy, E.; Murray, I.; Kavanagh, S.; Morrison, L.; Fogarty, A.; Cormican, M.; Dockery, P.; Prendergast, M.; Rowan, N.; Morris, D. Silver Nanoparticles in the Environment: Sources, Detection and Ecotoxicology. Sci. Total Environ. 2017, 575, 231–246. DOI: 10.1016/j.scitotenv.2016.10.041.
  • Savolainen, K.; Pylkkänen, L.; Norppa, H.; Falck, G.; Lindberg, H.; Tuomi, T.; Vippola, M.; Alenius, H.; Hämeri, K.; Koivisto, J.; et al. Nanotechnologies, Engineered Nanomaterials and Occupational Health and Safety – A Review. Saf. Sci. 2010, 48, 957–963. DOI: 10.1016/j.ssci.2010.03.006.
  • Ragaei, M.; Sabry, A. H. Nanotechnology for Insect Pest Control. Int. J. Sci. Environ. Technol. 2014, 3, 528–545.
  • Avalos, A.; Haza, A. I.; Mateo, D.; Morales, P. Effects of Silver and Gold Nanoparticles of Different Sizes in Human Pulmonary Fibroblasts. Toxicol. Mech. Methods 2015, 25, 287–295. DOI: 10.3109/15376516.2015.1025347.
  • Sahu, S. C.; Zheng, J.; Graham, L.; Chen, L.; Ihrie, J.; Yourick, J. J.; Sprando, R. L. Comparative Cytotoxicity of Nanosilver Inhuman Liver HepG2 and Colon Caco2 Cells in Culture. J. Appl. Toxicol. 2014, 34, 1155–1166.
  • IARC.IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Carbon Black, Titanium Dioxide, and Talc,int agency research cancer, 2010, Volume 93, 43–191
  • Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of Nanoparticles and an Overview Ofcurrent Experimental Models. Iran. Biomed. J. 2016, 20, 1–11.
  • Kaegi, R.; Voegelin, A.; Ort, C.; Sinnet, B.; Thalmann, B.; Krismer, J.; Hagendorfer, H.; Elumelu, M.; Mueller, E. Fate and Transformation of Silver Nanoparticles in Urban Wastewater Systems. Water Res. 2013, 47, 3866–3877. DOI: 10.1016/j.watres.2012.11.060.
  • Amenta, V.; Aschberger, K.; Arena, M.; Bouwmeester, H.; Botelho Moniz, F.; Brandhoff, P.; Gottardo, S.; Marvin, H. J. P.; Mech, A.; Quiros Pesudo, L.; et al. Regulatory Aspects of Nanotechnology in the Agri/Feed/Food Sector in EU and non-EU Countries. Regul. Toxicol. Pharmacol. 2015, 73, 463–476. DOI: 10.1016/j.yrtph.2015.06.016.
  • Cunningham, S.; Joshi, L. Assessment of exposure of marine and freshwater model organisms to metallic nanoparticles. EPA Res. Rep. 2015, 150.
  • Tiede, K.; Hassellöv, M.; Breitbarth, E.; Chaudhry, Q.; Boxall, A. B. A. Considerations for Environmental Fate and Ecotoxicity Testing to Support Environmental Risk Assessments for Engineered Nanoparticles. J. Chromatogr. A. 2009b, 1216, 503–509. DOI: 10.1016/j.chroma.2008.09.008.
  • Carpenter, S. R.; Caraco, N. F.; Correll, D. L.; Howarth, R. W.; Sharpley, A. N.; Smith, V. H. Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecol. Appl. 1998, 8, 559–568. DOI: 10.1890/1051-0761(1998)008[0559:NPOSWW.2.0.CO;2]
  • Krishna, A. K.; Satyanarayanan, M.; Govil, P. K. Assessment of Heavy Metal Pollution in Water Using Multivariate Statistical Techniques in an Industrial Area: A Case Study from Patancheru, Medak District, Andhra Pradesh, India. J. Hazard. Mater. 2009, 167, 366–373. DOI: 10.1016/j.jhazmat.2008.12.131.
  • Xing, G.; Cao, Y.; Shi, S.; Sun, G.; Du, L.; Zhu, J. N Pollution Sources and Denitrification in Waterbodies in Taihu Lake Region. Sci. China Ser. B-Chem. 2001, 44, 304–314. DOI: 10.1007/BF02879621.
  • Araújoa, R.; Castrob, A. C. M.; Fiúza, A. The Use of Nanoparticles in Soil and Water Remediation Processes. Mater. Today: Proceed. 2015, 2, 315–320
  • Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M. S.; Metreveli, G.; Schaumann, G. E.; Schulz, R.; Wagner, S. Nanoparticles in the Environment: Where Do we Come From, Where Do we Go to? Environ. Sci. Eur. 2018, 30, 6–17. DOI: 10.1186/s12302-018-0132-6.
  • Pokhrel, L. R.; Dubey, B. Potential Impact of Low-Concentration Silver Nanoparticles on Predator-Prey Interactions Between Predatory Dragonfly Nymphs and Daphnia magna as a Prey. Environ. Sci. Technol. 2012, 46, 7755–7762. DOI: 10.1021/es204055c.
  • McKee, M. S.; Filser, J. Impacts of Metal-Based Engineered Nanomaterials on Soil Communities. Environ. Sci: Nano 2016, 3, 506–533. DOI: 10.1039/C6EN00007J.
  • Guang, X. Y.; Wang, J. J.; He, Z. G.; Chen, G. X.; Ding, L.; Dai, J. J.; Yang, X. H. Molluscicidal Effects of Nano-Silver Biological Molluscicide and Niclosamide. ZhongguoXue Xi Chong Bing Fang ZhiZaZhi 2013, 25, 503–505.
  • Chhipa, H. Nanofertilizers and Nanopesticides for Agriculture. Environ. Chem. Lett. 2017, 15, 15–22. DOI: 10.1007/s10311-016-0600-4.
  • Unrine, J. M.; Tsyusko, O. V.; Hunyadi, S. E.; Judy, J. D.; Bertsch, P. M. Effects of Particle Size on Chemical Speciation and Bioavailability of Copper to Earthworms (Eiseniafetida) Exposed to Copper Nanoparticles. J. Environ. Qual. 2010, 39, 1942–1953. DOI: 10.2134/jeq2009.0387.
  • Rafique, M.; Sadaf, I.; Rafique, M. S.; Tahir, M. B. A Review on Green Synthesis of Silver Nanoparticles and Their Applications. Artif. Cells. Nanomed. Biotechnol. 2017, 45, 1272–1291. DOI: 10.1080/21691401.2016.1241792.
  • Iravani, S.; Korbekandi, H.; Mirmohammadi, S. V.; Zolfaghari, B. Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods. Res. Pharm. Sci. 2014, 9, 385–406.
  • Owaid, M. N.; Ibraheem, I. J. Mycosynthesis of Nanoparticles Using Edible and Medicinal Mushrooms. Eur. J. Nanomed. 2017,9, 5-23. DOI: https://doi.org/10.1515/ejnm2016-0016
  • Ballotin, D.; Fulaz, S.; Souza, M. L.; Corio, P.; Rodrigues, A. G.; Souza, A. O. Elucidating Protein Involvement in the Stabilization of the Biogenic Silver Nanoparticles. Nanoscale Res. Lett. 2016, 11, 313.
  • Zielonka, A.; Klimek-Ochab, M. Fungal Synthesis of Sizedefined Nanoparticles. Adv. Nat. Sci: Nanosci. Nanotechnol. 2017, 8, 043001. DOI: 10.1088/2043-6254/aa84d4.
  • Mandal, D.; Bolander, M. E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P. The Use of Microorganisms for the Formation of Metal Nanoparticles and Their Application. Appl. Microbiol. Biotechnol. 2006, 69, 485–492. DOI: 10.1007/s00253-005-0179-3.
  • Gudikandula, K.; Vadapally, P.; Charya, M. A. Biogenic Synthesis of Silver Nanoparticles from White Rot Fungi: Their Characterization and Antibacterial Studies. Open Nano 2017, 2, 64–78. DOI: 10.1016/j.onano.2017.07.002.
  • Hietzschold, S.; Walter, A.; Davis, C.; Taylor, A. A.; Sepunaru, L. Does Nitrate Reductase Play a Role in Silver Nanoparticle Synthesis? Evidence for NADPH as the Sole Reducing Agent. ACS Sustainable Chem. Eng. 2019, 7, 8070–8076. DOI: 10.1021/acssuschemeng.9b00506.
  • Gajbhiye, M.; Kesharwani, J.; Ingle, A.; Gade, A.; Rai, M. Fungus-Mediated Synthesis of Silver Nanoparticles and Their Activity Against Pathogenic Fungi in Combination With Fluconazole. Nanomedicine 2009, 5, 382–386. DOI: 10.1016/j.nano.2009.06.005.
  • Yadav, A.; Kon, K.; Kratosova, G.; Duran, N.; Ingle, A. P.; Rai, M. Fungi as an Efficient Mycosystem for the Synthesis of Metal Nanoparticles: Progress and Key Aspects of Research. Biotechnol. Lett. 2015, 37, 2099–2120. DOI: 10.1007/s10529-015-1901-6.
  • Bhainsa, K. C.; D'Souza, S. F. Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Aspergillus fumigatus. Colloids Surf. B Biointerfaces 2006, 47, 160–164. DOI: 10.1016/j.colsurfb.2005.11.026.
  • Ghazwani, A. A. Biosynthesis of Silver Nanoparticles by Aspergillusniger, Fusariumoxysporum and Alternariasolani. Afr. J. Biotechnol. 2015, 14, 2170–2174.
  • Vahabi, K.; Mansoori, G. A.; Karimi, S. Biosynthesis of Silver Nanoparticles by Fungus Trichodermareesei. Insci. J. 2011, 1, 65–79.
  • Kathiresan, K.; Manivannan, S.; Nabeel, M. A.; Dhivya, B. Studies on Silver Nanoparticles Synthesized by a Marine Fungus, Penicillium fellutanum Isolated from Coastal Mangrove Sediment. Colloids Surf. B Biointerfaces 2009, 71, 133–137. DOI: 10.1016/j.colsurfb.2009.01.016.
  • Gericke, M.; Pinches, A. Microbial Production of Gold Nanoparticles. Gold Bull. 2006, 39, 22–28. DOI: 10.1007/BF03215529.
  • Ottoni, C. A.; Simões, M. F.; Fernandes, S.; Dos Santos, J. G.; da Silva, E. S.; de Souza, R. F. B.; Maiorano, A. E. Screening of Filamentous Fungi for Antimicrobial Silver Nanoparticles Synthesis. AMB Exp. 2017, 7, 31. DOI: 10.1186/s13568-017-0332-2.
  • Sneha, K.; Sathishkumar, M.; Mao, J.; Kwak, I. S.; Yun, Y. S. Corynebacterium Glutamicum-Mediated Crystallization of Silver Ions through Sorption and Reduction Processes. Chem. Eng. J. 2010, 162, 989–996. DOI: 10.1016/j.cej.2010.07.006.
  • Riddin, T. L.; Gericke, M.; Whiteley, C. G. Analysis of the Inter- and Extracellular Formation of Platinum Nanoparticles by Fusarium oxysporum f. sp. lycopersici using Response Surface Methodology. Nanotechnology 2006, 17, 3482–3489. DOI: 10.1088/0957-4484/17/14/021.
  • Chen, J. C.; Lin, Z. H.; Ma, X. X. Evidence of the Production of Silver Nanoparticles via Pretreatment of Phoma sp. 3.2883 with Silver Nitrate. Lett. Appl. Microbiol. 2003, 37, 105–108.
  • Atkins, F. C. 1972 Mushroom Growing Today. Faber and Faber, London.
  • Cheung, P. C. K. The Nutritional and Health Benefits of Mushrooms. Nutr. Bull. 2010, 35, 292–299. DOI: 10.1111/j.1467-3010.2010.01859.x.
  • Banerjee, K.; Rai, V. R. A Review on Mycosynthesis, Mechanism, and Characterization of Silver and Gold Nanoparticles. BioNanoScience 2017, 8, 17–31.
  • Bhat, R.; ;Sharanabasava, V. G.; Deshpande, R.; Shetti, U.; Sanjeev, G.; Venkataraman, A. Photo-Bio-Synthesis of Irregular Shaped Functionalized Gold Nanoparticles Using Edible Mushroom Pleurotus florida and its Anticancer Evaluation. J. Photochem. Photobiol. B 2013, 125, 63–69. DOI: 10.1016/j.jphotobiol.2013.05.002.
  • Vetchinkina, E. P.; Loshchinina, E. A.; Vodolazov, I. R.; Kursky, V. F.; Dykman, L. A.; Nikitina, V. E. Biosynthesis of Nanoparticles of Metals and Metalloids by Basidiomycetes. Preparation of Gold Nanoparticles by Using Purified Fungal Phenol Oxidases. Appl. Microbiol. Biotechnol. 2017, 101, 1047–1062. DOI: 10.1007/s00253-016-7893-x.
  • Vigneshwaran, N.; Kathe, A. A.; Varadarajan, P. V.; Nachane, R. P.; Balasubramanya, R. H. Silver-Protein (Core-Shell) Nanoparticle Production using Spent Mushroom Substrate . Langmuir 2007, 23, 7113–7117. DOI: 10.1021/la063627p.
  • Narasimha, G.; Praveen, B.; Mallikarjuna, K.; Deva Prasad Raju, B. Mushrooms (Agaricusbisporus) Mediated Biosynthesis of Sliver Nanoparticles, Characterization and Their Antimicrobial activity. Int. J. Nano Dimens. 2011, 2, 29–36.
  • Gurunathan, S.; Raman, J.; Malek, S. N. A.; John, P. A.; Vikineswary, S. Green Synthesis of Silver Nanoparticles Using Ganoderma Neo-Japonicum Imazeki: A Potential Cytotoxic Agent against Breast Cancer Cells. Int. J. Nanomed. 2013, 8, 4399–4413. DOI: 10.2147/IJN.S51881.
  • Gurunathan, S.; Han, J.; Park, J. H.; Kim, J. H. A Green Chemistry Approach for Synthesizing Biocompatible Gold Nanoparticles. Nanoscale Res. Lett. 2014, 9, 248. DOI: 10.1186/1556-276X-9-248.
  • Musa, S. F.; Yeat, T. S.; Kamal, L. Z. M.; Tabana, Y. M.; Ahmed, M. A.; El Ouweini, A.; Lim, V.; Keong, L. C.; Sandai, D. Pleurotus Sajor-Caju can be used to Synthesize Silver Nanoparticles with Antifungal Activity against Candida albicans. J. Sci. Food Agric. 2018, 98, 1197–1207. DOI: 10.1002/jsfa.8573.
  • Ray, S.; Sarkar, S.; Kundu, S. Extracellular Biosynthesis of Silver Nanoparticles Using the Mycorrhizal Mushroom Tricholomacrassum (Berk.) Sacc: Its Antimicrobial Activity against Pathogenic Bacteria and Fungus, Including Multidrug Resistant Plant and Human Bacteria. Dig. J. Nanomater. Biostruct. 2011, 6, 1289–1299.
  • Anthon, K. J. P.; Murugan, M.; Jeyaraj, M.; Rathinam, N. K.; Sangiliyandi, G. Synthesis of Silver Nanoparticles Using Pine Mushroom Extract: A Potential Antimicrobial Agent against E. coli and B. subtilis. J. Ind. Eng. Chem. 2014, 20, 2325–2331.
  • Singh, Y.; Kaushal, S.; Sodhi, R. S. Biogenic Synthesis of Silver Nanoparticles Using Cyanobacterium Leptolyngbya sp. WUC 59 Cell-Free Extract and Their Effects on Bacterial Growth and Seed Germination. Nanoscale Adv. 2020, 2, 3972–3982. DOI: 10.1039/D0NA00357C.
  • Khan, A. K.; Rashid, R.; Murtaza, G.; Zahra, A. Gold Nanoparticles: Synthesis and Applications In Drug Delivery. Trop. J. Pharm. Res. 2014, 13, 1169–1177. DOI: 10.4314/tjpr.v13i7.23.
  • .Daraee, H.; Eatemadi, A.; Abbasi, E.; Fekri Aval, S.; Kouhi, M.; & Akbarzadeh, A. Application of gold nanoparticles in biomedical and drug delivery. Artificial cells, nanomedicine, and biotechnology. 2016,44(1), 410–422.
  • Sarkar, J.; Roy, S. K.; Laskar, A.; Chattopadhyay, D.; Acharya, K. Bioreduction of Chloroaurate Ions to Gold Nanoparticles by Culture Filtrate of Pleurotus sapidus Quel. Mater. Lett. 2013, 92, 313–316. DOI: 10.1016/j.matlet.2012.10.130.
  • Philip, D. Biosynthesis of Au, Ag and Au-Ag Nanoparticles Using Edible Mushroom Extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 73, 374–381. DOI: 10.1016/j.saa.2009.02.037.
  • Menon, S.; S, R.; S, V. K. A Review on Biogenic Synthesis of Gold Nanoparticles, Characterization, and Its Applications. Resour.-Effic. Technol. 2017, 3, 516–527. ). DOI: 10.1016/j.reffit.2017.08.002.
  • Zhang, Y.; Leu, Y. R.; Aitken, R. J.; Riediker, M. Inventory of Engineered Nanoparticle-Containing Consumer Products Available in the Singapore Retail Market and Likelihood of Release into the Aquatic Environment. Int. J. Environ. Res. Public Health 2015, 12, 8717–8743. DOI: 10.3390/ijerph120808717.
  • Vetchinkina, E. P.; Burov, A. M.; Ageeva, M. V.; Dykman, L. A.; Nikitina, V. E. Biological Synthesis of Gold Nanoparticles by the Xylotrophic Basidiomycete Lentinula edodes. Appl. Biochem. Microbiol. 2013, 49, 406–411. DOI: 10.1134/S0003683813040121.
  • Borovaya, M.; Pirko, Y.; Krupodorova, T.; Naumenko, A.; Blume, Y.; Yemets, A. Biosynthesis of Cadmium Sulphide Quantum Dots by Using Pleurotusostreatus (Jacq.) P. Kumm. Biotechnol. Biotechnol. Equip. 2015, 29, 1156–1163. DOI: 10.1080/13102818.2015.1064264.
  • Raziya, S.; Durga, B.; Rajamahanthe, S. G.; Govindh, B.; Annapurna, N. Synthesis and Characterization of CdS Nanoparticles Using Reishi Mushroom. Int. J. Adv. Technol. Eng. Sci. 2006, 4, 220–227.
  • Mazumdar, H.; Haloi, N. A Study on Biosynthesis of Iron Nanoparticles by Pleurotussp. J. Microbiol. Biotechnol. Res. 2017, 1, 39–49.
  • Saif, S.; Tahir, A.; Chen, Y. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. Nanomaterials 2016, 6, 209. ` DOI: 10.3390/nano6110209.
  • Kaul, R. K.; Kumar, P.; Burman, U.; Joshi, P.; Agrawal, A.; Raliya, R.; Tarafdar, J. C. Magnesium and Iron Nanoparticles Production Using Microorganisms and Various Salts. Mater. Sci.-Pol. 2012, 30, 254–258. DOI: 10.2478/s13536-012-0028-x.
  • Mohamed, Y. M.; Azzam, A. M.; Amin, B. H.; Safwat, N. A. Mycosynthesis of Iron Nanoparticles by Alternaria alternata and Its Antibacterial Activity. Afr. J. Biotechnol. 2015, 14, 1234–1241. DOI: 10.5897/AJB2014.14286.
  • Einbu, A.; Vårum, K. M. Characterization of Chitin and Its Hydrolysis to Glcnac and Glcn. Biomacromolecules 2008, 9, 1870–1875. DOI: 10.1021/bm8001123.
  • Wang, X.; Xing, B. Importance of Structural Makeup of Biopolymers for Organic Contaminant Sorption. Environ. Sci. Technol. 2007, 41, 3559–3565. DOI: 10.1021/es062589t.
  • Badawy, M. E. I.; Rabea, E. I. A Biopolymer Chitosan and Its Derivatives as Promising Antimicrobial Agents against Plant Pathogens and Their Applications in Crop Protection. Int. J. Carbohydr. Chem. 2011, 2011, 1–29. DOI: 10.1155/2011/460381.
  • Venkatesham, M.; Ayodhya, D.; Madhusudhan, A.; Babu, N. V.; Veerabhadram, G. A Novel Green One-Step Synthesis of Silver Nanoparticles Using Chitosan: Catalytic Activity and Antimicrobial Studies. Appl. Nanosci. 2014, 4, 113–119. DOI: 10.1007/s13204-012-0180-y.
  • Singh, A.; Dhiman, N.; Kar, A. K.; Singh, D.; Purohit, M. P.; Ghosh, D.; Patnaik, S. Advances in Controlled Release Pesticide Formulations: Prospects to Safer Integrated Pest Management and Sustainable Agriculture. J. Hazard. Mater. 2020, 385, 121525. DOI: 10.1016/j.jhazmat.2019.121525.
  • Sharma, S.; Loach, N.; Gupta, S.; Mohan, L. Phyto-Nanoemulsion: An Emerging Nano-Insecticidal Formulation. Environ. Nanotechnol. Monit. Manage. 2020, 14, 100331. DOI: 10.1016/j.enmm.2020.100331.
  • Cheba, B. A. Chitin and Chitosan: Marine Biopoly-Mers with Unique Properties and Versatile Applications. Glob. J. Biotechnol. Biochem. 2011, 6, 149–153.
  • Kang, M. A.; Seo, M. J.; Hwang, I. C.; Jang, C.; Park, H. J.; Yu, Y. M.; Youn, Y. N. Insecticidal Activity and Feeding Behavior of the Green Peach Aphid, Myzus persicae, after Treatment with Nano Types of Pyrifluquinazon. J. Asia-Pac. Entomol. 2012, 15, 533–541. DOI: 10.1016/j.aspen.2012.05.015.
  • Calvo, P.; Remuñan-Lopez, C.; Vila-Jato, J. L.; Alonso, M. J. Novel Hydrophilic Chitosan Polyethylene Oxide Nanoparticles as Protein Carriers. J. Appl. Polym. Sci. 1997, 63, 125–132. DOI: 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4.
  • Kunjachan, S.; Jose, S.; Lammers, T. Understanding the Mechanism of Ionic Gelation for Synthesis of Chitosan Nanoparticles Using Qualitative Techniques. Asian J. Pharm. 2010, 4, 148. DOI: 10.4103/0973-8398.68467.
  • Manikandan, A.; Sathiyabama, M. Preparation of Chitosan Nanoparticles and Its Effect on Detached Rice Leaves Infected with Pyricularia Grisea. Int. J. Biol. Macromol. 2015, 84,58-61
  • Jeelani, P. G.; Mulay, P.; Venkat, R.; Ramalingam, C. Multifaceted Application of Silica Nanoparticles. A Review. Silicon 2020, 12, 1337–1354. DOI: 10.1007/s12633-019-00229-y.
  • Bansal, V.; Rautaray, D.; Bharde, A.; Ahire, K.; Sanyal, A.; Ahmad, A.; Sastry, M. Fungus-Mediated Biosynthesis of Silica and Titania Particles. J. Mater. Chem. 2005, 15, 2583–2589. DOI: 10.1039/b503008k.
  • Mohd, N. K.; Wee, N. N. A. N.; Azmi, A. 2017 Green Synthesis of Silica Nanoparticles Using Sugarcane Bagasse. In AIP Conference Proceedings, Vol. 1885, No. 1; p 020123. AIP Publishing.
  • Sankar, S.; Sharma, S. K.; Kaur, N.; Lee, B.; Kim, D. Y.; Lee, S.; Jung, H. Biogenerated Silica Nanoparticles Synthesized from Sticky, Red, and Brown Rice Husk Ashes by a Chemical Method. Ceram. Int. 2016, 42, 4875–4885. DOI: 10.1016/j.ceramint.2015.11.172.
  • Suriyaprabha, R.; Karunakaran, G.; Kavitha, K.; Yuvakkumar, R.; Rajendran, V.; Kannan, N. Application of Silica Nanoparticles in Maize to Enhance Fungal Resistance. IET Nanobiotechnol. 2014, 8, 133–137. DOI: 10.1049/iet-nbt.2013.0004.
  • Prasad, R.; Kumar, V.; Prasad, K. S. Nanotechnology in Sustainable Agriculture: Present Concerns and Future Aspects. Afr. J. Biotechnol. 2014, 13, 705–713. DOI: 10.5897/AJBX2013.13554.
  • Alloway, B. J. Micronutrients and Crop Production: An Introduction. In Micronutrient Deficiencies in Global Crop Production, Alloway, B.J., Ed.; Springer: Dordrecht, 2008; pp 1–39.
  • Graham, R. D. Micronutrient Deficiencies in Crops and Their Global Significance. In Micronutrient Deficiencies in Global Crop Production; Alloway, B.J., Ed.; Springer: Dordrecht, 2008; pp 41–61.
  • Peteu, S. F.; Oancea, F.; Sicuia, O. A.; Constantinescu, F.; Dinu, S. Responsive Polymers for Crop Protection. Polymer 2010, 2, 229–251. DOI: 10.3390/polym2030229.
  • Tao, S.; Pang, R.; Chen, C.; Ren, X.; Hu, S. Synthesis, Characterization and Slow Release Properties of O-Naphthylacetyl Chitosan. Carbohydr. Polym. 2012, 88, 1189–1194. DOI: 10.1016/j.carbpol.2012.01.076.
  • Kim, D. Y.; Kadam, A.; Shinde, S.; Saratale, R. G.; Patra, J.; Ghodake, G. Recent Developments in Nanotechnology Transforming the Agricultural Sector: A Transition Replete with Opportunities. J. Sci. Food Agric. 2018, 98, 849–864. DOI: 10.1002/jsfa.8749.
  • Manikandan, K. S. & Subramanian, “Fabrication and characterisation of nanoporous zeolite based N fertilizer”, Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University Coimbatore, Department of Nano Science and Technology, Tamil Nadu Agricultural University Coimbatore.
  • Prasad, R.;Bhattacharyya, A.; & Nguyen, Q. D. Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers in microbiology, 2017,8, 1014.
  • Yuvaraj, M.; Subramanian, K. S. Development of Slow Release Zn Fertilizer Using Nano-Zeolite as Carrier. J. Plant Nutr. 2018, 41, 311–320. DOI: 10.1080/01904167.2017.1381729.
  • Sangeetha, C.; Baskar, P. Zeolite and Its Potential Uses in Agriculture: A Critical Review. AR. 2016, 37,101–108. DOI: 10.18805/ar.v0iof.9627.
  • Eberl, D. D.; Lai, T. M. 1992. Slow-release nitrogen fertilizer and soil conditioner. U.S. Patent Appl. US 789,20,15 Apr 1992, 29 pp.
  • Derosa, M. C.; Monreal, C.; Schnitzer, M.; Walsh, R. P.; Sultan, Y. Nanotechnology in Fertilizers. Nat. Nanotechnol. 2010, 5, 91. DOI: 10.1038/nnano.2010.2.
  • Pereira, E. I.; Minussi, F. B.; da Cruz, C. C. T.; Bernardi, A. C. C.; Ribeiro, C. Urea-Montmorillonite-Extruded Nanocomposites: A Novel Slow-Release Material. J. Agric. Food Chem. 2012, 60, 5267–5527. DOI: 10.1021/jf3001229.
  • Kottegoda, N.; Munaweera, I.; Madusanka, N.; Karunaratne, V. A Green Slow-Release Fertilizer Composition Based on Urea-Modified Hydroxyapatite Nanoparticles Encapsulated Wood. Curr. Sci. 2011, 101, 73–78.
  • Liu, R.; Lal, R. Synthetic Apatite Nanoparticles as a Phosphorus Fertilizer for Soybean (Glycine max). Sci. Rep. 2014, 4, 1-6
  • Ekinci, M.; Dursun, A.; Yildirim, E.; Parlakova, F. Effects of Nanotechnology Liquid Fertilizers on the Plant Growth and Yield of Cucumber (Cucumissativus L.). Acta Sci. Pol. Hortic 2014, 13, 135–141.
  • Bakhtiari, M.; Moaveni, P.; Sani, B. The Effect of Iron Nanoparticles Spraying Time and Concentration on Wheat. Biol. Forum Int. J. 2015, 7, 679–683.
  • 14Srivastava, R.: Awasthi, K.: & Tripathi, D. Nanotechnology towards sustainable agriculture. Nanotechnology, 2018, 6(6), 155–158.
  • Tarafdar, J. C.; Raliya, R.; Mahawar, H.; Rathore, I. Development of Zinc Nanofertilizer to Enhance Crop Production in Pearl Millet (Pennisetumamericanum). Agric. Res. 2014, 3, 257–262. DOI: 10.1007/s40003-014-0113-y.
  • Singhal, U.; Khanuja, M.; Prasad, R.; &Varma, A. Impact of Synergistic Association of ZnO-Nanorods and Symbiotic Fungus Piriformosporaindica DSM 11827 on Brassica Oleracea Var. botrytis (Broccoli). Front. Microbiol. 2017, 8, 1909. DOI: 10.3389/fmicb.2017.01909.
  • Naserzadeh, Y.; Nafchi, A. M.; Mahmoudi, N.; Nejad, D. K.; Gadzhikurbanov, A. S. Effect of Combined Use of Fertilizer and Plant Growth Stimulating Bacteria Rhizobium, Azospirillum, Azotobacter and Pseudomonas on the Quality and Components of Corn Forage in Iran. Vestn. Ross. univ. Družby. Nar, Ser. Agron. Životnovod. 2019, 14, 209–224. DOI: 10.22363/2312-797X-2019-14-3-209-224.
  • Elgorban, A. M.; Aref, S. M.; Seham, S. M.; Elhindi, K. M.; Bahkali, A. H.; Sayed, S. R.; Manal, M. A. Extracellular Synthesis of Silver Nanoparticles Using Aspergillusversicolor and Evaluation of Their Activity on Plant Pathogenic Fungi. Mycosphere 2016, 7, 844–852. DOI: 10.5943/mycosphere/7/6/15.
  • Lamsal, K.; Kim, S. W.; Jung, J. H.; Kim, Y. S.; Kim, S. K.; Lee, Y. S. Inhibition Effects of Silver Nanoparticles against Powdery Mildews on Cucumber and Pumpkin. Mycobiology 2011, 39, 26–32. DOI: 10.4489/MYCO.2011.39.1.026.
  • Qian, Y.; Yu, H.; He, D.; Yang, H.; Wang, W.; Wan, X.; Wang, L. Biosynthesis of Silver Nanoparticles by the Endophytic Fungus Epicoccumnigrum and Their Activity against Pathogenic Fungi. Bioprocess Biosyst. Eng. 2013, 36, 1613–1619. DOI: 10.1007/s00449-013-0937-z.
  • Nuruzzaman, M.; Rahman, M. M.; Liu, Y.; Naidu, R. Nanoencapsulation, Nano-Guard for Pesticides: A New Window for Safe Application. J. Agric. Food Chem. 2016, 64, 1447–1483. DOI: 10.1021/acs.jafc.5b05214.
  • Bhattacharyya, A.; Duraisamy, P.; Govindarajan, M.; Buhroo, A. A.; Prasad, R.. Nano-Biofungicides: Emerging Trend in Insect Pest Control. In Advances and Applications through Fungal Nanobiotechnology; Springer, Cham, 2016; pp 307–319.
  • Mouhamed, A. E.; Hassan, A. A.; Manal, A. H.; El Hariri, M.; Refai, M. Effect of Metal Nanoparticles on the Growth of Ochratoxigenic Moulds and Ochratoxin a Production Isolated from Food and Feed. Int. J. Res. Stud. Biosci. 2015, 3, 1–14.
  • Yehia, R. S.; Ahmed, O. F. In Vitro Study of the Antifungal Efficacy of Zinc Oxide Nanoparticles against Fusarium oxysporum and Penicillium Expansum. Afr. J. Microbiol. Res. 2013, 7, 1917–1923.
  • Das, S. K.; Das, A. R.; Guha, A. K. Gold Nanoparticles: Microbial Synthesis and Application in water hygiene management. Langmuir 2009, 25, 8192–8199. DOI: 10.1021/la900585p.
  • Chen, Z.; Meng, H.; Xing, G.; Chen, C.; Zhao, Y.; Jia, G.; Wang, T.; Yuan, H.; Ye, C.; Zhao, F.; et al. Acute Toxicological Effects of Copper Nanoparticles in Vivo. Toxicol. Lett. 2006, 163, 109–120. DOI: 10.1016/j.toxlet.2005.10.003.
  • Shah, V.; Dobiášová, P.; Baldrian, P.; Nerud, F.; Kumar, A.; Seal, S. Influence of Iron and Copper Nanoparticle Powder on the Production of Lignocellulose Degrading Enzymes in the Fungus Trametes Versicolor. J. Hazard. Mater. 2010, 178, 1141–1145. DOI: 10.1016/j.jhazmat.2010.01.141.
  • Barik, T. K.; Sahu, B.; Swain, V. Nanosilica-from Medicine to Pest Control. Parasitol. Res. 2008, 103, 253–258. DOI: 10.1007/s00436-008-0975-7.
  • World Health Organization. FAO/WHO Expert Meeting on the Application of Nanotechnologies in the Food and Agriculture Sectors: Potential Food Safety Implications: Meeting Report; World Health Organization, Rome, 2010.
  • Hui-Peng, Y.; Xiao-Feng, W.; Gokulamma, K. Antiviral Activity in the Mulberry Silkworm. Bombyxmori L. J. Zhejiang Univ. – Sci. A. 2006, 7, 350–356. DOI: 10.1631/jzus.2006.AS0350.
  • Banu, A. N.; Balasubramanian, C. Optimization and Synthesis of Silver Nanoparticles Using Isariafumosorosea against Human Vector Mosquitoes. Parasitol. Res. 2014, 113, 3843–3851. DOI: 10.1007/s00436-014-4052-0.
  • McClements, D. J. Nanoemulsions versus Microemulsions: Terminology, Differences, Andsimilarities. Soft Matter 2012, 8, 1719–1729. DOI: 10.1039/C2SM06903B.
  • Jampílek, J.; Kráľová, K.; Campos, E. V.; and.; Fraceto, L. F. Bio-Based Nanoemulsion Formulations Applicable in Agriculture, Medicine, and Food Industry. In Nanobiotechnology in Bioformulations; Springer: Cham, 2019; pp 33–84.
  • Choupanian, M.; Omar, D.; Basri, M.; Asib, N. Preparation and Characterization of Neem Oilnanoemulsion Formulations against Sitophilus Oryzae and Tribolium castaneum Adults. J. Pest. Sci. 2017, 42, 158–165. DOI: 10.1584/jpestics.D17-032.
  • Feng, J.; Shi, Y.; Yu, Q.; Sun, C. C.; Yang, G. T. Effect of Emulsifying Process on Stability of Pesticide Nanoemulsions. Colloids Surf. A Physicochem. Eng. Asp. 2016, 497, 286–292. DOI: 10.1016/j.colsurfa.2016.03.024.
  • Hashem, A. S.; Awadalla, S. S.; Zayed, G. M.; Maggi, F.; Benelli, G. Pimpinella Anisum Essential Oil Nanoemulsions against Tribolium castaneum-Insecticidal Activity and Mode of Action. Environ. Sci. Pollut. Res. Int. 2018, 25, 18802–18812. DOI: 10.1007/s11356-018-2068-1.
  • Metuku, R. P.; Pabba, S.; Burra, S.; Hima Bindu, N. S. V. S. S. S. L.; Gudikandula, K.; Singara Charya, M. A. Biosynthesis of Silver Nanoparticles from Schizophyllum Radiatum HE 863742.1: Their Characterization and Antimicrobial Activity. 3 Biotech. 2014, 4, 227–234. DOI: 10.1007/s13205-013-0138-0.
  • Owaid, M. N.; Raman, J.; Lakshmanan, H.; Al-Saeedi, S. S.; Sabaratnam, V.; Abed, I. A. Mycosynthesis of Silver Nanoparticles by Pleurotus Cornucopiae Var. citrinopileatus and Its Inhibitory Effects against Candida sp. Mater. Lett. 2015, 153, 186–190. DOI: 10.1016/j.matlet.2015.04.023.
  • Raman, J.; Reddy, G. R.; Lakshmanan, H.; Selvaraj, V.; Gajendran, B.; Nanjian, R.; Chinnasamy, A.; Sabaratnam, V. Mycosynthesis and Characterization of Silver Nanoparticles from Pleurotus Djamor Var. roseus and Their in Vitro Cytotoxicity Effect onPC3 Cells. Process Biochem. 2015, 50, 140–147. DOI: 10.1016/j.procbio.2014.11.003.
  • Chowdhury, S.; Basu, A.; Kundu, S. Green Synthesis of Protein Capped Silver Nanoparticles from Phytopathogenic Fungus Macrophomina Phaseolina (Tassi) Goid with Antimicrobial Properties against Multidrug-Resistant Bacteria. Nanoscale Res Lett 2014, 9, 365. DOI: 10.1186/1556-276X-9-365.
  • Ishida, K.; Cipriano, T. F.; Rocha, G. M.; Weissmüller, G.; Gomes, F.; Miranda, K.; Rozental, S. Silver Nanoparticle Production by the Fungus Fusarium oxysporum: Nanoparticle Characterisation and Analysis of Antifungal Activity against Pathogenic Yeasts. Mem. Inst. Oswaldo Cruz 2013, 109, 220–228. DOI: 10.1590/0074-0276130269.
  • Rani, R.; Sharma, D.; Chaturvedi, M.; Yadav, J. P. Green Synthesis, Characterization and Antibacterial Activity of Silver Nanoparticles of Endophytic Fungi Aspergillus terreus. J. Nanomed. Nanotechnol. 2017, 8, 1–8.
  • Moazeni, M.; Rashidi, N.; Shahverdi, A. R.; Noorbakhsh, F.; Rezaie, S. Extracellular Production of Silver Nanoparticles by Using Three Common Species of Dermatophytes: Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum Canis. Iran. Biomed. J. 2012, 16, 52–58. DOI: 10.6091/ibj.1001.2012.
  • Naqvi, S. Z. H.; Kiran, U.; Ali, M. I.; Jamal, A.; Hameed, A.; Ahmed, S.; Ali, N. Combined Efficacy of Biologically Synthesized Silver Nanoparticles and Different Antibiotics against Multidrug-Resistant Bacteria. Int. J. Nanomed. 2013, 8, 3187–3195. DOI: 10.2147/IJN.S49284.
  • Sarkar, J.; Dey, P.; Saha, S.; Acharya, K. Mycosynthesis of Selenium Nanoparticles. Micro Nano Lett. 2011, 6, 599–560. DOI: 10.1049/mnl.2011.0227.
  • Ahmad, A.; Mukherjee, P.; Mandal, D.; Senapati, S.; Khan, M. I.; Kumar, R.; Sastry, M. Enzyme Mediated Extracellular Synthesis of CdS Nanoparticles by the Fungus, Fusarium oxysporum. J. Am. Chem. Soc. 2002, 124, 12108–12109. DOI: 10.1021/ja027296o.
  • Gade, A.; Ingle, A.; Whiteley, C.; & Rai, M. Mycogenic metal nanoparticles: progress and applications. Biotechnology letters, 2010, 32(5), 593–600.
  • Bansal, V.; Poddar, P.; Ahmad, A.; Sastry, M. Room-Temperature Biosynthesis of Ferroelectric Barium Titanate Nanoparticles . J. Am. Chem. Soc. 2006, 128, 11958–11963. DOI: 10.1021/ja063011m.
  • Castro-Longoria, E.; Moreno-Velázquez, S. D.; Vilchis-Nestor, A. R.; Arenas-Berumen, E.; Avalos-Borja, M. Production of Platinum Nanoparticles and Nano-Aggregates Using Neurospora crassa. J. Microbiol. Biotechnol. 2012, 22, 1000–1004. DOI: 10.4014/jmb.1110.10085.
  • Chen, G. Q.; Zou, Z. J.; Zeng, G. M.; Yan, M.; Fan, J. Q.; Chen, A. W.; Yang, F.; Zhang, W. J.; Wang, L. Coarsening of Extracellularly Biosynthesized Cadmium Crystal Particles Induced by Thioacetamide in Solution. Chemosphere 2011, 83, 1201–1207. DOI: 10.1016/j.chemosphere.2011.03.063.
  • Kowshik, M.; Deshmukh, N.; Vogel, W.; Urban, J.; Kulkarni, S. K.; Paknikar, K. M. Microbial Synthesis of Semiconductor CdS Nanoparticles, their Characterization, and their Use in the Fabrication of an Ideal Diode. Biotechnol. Bioeng. 2002, 78, 583–588. DOI: 10.1002/bit.10233.
  • Kumar, S. A.; Ansary, A. A.; Ahmad, A.; Khan, M. I. Extracellular Biosynthesis of CdSe Quantumdots by the Fungus F. oxysporum. J. Biomed. Nanotechnol. 2007, 3, 190–194. DOI: 10.1166/jbn.2007.027.
  • Rajan, A.; Cherian, E.; Baskar, G. Biosynthesis of Zinc Oxide Nanoparticles Using Aspergillusfumigatus JCF and Its Antibacterial Activity. Int. J. Mod. Sci. Technol. 2016, 1, 52–57.
  • Syed, A.; Ahmad, A. Extracellular Biosynthesis of Platinum Nanoparticles Using the Fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 2012, 97, 27–31. DOI: 10.1016/j.colsurfb.2012.03.026.
  • Rautaray, D.; Sanyal, A.; Adyanthaya, S. D.; Ahmad, A.; Sastry, M. Biological Synthesis of Strontium Carbonate Crystals Using the Fungus Fusarium oxysporum. Langmuir 2004, 20, 6827–6833. DOI: 10.1021/la049244d.
  • Mashrai, A.; Khanam, H.; Aljawfi, R. N. Biological Synthesis of ZnO Nanoparticles Using C. albicans and Studying Their Catalytic Performance in the Synthesis of Steroidal Pyrazolines. Arab. J. Chem. 2017, 10, S1530–S1536.
  • Dhamodharan, G.; Mirunalini, S. A Detail Study of Phytochemicalscreening, Antioxidant Potential and Acute Toxicity of Agaricus Bisporus Extract and Its Chitosan Loaded Nanoparticles. J. Pharm. Res. 2013, 6, 818–822. DOI: 10.1016/j.jopr.2013.07.025.
  • Senapati, U. S.; Jha, D. K.; Sarkar, D. Structural, Optical, Thermaland Electrical Properties of Ungus Guided Biosynthesized Zinc Sulphide Nanoparticles. Res. J. Chem. Sci. 2015, 5, 33–40.
  • Sanghi, R.; Verma, P. A Facile Green Extracellular Biosynthesis of CdS Nanoparticles by Immobilized Fungus. Chem. Eng. J. 2009, 155, 886–891. DOI: 10.1016/j.cej.2009.08.006.
  • Mirunalini, S.; Arulmozhi, V.; Deepalakshmi, K.; Krishnaveni, M. Intracellular Biosynthesis and Antibacterial Activity of Silver Nanoparticles Using Edible Mushrooms. Not. Sci. Biol. 2012, 4, 55–61. DOI: 10.15835/nsb448051.
  • Vetchinkina, E.; Loshchinina, E.; Kupryashina, M.; Burov, A.; Pylaev, T.; Nikitina, V. Green Synthesis of Nanoparticles with Extracellular and Intracellular Extracts of Basidiomycetes. PeerJ 2018, 6, e5237. DOI: 10.7717/peerj.5237.
  • Senapati, U. S.; Sarkar, D. Characterization of Biosynthesized Zinc Sulphide Nanoparticles Using Edible Mushroom Pleurotus ostreatus. Indian J. Phys. 2014, 88, 557–562. DOI: 10.1007/s12648-014-0456-z.
  • Xiao, Y.; Huang, Q.; Zheng, Z.; Guan, H.; Liu, S. Construction of a Cordyceps sinensis Exopolysaccharide-Conjugated Selenium Nanoparticles and Enhancement of their Antioxidant Activities. Int. J. Biol. Macromol. 2017, 99, 483–491. DOI: 10.1016/j.ijbiomac.2017.03.016.
  • Chien, R. C.; Yen, M. T.; Mau, J. L. Antimicrobial and Antitumor Activities of Chitosan from Shiitake Stipes, Compared to Commercial Chitosan from Crab Shells. Carbohydr. Polym. 2016, 138, 259–264. DOI: 10.1016/j.carbpol.2015.11.061.
  • Abikoye, E. T.; Oloke, J. K.; Elemo, G.; Okorie, P. C.; Aier, S.; Oluwawole, O. F.; Barooah, M. Biosynthesis of Silver Nanoparticles in Improved Strain of Auricularia polytricha-an Edible Mushroom from Nigeria and Its Antimicrobial Activities. Covenant J. Phys. Life Sci. 2019, 7,  47-55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.