181
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

One-pot synthesis of CuO, ZnO, and Ag nanoparticles: structural, morphological, and bactericidal evaluation

ORCID Icon, , , , , & show all
Pages 490-500 | Received 29 Oct 2021, Accepted 29 Mar 2022, Published online: 30 May 2022

References

  • Borkow, G.; Zhou, S. S.; Page, T.; Gabbay, J. A Novel anti-Influenza Copper Oxide Containing Respiratory Face Mask. PLoS One 2010, 5, e11295. DOI: 10.1371/journal.pone.0011295.
  • Castro-Mayorga, J. L.; Fabra, M. J.; Pourrahimi, A. M.; Olsson, R. T.; Lagaron, J. M. The Impact of Zinc Oxide Particle Morphology as an Antimicrobial and When Incorporated in Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Films for Food Packaging and Food Contact Surfaces Applications. Food Bioprod. Process. 2017, 101, 32–44. DOI: 10.1016/j.fbp.2016.10.007.
  • Radetić, M.; Marković, D. Nano-Finishing of Cellulose Textile Materials with Copper and Copper Oxide Nanoparticles. Cellulose 2019, 26, 8971–8991. DOI: 10.1007/s10570-019-02714-4.
  • Malafatti, J. O. D.; Bernardo, M. P.; Moreira, F. K. V.; Ciol, H.; Inada, N. M.; Mattoso, L. H. C.; Paris, E. C. Electrospun Poly(Lactic Acid) Nanofibers Loaded with Silver Sulfadiazine/[Mg–Al]-Layered Double Hydroxide as an Antimicrobial Wound Dressing. Polym. Adv. Technol. 2020, 31, 1377–1387. DOI: 10.1002/pat.4867.
  • Munhoz, D. R.; Bernardo, M. P.; Malafatti, J. O. D.; Moreira, F. K. V.; Mattoso, L. H. C. Alginate Films Functionalized with Silver Sulfadiazine-Loaded [Mg-Al] Layered Double Hydroxide as Antimicrobial Wound Dressing. Int. J. Biol. Macromol. 2019, 141, 504–510. DOI: 10.1016/j.ijbiomac.2019.09.019.
  • Al-Shabib, N. A.; Husain, F. M.; Ahmad, I.; Khan, M. S.; Khan, R. A.; Khan, J. M. Rutin Inhibits Mono and Multi-Species Biofilm Formation by Foodborne Drug Resistant Escherichia coli and Staphylococcus aureus. Food Control 2017, 79, 325–332. DOI: 10.1016/j.foodcont.2017.03.004.
  • Kim, J. H.; Yoo, J. G.; Ham, J. S.; Oh, M. H. Direct Detection of Escherichia coli, Staphylococcus aureus, and Salmonella Spp. in Animal-Derived Foods Using a Magnetic Bead-Based Immunoassay. Korean J. Food Sci. Anim. Resour. 2018, 38, 727–736. DOI: 10.5851/kosfa.2018.e11.
  • Adeyeye, S. A. O. Food Packaging and Nanotechnology: Safeguarding Consumer Health and Safety. Nutr. Food Sci. 2019, 49, 1164–1179. DOI: 10.1108/NFS-01-2019-0020.
  • Brito, SdC.; Bresolin, J. D.; Sivieri, K.; Ferreira, M. D. Low-Density Polyethylene Films Incorporated with Silver Nanoparticles to Promote Antimicrobial Efficiency in Food Packaging. Food Sci. Technol. Int. 2020, 26, 353–314. DOI: 10.1177/1082013219894202.
  • Wang, W.; Yu, Z.; Alsammarraie, F. K.; Kong, F.; Lin, M.; Mustapha, A. Properties and Antimicrobial Activity of Polyvinyl Alcohol-Modified Bacterial Nanocellulose Packaging Films Incorporated with Silver Nanoparticles. Food Hydrocolloids 2020, 100, 105411–105420. DOI: 10.1016/j.foodhyd.2019.105411.
  • Melini, V.; Melini, F. Strategies to Extend Bread and GF Bread Shelf-Life: From Sourdough to Antimicrobial Active Packaging and Nanotechnology. Fermentation 2018, 4, 9–10. DOI: 10.3390/fermentation4010009.
  • Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nanomicro Lett. 2015, 7, 219–242. DOI: 10.1007/s40820-015-0040-x.
  • Shankar, S.; Khodaei, D.; Lacroix, M. Effect of Chitosan/Essential Oils/Silver Nanoparticles Composite Films Packaging and Gamma Irradiation on Shelf Life of Strawberries. Food Hydrocolloids 2021, 117, 106750–106761. DOI: 10.1016/j.foodhyd.2021.106750.
  • Durán, N.; Durán, M.; de Jesus, M. B.; Seabra, A. B.; Fávaro, W. J.; Nakazato, G. Silver Nanoparticles: A New View on Mechanistic Aspects on Antimicrobial Activity. Nanomedicine 2016, 12, 789–799. DOI: 10.1016/j.nano.2015.11.016.
  • Król, A.; Pomastowski, P.; Rafińska, K.; Railean-Plugaru, V.; Buszewski, B. Zinc Oxide Nanoparticles: Synthesis, Antiseptic Activity and Toxicity Mechanism. Adv. Colloid Interface Sci. 2017, 249, 37–52. DOI: 10.1016/j.cis.2017.07.033.
  • Moniri Javadhesari, S.; Alipour, S.; Mohammadnejad, S.; Akbarpour, M. R. Antibacterial Activity of Ultra-Small Copper Oxide (II) Nanoparticles Synthesized by Mechanochemical Processing against S. Aureus and E. Coli. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 105, 110011–110021. DOI: 10.1016/j.msec.2019.110011.
  • Rao, C. N. R.; Cheetham, A. K. Science and Technology of Nanomaterials: Current Status and Future Prospects. J. Mater. Chem. 2001, 11, 2887–2894. DOI: 10.1039/b105058n.
  • Silva, L. P.; Silveira, A. P.; Bonatto, C. C.; Reis, I. G.; Milreu, P. V. Silver Nanoparticles as Antimicrobial Agents: Past, Present, and Future. Nanostruct. Antimicrob. Ther. Nanostruct. Ther. Med. Ser. 2017, 10, 577–596. DOI: 10.1016/B978-0-323-46152-8.00026-3.
  • Siddiqi, K. S.; Husen, A.; Rao, R. A. K. A Review on Biosynthesis of Silver Nanoparticles and Their Biocidal Properties. J. Nanobiotechnol. 2018, 16, 1–28. DOI: 10.1186/s12951-018-0334-5.
  • Garibo, D.; Borbón-Nuñez, H. A.; de León, J. N. D.; García Mendoza, E.; Estrada, I.; Toledano-Magaña, Y.; Tiznado, H.; Ovalle-Marroquin, M.; Soto-Ramos, A. G.; Blanco, A.; et al. Green Synthesis of Silver Nanoparticles Using Lysiloma Acapulcensis Exhibit High-Antimicrobial Activity. Sci. Rep. 2020, 10, 1–11. DOI: 10.1038/s41598-020-69606-7.
  • Sulaiman, G. M.; Ali, E. H.; Jabbar, I. I.; Saleem, A. H. Synthesis, Characterization, Antibacterial and Cytotoxic Effects of Silver Nanoparticles. Dig. J. Nanomater. Biostruct. 2014, 9, 787–796.
  • Duffy, L. L.; Osmond-McLeod, M. J.; Judy, J.; King, T. Investigation into the Antibacterial Activity of Silver, Zinc Oxide and Copper Oxide Nanoparticles against Poultry-Relevant Isolates of Salmonella and Campylobacter. Food Control 2018, 92, 293–300. DOI: 10.1016/j.foodcont.2018.05.008.
  • Gurunathan, S.; Park, J. H.; Han, J. W.; Kim, J. H. Comparative Assessment of the Apoptotic Potential of Silver Nanoparticles Synthesized by Bacillus Tequilensis and Calocybe Indica in MDA-MB-231 Human Breast Cancer Cells: Targeting P53 for Anticancer Therapy. Int. J. Nanomed. 2015, 10, 4203–4223. DOI: 10.2147/IJN.S83953.
  • Johnston, H. J.; Hutchison, G.; Christensen, F. M.; Peters, S.; Hankin, S.; Stone, V. A Review of the in Vivo and in Vitro Toxicity of Silver and Gold Particulates: Particle Attributes and Biological Mechanisms Responsible for the Observed Toxicity. Crit. Rev. Toxicol. 2010, 40, 328–346. DOI: 10.3109/10408440903453074.
  • Zhang, C.; Hu, Z.; Deng, B. Silver Nanoparticles in Aquatic Environments: Physiochemical Behavior and Antimicrobial Mechanisms. Water Res. 2016, 88, 403–427. DOI: 10.1016/j.watres.2015.10.025.
  • Wei, B.; Zhou, J.; Yao, Z.; Haidry, A. A.; Guo, X.; Lin, H.; Qian, K.; Chen, W. The Effect of Ag Nanoparticles Content on Dielectric and Microwave Absorption Properties of β-SiC. Ceram. Int. 2020, 46, 5788–5798. DOI: 10.1016/j.ceramint.2019.11.029.
  • Abutalib, M. M.; Rajeh, A. Influence of ZnO/Ag Nanoparticles Doping on the Structural, Thermal, Optical and Electrical Properties of PAM/PEO Composite. Phys. B Condens. Matter 2020, 578, 411796–411804. DOI: 10.1016/j.physb.2019.411796.
  • Silvestri, D.; Wacławek, S.; Venkateshaiah, A.; Krawczyk, K.; Sobel, B.; Padil, V. V. T.; Černík, M.; Varma, R. S. Synthesis of Ag Nanoparticles by a Chitosan-Poly(3-Hydroxybutyrate) Polymer Conjugate and Their Superb Catalytic Activity. Carbohydr. Polym. 2020, 232, 115806–116813. DOI: 10.1016/j.carbpol.2019.115806.
  • Espitia, P. J. P.; Soares, NdFF.; Coimbra, JSdR.; de Andrade, N. J.; Cruz, R. S.; Medeiros, E. A. A. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol. 2012, 5, 1447–1464. DOI: 10.1007/s11947-012-0797-6.
  • Pereira, F. F.; Paris, E. C.; Bresolin, J. D.; Foschini, M. M.; Ferreira, M. D.; Corrêa, D. S. Investigation of Nanotoxicological Effects of Nanostructured Hydroxyapatite to Microalgae Pseudokirchneriella Subcapitata. Ecotoxicol. Environ. Saf. 2017, 144, 138–147. DOI: 10.1016/j.ecoenv.2017.06.008.
  • Rincón Joya, M.; Barba Ortega, J.; Malafatti, J. O. D.; Paris, E. C. Evaluation of Photocatalytic Activity in Water Pollutants and Cytotoxic Response of α-Fe2O3 Nanoparticles. ACS Omega 2019, 4, 17477–17486. DOI: 10.1021/acsomega.9b02251.
  • Raba-Páez, A. M.; João, J. O.; Parra-Vargas, C. A.; Paris, E. C.; Rincón-Joya, M. Structural Evolution, Optical Properties, and Photocatalytic Performance of Copper and Tungsten Heterostructure Materials. Mater. Today Commun. 2021, 26, 101886. DOI: 10.1016/j.mtcomm.2020.101886.
  • Li, D.; Tang, Y.; Ao, D.; Xiang, X.; Wang, S.; Zu, X. Ultra-Highly Sensitive and Selective H2S Gas Sensor Based on CuO with Sub-Ppb Detection Limit. Int. J. Hydrogen Energy 2019, 44, 3985–3992. DOI: 10.1016/j.ijhydene.2018.12.083.
  • Gallo, A.; Manfra, L.; Boni, R.; Rotini, A.; Migliore, L.; Tosti, E. Cytotoxicity and Genotoxicity of CuO Nanoparticles in Sea Urchin Spermatozoa through Oxidative Stress. Environ. Int. 2018, 118, 325–333. DOI: 10.1016/j.envint.2018.05.034.
  • Sagadevan, S.; Pal, K.; Chowdhury, Z. Z. Fabrication of CuO Nanoparticles for Structural, Optical and Dielectric Analysis Using Chemical Precipitation Method. J. Mater. Sci.: Mater. Electron. 2017, 28, 12591–12597. DOI: 10.1007/s10854-017-7083-3.
  • Ahamed, M.; Alhadlaq, H. A.; Khan, M. A. M.; Karuppiah, P.; Al-Dhabi, N. A. Synthesis, Characterization, and Antimicrobial Activity of Copper Oxide Nanoparticles. J. Nanomater. 2014, 2014, 1–4. DOI: 10.1155/2014/637858.
  • Amiri, M.; Etemadifar, Z.; Daneshkazemi, A.; Nateghi, M. Antimicrobial Effect of Copper Oxide Nanoparticles on Some Oral Bacteria and Candida Species. J. Dent. Biomater. 2017, 4, 347–352.
  • Jia, W.; Reitz, E.; Shimpi, P.; Rodriguez, E. G.; Gao, P. X.; Lei, Y. Spherical CuO Synthesized by a Simple Hydrothermal Reaction: Concentration-Dependent Size and Its Electrocatalytic Application. Mater. Res. Bull. 2009, 44, 1681–1686. DOI: 10.1016/j.materresbull.2009.04.003.
  • Ruparelia, J. P.; Chatterjee, A. K.; Duttagupta, S. P.; Mukherji, S. Strain Specificity in Antimicrobial Activity of Silver and Copper Nanoparticles. Acta Biomater. 2008, 4, 707–716. DOI: 10.1016/j.actbio.2007.11.006.
  • Azimirad, R.; Safa, S. Photocatalytic and Antifungal Activity of Flower-like Copper Oxide Nanostructures. Synth. React. Inorganic, Met. Nano-Met. Chem. 2014, 44, 798–803. DOI: 10.1080/15533174.2013.790440.
  • Moura, A. P.; Cavalcante, L. S.; Sczancoski, J. C.; Stroppa, D. G.; Paris, E. C.; Ramirez, A. J.; Varela, J. A.; Longo, E. Structure and Growth Mechanism of CuO Plates Obtained by Microwave-Hydrothermal without Surfactants. Adv. Powder Technol. 2010, 21, 197–202. DOI: 10.1016/j.apt.2009.11.007.
  • Tavakoli, A.; Hashemzadeh, M. S. Inhibition of Herpes Simplex Virus Type 1 by Copper Oxide Nanoparticles. J. Virol. Methods 2020, 275, 113688–113694. DOI: 10.1016/j.jviromet.2019.113688.
  • Fonseca, L. M.; Gonçalves, J. R.; El Halal, S. L. M.; Pinto, V. Z.; Dias, A. R. G.; Jacques, A. C.; Zavareze, EdR. Oxidation of Potato Starch with Different Sodium Hypochlorite Concentrations and Its Effect on Biodegradable Films. LWT - Food Sci. Technol. 2015, 60, 714–720. DOI: 10.1016/j.lwt.2014.10.052.
  • Oliveira, J. A.; Nogueira, A. E.; Gonçalves, M. C. P.; Paris, E. C.; Ribeiro, C.; Poirier, G. Y.; Giraldi, T. R. Photoactivity of N-Doped ZnO Nanoparticles in Oxidative and Reductive Reactions. Appl. Surf. Sci. 2018, 433, 879–886. DOI: 10.1016/j.apsusc.2017.10.110.
  • Vasantharaj, S.; Sathiyavimal, S.; Saravanan, M.; Senthilkumar, P.; Gnanasekaran, K.; Shanmugavel, M.; Manikandan, E.; Pugazhendhi, A. Synthesis of Ecofriendly Copper Oxide Nanoparticles for Fabrication over Textile Fabrics: Characterization of Antibacterial Activity and Dye Degradation Potential. J. Photochem. Photobiol. B 2019, 191, 143–149. DOI: 10.1016/j.jphotobiol.2018.12.026.
  • Pereira, F. F.; Paris, E. C.; Bresolin, J. D.; Mitsuyuki, M. C.; Ferreira, M. D.; Corrêa, D. S. The Effect of ZnO Nanoparticles Morphology on the Toxicity towards Microalgae Pseudokirchneriella Subcapitata. J. Nanosci. Nanotechnol. 2020, 20, 48–63. DOI: 10.1166/jnn.2020.16880.
  • Andre, R. S.; Pavinatto, A.; Mercante, L. A.; Paris, E. C.; Mattoso, L. H. C.; Correa, D. S. Improving the Electrochemical Properties of Polyamide 6/Polyaniline Electrospun Nanofibers by Surface Modification with ZnO Nanoparticles. RSC Adv. 2015, 5, 73875–73881. DOI: 10.1039/C5RA15588F.
  • Alyamani, A. A.; Albukhaty, S.; Aloufi, S.; Almalki, F. A.; Al-Karagoly, H.; Sulaiman, G. M. Green Fabrication of Zinc Oxide Nanoparticles Using Phlomis Leaf Extract: Characterization and in Vitro Evaluation of Cytotoxicity and Antibacterial Properties. Molecules 2021, 26, 6140. DOI: 10.3390/molecules26206140.
  • Arakha, M.; Saleem, M.; Mallick, B. C.; Jha, S. The Effects of Interfacial Potential on Antimicrobial Propensity of ZnO Nanoparticle. Sci. Rep. 2015, 5, 9578–9510. DOI: 10.1038/srep09578.25873247
  • Saleh, S. M.; Soliman, A. M.; Sharaf, M. A.; Kale, V.; Gadgil, B. Influence of Solvent in the Synthesis of Nano-Structured ZnO by Hydrothermal Method and Their Application in Solar-Still. J. Environ. Chem. Eng. 2017, 5, 1219–1226. DOI: 10.1016/j.jece.2017.02.004.
  • Rincón-Joya, M.; Barba-Ortega, J. J.; París, E. C. Obtención de Muestras de Óxidos a Bajo Costo. revuin 2019, 18, 33–37. DOI: 10.18273/revuin.v18n3-2019003.
  • Malafatti, J. O. D. Obtenção de blenda biodegradável PLA: amido para a incorporação do micronutriente manganês. Universidade Federal de São Carlos (UFSCar), São Carlos, 2016.
  • Paris, E. C.; Malafatti, J. O. D.; Sciena, C. R.; Junior, L. F. N.; Zenatti, A.; Escote, M. T.; Moreira, A. J.; Freschi, G. P. G. Nb2O5 Nanoparticles Decorated with Magnetic Ferrites for Wastewater Photocatalytic Remediation. Environ. Sci. Pollut. Res. 2020, 28, 23731–23741. DOI: 10.1007/s11356-020-11262-5.
  • Paris, E. C.; Malafatti, J. O. D.; Musetti, H. C.; Manzoli, A.; Zenatti, A.; Escote, M. T. Faujasite Zeolite Decorated with Cobalt Ferrite Nanoparticles for Improving Removal and Reuse in Pb2+ Ions Adsorption. Chinese J. Chem. Eng. 2020, 28, 1884-1890. DOI: 10.1016/j.cjche.2020.04.019.
  • Sciena, C. R.; dos Santos, M. F.; Moreira, F. K. V.; Sena Neto, A. R.; Marconcini, J. M.; Correa, D. S.; Paris, E. C. Starch:Pectin Acidic Sachets Development for Hydroxyapatite Nanoparticles Storage to Improve Phosphorus Release. J. Polym. Environ. 2019, 27, 794–802. DOI: 10.1007/s10924-019-01391-5.
  • Leite, E. R.; Paris, E. C.; Longo, E. Direct Amorphous-to-Cubic Perovskite Phase Transformation for Lead Titanate. J. Am. Ceram. Soc. 2000, 41, 1539–1541. DOI: 10.1007/978-0-387-30160-0_6743.
  • Oliveira, L. H.; Paris, E. C.; Avansi, W.; Ramirez, M. A.; Mastelaro, V. R.; Longo, E.; Varela, J. A. Correlation between Photoluminescence and Structural Defects in Ca 1 + x Cu 3 - X Ti 4 O 12 Systems. J. Am. Ceram. Soc. 2013, 96, 209–217. DOI: 10.1111/jace.12020.
  • Moreira, A. J.; Malafatti, J. O. D.; Giraldi, T. R.; Paris, E. C.; Pereira, E. C.; de Mendonça, V. R.; Mastelaro, V. R.; Freschi, G. P. G. Prozac® Photodegradation Mediated by Mn-Doped TiO2 Nanoparticles: Evaluation of by-Products and Mechanisms Proposal. J. Environ. Chem. Eng. 2020, 8, 104543. DOI: 10.1016/j.jece.2020.104543.
  • Raffi, M.; Mehrwan, S.; Bhatti, T. M.; Akhter, J. I.; Hameed, A.; Yawar, W.; ul Hasan, M. M. Investigations into the Antibacterial Behavior of Copper Nanoparticles against Escherichia coli. Ann. Microbiol. 2010, 60, 75–80. DOI: 10.1007/s13213-010-0015-6.
  • Abdel-Mohsen, A. M.; Abdel-Rahman, R. M.; Fouda, M. M. G.; Vojtova, L.; Uhrova, L.; Hassan, A. F.; Al-Deyab, S. S.; El-Shamy, I. E.; Jancar, J. Preparation, Characterization and Cytotoxicity of Schizophyllan/Silver Nanoparticle Composite. Carbohydr. Polym. 2014, 102, 238–245. DOI: 10.1016/j.carbpol.2013.11.040.
  • Epifani, M.; Giannini, C.; Tapfer, L.; Vasanelli, L. Sol – Gel Synthesis and Characterization of Ag and Au Nanoparticles In. J. Am. Ceram. Soc. 2004, 83, 2385–2393. DOI: 10.1111/j.1151-2916.2000.tb01566.x.
  • Liu, F.; Liu, H.; Li, X.; Zhao, H.; Zhu, D.; Zheng, Y.; Li, C. Nano-TiO 2@Ag/PVC Film with Enhanced Antibacterial Activities and Photocatalytic Properties. Appl. Surf. Sci. 2012, 258, 4667–4671. DOI: 10.1016/j.apsusc.2012.01.058.
  • Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. ChemInform 2003, 34, 2176–2180. DOI: 10.1002/chin.200310226.
  • Araújo, V. D.; Avansi, W.; Paris, E. C.; Maia, L. J. Q.; Bernardi, M. I. B. Influence of PH on the Incorporation and Growth of Pb2CrO 5 Crystallites in Silica Matrix. J. Sol-Gel Sci. Technol. 2011, 59, 488–494. DOI: 10.1007/s10971-011-2517-5.
  • Mendes, A. C.; Maia, L. J. Q.; Paris, E. C.; Siu Li, M. Solvent Effect on the Optimization of 1.54 Μm Emission in Er-Doped Y2O3-Al2O3-SiO2 Powders Synthesized by a Modified Pechini Method. Curr. Appl. Phys. 2013, 13, 1558–1565. DOI: 10.1016/j.cap.2013.06.012.
  • Santos, M. A. F. E.; Lôbo, I. P.; Da Cruz, R. S. Synthesis and Characterization of Novel ZrO2-SiO2 Mixed Oxides. Mat. Res. 2014, 17, 700–707. DOI: 10.1590/S1516-14392014005000046.
  • Nallathambi, G.; Ramachandran, T.; Rajendran, V.; Palanivelu, R. Effect of Silica Nanoparticles and BTCA on Physical Properties of Cotton Fabrics. Mat. Res. 2011, 14, 552–559. DOI: 10.1590/S1516-14392011005000086.
  • Chen, J.; Liu, X. P.; Yang, X. D.; Jiang, L. L.; Mao, C. J.; Niu, H.; Jin, B. K.; Zhang, S. A Novel Ag3PO4/CuO Nanocomposite with Enhanced Photocatalytic Performance. Mater. Lett. 2017, 188, 300–303. DOI: 10.1016/j.matlet.2016.10.106.
  • Sahay, R.; Sundaramurthy, J.; Suresh Kumar, P.; Thavasi, V.; Mhaisalkar, S. G.; Ramakrishna, S. Synthesis and Characterization of CuO Nanofibers, and Investigation for Its Suitability as Blocking Layer in ZnO NPs Based Dye Sensitized Solar Cell and as Photocatalyst in Organic Dye Degradation. J. Solid State Chem. 2012, 186, 261–267. DOI: 10.1016/j.jssc.2011.12.013.
  • Yin, L.; Wang, H.; Li, L.; Li, H.; Chen, D.; Zhang, R. Microwave-Assisted Preparation of Hierarchical CuO@rGO Nanostructures and Their Enhanced Low-Temperature H 2 S-Sensing Performance. Appl. Surf. Sci. 2019, 476, 107–114. DOI: 10.1016/j.apsusc.2019.01.019.
  • Pal, S.; Tak, Y. K.; Song, J. M. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. DOI: 10.1128/AEM.02218-06.
  • Yu, H.; Yu, J.; Liu, S.; Mann, S. Template-Free Hydrothermal Synthesis of CuO/Cu2O Composite Hollow Microspheres Huogen. Chem. Mater. 2007, 19, 4327–4334. DOI: 10.1021/cm070386d.
  • Maia, G. A. R.; Larsson, L. F. G.; Viomar, A.; Maia, E. C. R.; De Santana, H.; Rodrigues, P. R. P. Aperfeiçoamento Da Produção de Partículas de Óxido de Zinco Para Aplicação Em Células Solares. Ceramica 2016, 62, 91–97. DOI: 10.1590/0366-69132016623611949.
  • Moghri Moazzen, M. A.; Borghei, S. M.; Taleshi, F. Change in the Morphology of ZnO Nanoparticles upon Changing the Reactant Concentration. Appl. Nanosci. 2013, 3, 295–302. DOI: 10.1007/s13204-012-0147-z.
  • Safaei-Ghomi, J.; Ghasemzadeh, M. A.; Zahedi, S. ZnO Nanoparticles: A Highly Effective and Readily Recyclable Catalyst for the One-Pot Synthesis of 1,8-Dioxo-Decahydroacridine and 1,8-Dioxooctahydro-Xanthene Derivatives. J. Mex. Chem. Soc. 2017, 57, 1–7. DOI: 10.29356/jmcs.v57i1.228.
  • Lynch, M. E.; Folz, D. C.; Clark, D. E. Use of FTIR Reflectance Spectroscopy to Monitor Corrosion Mechanisms on Glass Surfaces. J. Non. Cryst. Solids 2007, 353, 2667–2674. DOI: 10.1016/j.jnoncrysol.2007.05.012.
  • Marcato, P. D.; Parizotto, N. V.; Martinez, D. S. T.; Paula, A. J.; Ferreira, I. R.; Melo, P. S.; Durán, N.; Alves, O. L. New Hybrid Material Based on Layered Double Hydroxides and Biogenic Silver Nanoparticles: Antimicrobial Activity and Cytotoxic Effect. J. Braz. Chem. Soc. 2013, 24, 266–272. DOI: 10.5935/0103-5053.20130034.
  • Pham, D. P. Preparation and Structural Characterization of Sol-Gel-Derived Silver Silica Nanocomposite Powders. Int. J. Mater. Sci. Appl. 2014, 3, 147–151. DOI: 10.11648/j.ijmsa.20140305.13.
  • Dar, M. A.; Kim, Y. S.; Kim, W. B.; Sohn, J. M.; Shin, H. S. Structural and Magnetic Properties of CuO Nanoneedles Synthesized by Hydrothermal Method. Appl. Surf. Sci. 2008, 254, 7477–7481. DOI: 10.1016/j.apsusc.2008.06.004.
  • El-Trass, A.; Elshamy, H.; El-Mehasseb, I.; El-Kemary, M. CuO Nanoparticles: Synthesis, Characterization, Optical Properties and Interaction with Amino Acids. Appl. Surf. Sci. 2012, 258, 2997–3001. DOI: 10.1016/j.apsusc.2011.11.025.
  • Gupta, A.; Srivastava, R. Zinc Oxide Nanoleaves: A Scalable Disperser-Assisted Sonochemical Approach for Synthesis and an Antibacterial Application. Ultrason. Sonochem. 2018, 41, 47–58. DOI: 10.1016/j.ultsonch.2017.09.029.
  • Chithra, M. J.; Sathya, M.; Pushpanathan, K. Effect of PH on Crystal Size and Photoluminescence Property of Zno Nanoparticles Prepared by Chemical Precipitation Method. Acta Metall. Sin. (Engl. Lett.) 2015, 28, 394–404. DOI: 10.1007/s40195-015-0218-8.
  • Giraldi, T. R.; Santos, G. V. F.; Mendonça, V. R.; Ribeiro, C.; Weber, I. T. Annealing Effects on the Photocatalytic Activity of ZnO Nanoparticles. J. Nanosci. Nanotechnol. 2011, 11, 3635–3640. DOI: 10.1166/jnn.2011.3801.
  • Gankanda, A.; Cwiertny, D. M.; Grassian, V. H. Role of Atmospheric CO2 and H2O Adsorption on ZnO and CuO Nanoparticle Aging: Formation of New Surface Phases and the Impact on Nanoparticle Dissolution. J. Phys. Chem. C 2016, 120, 19195–19203. DOI: 10.1021/acs.jpcc.6b05931.
  • García-Barrasa, J.; López-De-luzuriaga, J. M.; Monge, M. Silver Nanoparticles: Synthesis through Chemical Methods in Solution and Biomedical Applications. Cent. Eur. J. Chem. 2011, 9, 7–19. DOI: 10.2478/s11532-010-0124-x.
  • Solomon, S. D.; Bahadory, M.; Jeyarajasingam, A. V.; Rutkowsky, S. A.; Boritz, C.; Mulfinger, L. Synthesis and Study of Silver Nanoparticles. J. Chem. Educ. 2007, 84, 322–325. DOI: 10.1021/ed084p322.
  • Sonia, S.; Jayram, N. D.; Suresh Kumar, P.; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C. Effect of NaOH Concentration on Structural, Surface and Antibacterial Activity of CuO Nanorods Synthesized by Direct Sonochemical Method. Superlattices Microstruct. 2014, 66, 1–9. DOI: 10.1016/j.spmi.2013.10.020.
  • Azam, A.; Ahmed, A. S.; Oves, M.; Khan, M. S.; Habib, S. S.; Memic, A. Antimicrobial Activity of Metal Oxide Nanoparticles against Gram-Positive and Gram-Negative Bacteria: A Comparative Study. Int. J. Nanomed. 2012, 7, 6003–6009. DOI: 10.2147/IJN.S35347.
  • Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M. F.; Fiévet, F. Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium. Nano Lett. 2006, 6, 866–870. DOI: 10.1021/nl052326h.
  • Liu, Y.; He, L.; Mustapha, A.; Li, H.; Hu, Z. Q.; Lin, M. Antibacterial Activities of Zinc Oxide Nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol. 2009, 107, 1193–1201. DOI: 10.1111/j.1365-2672.2009.04303.x.
  • Nair, S.; Sasidharan, A.; Divya Rani, V. V.; Menon, D.; Nair, S.; Manzoor, K.; Raina, S. Role of Size Scale of ZnO Nanoparticles and Microparticles on Toxicity toward Bacteria and Osteoblast Cancer Cells. J. Mater. Sci.: Mater. Med. 2009, 20, 235–241. DOI: 10.1007/s10856-008-3548-5.
  • Azizi-Lalabadi, M.; Ehsani, A.; Divband, B.; Alizadeh-Sani, M. Antimicrobial Activity of Titanium Dioxide and Zinc Oxide Nanoparticles Supported in 4A Zeolite and Evaluation the Morphological Characteristic. Sci. Rep. 2019, 9, 1–10. DOI: 10.1038/s41598-019-54025-0.
  • Dadi, R.; Azouani, R.; Traore, M.; Mielcarek, C.; Kanaev, A. Antibacterial Activity of ZnO and CuO Nanoparticles against Gram Positive and Gram Negative Strains. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109968. DOI: 10.1016/j.msec.2019.109968.
  • Alekish, M.; Ismail, Z. B.; Albiss, B.; Nawasrah, S. In Vitro Antibacterial Effects of Zinc Oxide Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Escherichia coli: An Alternative Approach for Antibacterial Therapy of Mastitis in Sheep. Vet. World 2018, 11, 1428–1432. DOI: 10.14202/vetworld.2018.1428-1432.
  • Awwad, A. M.; Amer, M. W. Biosynthesis of Copper Oxide Nanoparticles Using Ailanthus Altissima Leaf Extract and Antibacterial Activity. Chem. Int. 2020, 6, 210–217.
  • Hozyen, H. F.; Ibrahim, E. S.; Khairy, E. A.; El-Dek, S. I. Enhanced Antibacterial Activity of Capped Zinc Oxide Nanoparticles: A Step towards the Control of Clinical Bovine Mastitis. Vet. World 2019, 12, 1225–1232. DOI: 10.14202/vetworld.2019.1225-1232.
  • Rahimi, G.; Alizadeh, F.; Khodavandi, A. Mycosynthesis of Silver Nanoparticles from Candida Albicans and Its Antibacterial Activity against Escherichia coli and Staphylococcus aureus. Trop. J. Pharm. Res. 2016, 15, 371–375. DOI: 10.4314/tjpr.v15i2.21.
  • Volova, T. G.; Shumilova, A. A.; Shidlovskiy, I. P.; Nikolaeva, E. D.; Sukovatiy, A. G.; Vasiliev, A. D.; Shishatskaya, E. I. Antibacterial Properties of Films of Cellulose Composites with Silver Nanoparticles and Antibiotics. Polym. Test 2018, 65, 54–68. DOI: 10.1016/j.polymertesting.2017.10.023.
  • Karuppannan, S. K.; Ramalingam, R.; Mohamed Khalith, S. B.; Dowlath, M. J. H.; Darul Raiyaan, G. I.; Arunachalam, K. D. Characterization, Antibacterial and Photocatalytic Evaluation of Green Synthesized Copper Oxide Nanoparticles. Biocatal. Agric. Biotechnol. 2021, 31, 101904. DOI: 10.1016/j.bcab.2020.101904.
  • Becaro, A. A.; Puti, F. C.; Correa, D. S.; Paris, E. C.; Marconcini, J. M.; Ferreira, M. D. Polyethylene Films Containing Silver Nanoparticles for Applications in Food Packaging: Characterization of Physico-Chemical and anti-Microbial Properties. J. Nanosci. Nanotechnol. 2015, 15, 2148–2156. DOI: 10.1166/jnn.2015.9721.
  • Roy, A.; Bulut, O.; Some, S.; Mandal, A. K.; Yilmaz, M. D. Green Synthesis of Silver Nanoparticles: Biomolecule-Nanoparticle Organizations Targeting Antimicrobial Activity. RSC Adv. 2019, 9, 2673–2702. DOI: 10.1039/c8ra08982e.
  • Ismail, R. A.; Sulaiman, G. M.; Mohsin, M. H.; Saadoon, A. H. Preparation of Silver Iodide Nanoparticles Using Laser Ablation in Liquid for Antibacterial Applications. IET Nanobiotechnol. 2018, 12, 781–786. DOI: 10.1049/iet-nbt.2017.0231.
  • Liang, X.; Sun, M.; Li, L.; Qiao, R.; Chen, K.; Xiao, Q.; Xu, F. Preparation and Antibacterial Activities of polyaniline/Cu0.05Zn0.95O nanocomposites. Dalton Trans. 2012, 41, 2804–2811. DOI: 10.1039/c2dt11823h.
  • Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16, 2346–2353. DOI: 10.1088/0957-4484/16/10/059.
  • Singha, P.; Workman, C. D.; Pant, J.; Hopkins, S. P.; Handa, H. Zinc-Oxide Nanoparticles Act Catalytically and Synergistically with Nitric Oxide Donors to Enhance Antimicrobial Efficacy. J. Biomed. Mater. Res. 2019, 107, 1425–1433. DOI: 10.1002/jbm.a.36657.
  • Khashan, K. S.; Sulaiman, G. M.; Abdulameer, F. A.; Albukhaty, S.; Ibrahem, M. A.; Al-Muhimeed, T.; Alobaid, A. A. Antibacterial Activity of Tio2 Nanoparticles Prepared by One-Step Laser Ablation in Liquid. Appl. Sci. 2021, 11, 4623. DOI: 10.3390/app11104623.
  • Elkady, M. F.; Shokry Hassan, H.; Hafez, E. E.; Fouad, A. Construction of Zinc Oxide into Different Morphological Structures to Be Utilized as Antimicrobial Agent against Multidrug Resistant Bacteria. Bioinorg. Chem. Appl. 2015, 2015, 536854–536821. DOI: 10.1155/2015/536854.
  • Kumar, R.; Umar, A.; Kumar, G.; Nalwa, H. S. Antimicrobial Properties of ZnO Nanomaterials: A Review. Ceram. Int. 2017, 43, 3940–3961. DOI: 10.1016/j.ceramint.2016.12.062.
  • Hsiao, I. L.; Huang, Y. J. Effects of Various Physicochemical Characteristics on the Toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. Sci. Total Environ. 2011, 409, 1219–1228. DOI: 10.1016/j.scitotenv.2010.12.033.
  • Din, M. I.; Arshad, F.; Hussain, Z.; Mukhtar, M. Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles: Catalytic, Antibacterial, Cytotoxicity, and Antioxidant Activities. Nanoscale Res. Lett. 2017, 12, 1–15. DOI: 10.1186/s11671-017-2399-8.
  • Agarwal, H.; Menon, S.; Venkat Kumar, S.; Rajeshkumar, S. Mechanistic Study on Antibacterial Action of Zinc Oxide Nanoparticles Synthesized Using Green Route. Chem. Biol. Interact. 2018, 286, 60–70. DOI: 10.1016/j.cbi.2018.03.008.
  • Padmavathy, N.; Vijayaraghavan, R. Enhanced Bioactivity of ZnO nanoparticles-an antimicrobial study. Sci. Technol. Adv. Mater. 2008, 9, 035004–035008. DOI: 10.1088/1468-6996/9/3/035004.
  • Russell, A. D. Similarities and Differences in the Responses of Microorganisms to Biocides. J. Antimicrob. Chemother. 2003, 52, 750–763. DOI: 10.1093/jac/dkg422.
  • Sondi, I.; Salopek-Sondi, B. Silver Nanoparticles as Antimicrobial Agent: A Case Study on E. Coli as a Model for Gram-Negative Bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. DOI: 10.1016/j.jcis.2004.02.012.
  • Yamamoto, O. Influence of Particle Size on the Antibacterial Activity of Zinc Oxide. Int. J. Inorg. Mater. 2001, 3, 643–646. DOI: 10.1016/S1466-6049(01)00197-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.