313
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, characterization and catalytic studies of bimetallic heteronuclear complexes for the reduction of nitroaromatic compounds

, , , , , , , & show all
Pages 501-512 | Received 21 Dec 2021, Accepted 28 Mar 2022, Published online: 26 May 2022

References

  • Lin, Y. W.; Jian, B. R.; Huang, S. C.; Huang, C. H.; Hsu, K. F. Synthesis and Characterization of Three Ytterbium Coordination Polymers Featuring Various Cationic Species and a Luminescence Study of a Terbium Analogue with Open Channels. Inorg. Chem. 2010, 49, 2316–2324. DOI: 10.1021/ic9021992.
  • Li, Y.; Wang, N.; Xiong, Y. J.; Cheng, Q.; Fang, J. F.; Zhu, F. F.; Long, Y.; Yue, S. T. Lanthanide Metal–Organic Frameworks Based on the 4, 4′-Oxybisbenzoic Acid Ligand: synthesis, Structures and Physical Properties. New J. Chem. 2015, 39, 9872–9878. DOI: 10.1039/C5NJ01930C.
  • Pagis, C.; Ferbinteanu, M.; Rothenberg, G.; Tanase, S. Lanthanide-Based Metal Organic Frameworks: synthetic Strategies and Catalytic Applications. ACS Catal. 2016, 6, 6063–6072. DOI: 10.1021/acscatal.6b01935.
  • Arnold, P. L.; McMullon, M. W.; Rieb, J.; Kuhn, F. E. C-H Bond Activation by f-block complexes. Angew. Chem. Int. Ed. Engl. 2015, 54, 82–100. DOI: 10.1002/anie.201404613.
  • Adimula, V. O.; Tella, A. C.; Udeaja, I. C.; Durodoye, A. T.; Lawal, A. Coordination Polymers Based on Mixed Carboxylate Ligands: synthesis and Thermal Studies. Commun. Faculty Sci. Univ. Ankara Series B. 2018, 60, 1–16. http://dergiler.ankara.edu.tr/dergiler/31/2308/24064.pdf.
  • Niakan, M.; Masteri-Farahani, M. Ultrafine and Well-Dispersed Pd-Ni Bimetallic Catalyst Stabilized by Dendrimer-Grafted Magnetic Graphene Oxide for Selective Reduction of Toxic Nitroarenes under Mild Conditions. J. Hazard. Mater. 2022, 424, 127717. DOI: 10.1016/j.jhazmat.2021.127717.
  • Leiming, L.; Zhaorui, P.; Yan, J. Ni-Au Alloy Nanoparticles as a High Performance Heterogeneous Catalyst for Hydrogenation of Aromatic Nitro Compounds. J. Alloys Compd. 2019, 792, 286–290. DOI: 10.1016/j.jallcom.2019.03.323.
  • Niakan, M.; Asadi, Z. Selective Reduction of Nitroarenes Catalyzed by Sustainable and Reusable DNA-Supported Nickel Nanoparticles in Water at Room Temperature. Catal. Lett. 2019, 149, 2234–2246. DOI: 10.1007/s10562-019-02741-7.
  • Zhengliang, Y.; Liangxu, X.; Shunsheng, C.; Yingguan, X.; Gang, C.; Ying, J.; Wenxian, W.; Limin, W. Ag/Ag2O Confined Visible-Light Driven Catalyst for Highly Efficient Selective Hydrogenation of Nitroarenes in Pure Water Medium at Room Temperature. Chem. Eng. J. 2020, 394, 125036. DOI: 10.1016/j.cej.2020.125036.
  • Majedi, A.; Davar, F. A. T. E. M. E. H.; Abbasi, A. R. Metal-Organic Framework Materials as Nano Photocatalyst. Int. J. Nano Dimens. 2016, 7, 1–14.
  • Ghadermazi, M.; Moradi, S.; Mozafari, R. Rice husk-SiO2 Supported Bimetallic Fe-Ni nanoparticles: as a new, powerful magnetic nanocomposite for the aqueous reduction of nitro compounds to amines. RSC Adv. 2020, 10, 33389–33400. DOI: 10.1039/d0ra05381c.
  • Xia, Q.; Yu, X.; Zhao, H.; Wang, S.; Wang, H.; Guo, Z.; Xing, H. Syntheses of Novel Lanthanide Metal–Organic Frameworks for Highly Efficient Visible-Light-Driven Dye Degradation. Crystal Growth Design. 2017, 17, 4189–4195. DOI: 10.1021/acs.cgd.7b00504.
  • Nasalevich, M. A.; Van der Veen, M.; Kapteijn, F.; Gascon, J. Metal–Organic Frameworks as Heterogeneous Photocatalysts: advantages and Challenges. CrystEngComm. 2014, 16, 4919–4926. DOI: 10.1039/C4CE00032C.
  • Zhengliang, Y.; Yingguan, X.; Xiong, W.; Ying, J.; Gang, C.; Qingye, S.; Shunsheng, C. High Photocatalytic Activity of Cu2O Embedded in Hierarchically Hollow SiO2 for Efficient Chemoselective Hydrogenation of Nitroarenes. J. Mater. Sci. 2021, 56, 3874–3886.
  • Wang, C. C.; Li, J. R.; Lv, X. L.; Zhang, Y. Q.; Guo, G. Photocatalytic Organic Pollutants Degradation in Metal–Organic Frameworks. Energy Environ. Sci. 2014, 7, 2831–2867. DOI: 10.1039/C4EE01299B.
  • Qin, L.; Chen, H. Z.; Lei, J.; Wang, Y. Q.; Ye, T. Q.; Zheng, H. G. Photodegradation of Some Organic Dyes over Two Metal–Organic Frameworks with Especially High Efficiency for Safranine T. Crystal Growth Design. 2017, 17, 1293–1298. DOI: 10.1021/acs.cgd.6b01690.
  • Li, X.; Guo, W.; Liu, Z.; Wang, R.; Liu, H. Fe-Based MOFs for Efficient Adsorption and Degradation of Acid Orange 7 in Aqueous Solution via Persulfate Activation. Appl. Surf. Sci. 2016, 369, 130–136. DOI: 10.1016/j.apsusc.2016.02.037.
  • Adimula, V. O.; Onianwa, P. C.; Ilupeju, O.; Ayom, E.; Baba, A. A. Assessment of Heavy Metals in Foods and Adult Dietary Intake Estimates. Afr. J. Sci. Technol. Innov. Develop. 2019, 11, 261–268. DOI: 10.1080/20421338.2018.1556455.
  • Hou, Y. L.; Sun, R. W. Y.; Zhou, X. P.; Wang, J. H.; Li, D. A Copper(I)/Copper(II)-Salen Coordination Polymer as a Bimetallic Catalyst for Three-Component Strecker Reactions and Degradation of Organic Dyes. Chem Commun. 2014, 50, 2295–2297. DOI: 10.1039/c3cc47996j.
  • Zhengliang, Y.; Yingguan, X.; Hongping, L.; Gang, C.; Ningdong, F.; Jingjie, W.; Huaming, L.; Hui, X.; Shunsheng, C. Metal Nanoparticles Confined within an Inorganic-Organic Framework Enable Superior Substrate-Selective Catalysis. ACS Appl Mater Interfaces. 2020, 12, 42739–42748. DOI: 10.1021/acsami.0c10814.
  • Tella, A. C.; Oladipo, A. C.; Adimula, V. O.; Ameen, O. A.; Bourne, S. A.; Ogunlaja, A. S. Synthesis and Crystal Structures of a Copper (II) Dinuclear Complex and Zinc (II) Coordination Polymers as Materials for Efficient Oxidative Desulfurization of Dibenzothiophene. New J. Chem. 2019, 43, 14343–14354. DOI: 10.1039/C9NJ01456J.
  • Tella, A. C.; Owalude, S. O.; Adimula, V. O.; Oladipo, A. C.; Olayemi, V. T.; Ismail, B.; Mumtaz, A.; Attiq Ur Rehman; Khan, A. M.; Clayton, H. S.; Tahir, N. M. Synthesis, Structure, and Properties of a Dinuclear Cu (II) Coordination Polymer Based on Quinoxaline and 3, 3-Thiodipropionic Acid Ligands. J. Inorg. Organomet. Polym. Mater. 2021, 31(7), 3089–3100.
  • Deenadayalan, M. S.; Sharma, N.; Verma, P. K.; Nagaraja, C. M. Visible-Light-Assisted Photocatalytic Reduction of Nitroaromatics by Recyclable Ni(II)-Porphyrin Metal-Organic Framework (MOF) at RT. Inorg. Chem. 2016, 55, 5320–5327. DOI: 10.1021/acs.inorgchem.6b00296.
  • Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabrés i Xamena, F. X.; Garcia, H. Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry 2007, 13, 5106–5112. DOI: 10.1002/chem.200601003.
  • Li, Y.; Xu, H.; Ouyang, S.; Ye, J. Metal-Organic Frameworks for Photocatalysis. Phys. Chem. Chem. Phys. 2016, 18, 7563–7572. DOI: 10.1039/c5cp05885f.
  • Kalekar, A. M.; Sharma, K. K. K.; Luwang, M. N.; Sharma, G. K. Catalytic Activity of Bare and Porous Palladium Nanostructures in the Reduction of 4-Nitrophenol. RSC Adv. 2016, 6, 11911–11920. DOI: 10.1039/C5RA23138H.
  • Halder, A.; Patra, S.; Viswanath, B.; Munichandraiah, N.; Ravishankar, N. Porous, Catalytically Active Palladium Nanostructures by Tuning Nanoparticle Interactions in an Organic Medium. Nanoscale 2011, 3, 725–730. DOI: 10.1039/c0nr00640h.
  • Clergeaud, G.; Genç, R.; Ortiz, M.; O'Sullivan, C. K. Liposomal Nanoreactors for the Synthesis of Monodisperse Palladium Nanoparticles Using Glycerol. Langmuir 2013, 29, 15405–15413. DOI: 10.1021/la402892f.
  • Tella, A. C.; Owalude, S. O.; Olatunji, S. J.; Adimula, V. O.; Elaigwu, S. E.; Alimi, L. O.; Ajibade, P. A.; Oluwafemi, O. S. Synthesis of Zinc-Carboxylate Metal-Organic Frameworks for the Removal of Emerging Drug Contaminant (Amodiaquine) from Aqueous Solution. J Environ Sci (China) 2018, 64, 264–275. DOI: 10.1016/j.jes.2017.06.015.
  • Dongol, M.; El-Denglawey, A.; Abd El Sadek, M. S.; Yahia, I. S. Thermal Annealing Effect on the Structural and the Optical Properties of Nano CdTe Films. Optik 2015, 126, 1352–1357. DOI: 10.1016/j.ijleo.2015.04.048.
  • Yu, C.; Fu, J.; Muzzio, M.; Shen, T.; Su, D.; Zhu, J.; Sun, S. CuNi Nanoparticles Assembled on Graphene for Catalytic Methanolysis of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds. Chem. Mater. 2017, 29, 1413–1418. DOI: 10.1021/acs.chemmater.6b05364.
  • Chen, B.; Wang, X.; Zhang, Q.; Xi, X.; Cai, J.; Qi, H.; Shi, S.; Wang, J.; Yuan, D.; Fang, M. Synthesis and Characterization of the Interpenetrated MOF-5. J. Mater. Chem. 2010, 20, 3758–3767. DOI: 10.1039/b922528e.
  • De Oliveira, F. M.; Nascimento, L. R. B. D. A.; Calado, C. M. S.; Meneghetti, M. R.; Da Silva, M. G. A. Aqueous-Phase Catalytic Chemical Reduction of p-Nitrophenol Employing Soluble Gold Nanoparticles with Different Shapes. Catalysts 2016, 6, 215. DOI: 10.3390/catal6120215.
  • Pradhan, N.; Pal, A.; Pal, T. Silver Nanoparticle Catalyzed Reduction of Aromatic Nitro Compounds. Colloids Surf, A 2002, 196, 247–257. DOI: 10.1016/S0927-7757(01)01040-8.
  • Gangula, A.; Podila, R.; M, R.; Karanam, L.; Janardhana, C.; Rao, A. M. Catalytic Reduction of 4-Nitrophenol Using Biogenic Gold and Silver Nanoparticles Derived from Breynia Rhamnoides. Langmuir 2011, 27, 15268–15274. DOI: 10.1021/la2034559.
  • Gama-Lara, S. A.; Morales-Luckie, R.; Argueta-Figueroa, L. I. L. I. A. N. A.; Hinestroza, J. P.; García-Orozco, I.; Natividad, R. Synthesis, Characterization, and Catalytic Activity of Platinum Nanoparticles on Bovine-Bone Powder: A Novel Support. J. Nanomater. 2018, 2018, 1–8. DOI: 10.1155/2018/6482186.
  • Liu, G.; Wang, D.; Zhou, F.; Liu, W. Electrostatic Self-Assembly of Au Nanoparticles onto Thermosensitive Magnetic Core-Shell Microgels for Thermally Tunable and Magnetically Recyclable Catalysis. Small 2015, 11, 2807–2816. DOI: 10.1002/smll.201403305.
  • Liu, Y.; Liu, L.; Yuan, M.; Guo, R. Preparation and Characterization of Casein-Stabilized Gold Nanoparticles for Catalytic Applications. Colloids Surf A. 2013, 417, 18–25. DOI: 10.1016/j.colsurfa.2012.08.050.
  • Kohantorabi, M.; Gholami, M. R. Kinetic Analysis of the Reduction of 4-Nitrophenol Catalyzed by CeO2 Nanorods-Supported CuNi Nanoparticles. Ind. Eng. Chem. Res. 2017, 56, 1159–1167. DOI: 10.1021/acs.iecr.6b04208.
  • Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction. Langmuir 2010, 26, 2885–2893. DOI: 10.1021/la902950x.
  • Priya, D. B.; Asharani, I. V. Catalytic Reduction in 4-Nitrophenol Using Actinodaphne Madraspatana Bedd Leaves-Mediated Palladium Nanoparticles. IET Nanobiotechnol. 2018, 12, 116–126. DOI: 10.1049/iet-nbt.2017.0027.
  • Narayanan, R. K.; Devaki, S. J. Brawny Silver-Hydrogel Based Nanocatalyst for Reduction of Nitrophenols: studies on Kinetics and Mechanism. Ind. Eng. Chem. Res. 2015, 54, 1197–1203. DOI: 10.1021/ie5038352.
  • Chen, H.; Fan, X.; Ma, J.; Zhang, G.; Zhang, F.; Li, Y. Green Route for Microwave-Assisted Preparation of Auag-Alloy-Decorated Graphene Hybrids with Superior 4-np Reduction Catalytic Activity. Ind. Eng. Chem. Res. 2014, 53, 17976–17980. DOI: 10.1021/ie503251h.
  • Bai, S.; Shen, X.; Zhu, G.; Li, M.; Xi, H.; Chen, K. In Situ Growth of NixCo Nanoparticles on Reduced Graphene Oxide Nanosheets and Their Magnetic and Catalytic Properties. ACS Appl. Mater. Interfaces 2012, 4, 2378–2381. DOI: 10.1021/am300310d.
  • Damasceno, J.; Maroneze, C.; Strauss, M.; Sigoli, F.; Mazali, I. Preparation of Supported AuPd Nanoalloys Mediated by Ionic Liquid-Like Functionalized SBA-15: Structural Correlations concerning Its Catalytic Activity. New J. Chem. 2016, 40, 6636–6640. DOI: 10.1039/C6NJ00380J.
  • Wu, W.; Lei, M.; Yang, S.; Zhou, L.; Liu, L.; Xiao, X.; Jiang, C.; Roy, V. A One-Pot Route to the Synthesis of Alloyed Cu/Ag Bimetallic Nanoparticles with Different Mass Ratios for Catalytic Reduction of 4-Nitrophenol. J. Mater. Chem. A 2015, 3, 3450–3455. DOI: 10.1039/C4TA06567K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.