895
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

The status of honeybees (Apis mellifera scutellata) colonies in Hurugwe Safari Area-Rifa section, northern Zimbabwe

ORCID Icon, , , , &
Pages 154-164 | Received 24 Jan 2022, Accepted 02 Aug 2022, Published online: 07 Aug 2022

References

  • Abrha, H. (2018). Climate change impact on coffee and the pollinator bee suitable area interaction in Raya Azebo, Ethiopia. Cogent Food and Agriculture, 4(1), 1–13. https://doi.org/10.1080/23311932.2018.1564538
  • Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
  • Anderson, R. P., & Martinez-Meyer, E. (2004). Modeling species’ geographic distributions for preliminary conservation assessments: An implementation with the spiny pocket mice (heteromys) of Ecuador. Biological Conservation, 116(2), 167–179. https://doi.org/10.1016/S0006-3207(03)00187-3
  • Barnett, K. L., & Facey, S. L. (2016). Grasslands, invertebrates, and precipitation: A review of the effects of climate change. Frontiers in Plant Science, 7, 1196. https://doi.org/10.3389/fpls.2016.01196
  • Chakuya, J., Mandisodza-Chikerema, R., Ngorima, P., & Malunga, A. (2021). Water sources during drought period in a savanna wildlife ecosystem, northern Zimbabwe. Geology, Ecology, and Landscapes, 1–6. https://doi.org/10.1080/24749508.2021.1971413
  • Chakuya, J., Gandiwa, E., Muboko, N., & Muposhi, V. K. (2022). A review of habitat and distribution of common stingless bees and honeybees species in African savanna ecosystems. Tropical Conservation Science, 15. https://doi.org/10.1177/2F19400829221099623
  • Chitesa, A. (2014). Beekeeping in Zimbabwe paper presented at the APIEXPO Africa 2014 held in harare 6-11th october, 2014. By Smith Nyatsande.
  • Cloudsley-Thompson, J. L. (1962). Microclimates and the distribution of terrestrial arthropods. Annual Review of Entomology, 7(1), 199–222. https://doi.org/10.1146/annurev.en.07.010162.001215
  • Dunham, K. M. (1988). Demographic changes in the Zambezi Valley elephants (Loxodonta africana). Journal of Zoology, London, 215(2), 382–388. https://doi.org/10.1111/j.1469-7998.1988.tb04909.x
  • Dunham, K. M. (1992). Response of a lion (Panthera leo) population to changing prey availability. Journal of Zoology, 227(2), 330–333. https://doi.org/10.1111/j.1469-7998.1992.tb04829.x
  • Dunne, J., Höhn, A., Franke, G., Neumann, K., Breunig, P., Gillard, T., Evershed, R. P., & Evershed, R. P. (2021). Honey-collecting in prehistoric West Africa from 3500 years ago. Nature Communications, 12(1), 1–11. https://doi.org/10.1038/s41467-021-22425-4
  • Elith, J.H., Graham, C. P., Anderson, R., Dudík, M., Ferrier, S., Guisan, A., E. Zimmermann, N., Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend Peterson, A., E. Zimmermann, N. (2006). Novel methods improve prediction of species distributions from occurrence data. Ecography, 29(2), 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  • Elith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of Maxent for ecologist. Diversity and Distribution, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
  • Engler, R., Guisan, A., & Rechsteiner, L. (2004). An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, 41(2), 263–274. https://doi.org/10.1111/j.0021-8901.2004.00881.x
  • Ernst, U. (2016). Following the wild bees: The craft and science of bee hunting. Bioscience, 66(10). https://doi.org/10.1093/biosci/biw105
  • Estrada-Peña, A., & Salman, M. (2013). Current limitations in the control and spread of ticks that affect livestock: A review. Agriculture, 3(2), 221–235. https://doi.org/10.3390/agriculture3020221
  • Fikadu, Z. (2019). The contribution of managed honeybees to crop pollination, food security, and economic stability: Case of Ethiopia. The Open Agriculture Journal, 13(1), 175–181. https://doi.org/10.2174/1874331501913010175
  • Franklin, J. (2009). Mapping species distributions: Spatial inference and prediction. Cambridge University Press.
  • Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E., & Thuiller, W. (2012). Invasive species distribution models–how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography, 21(11), 1126–1136. https://doi.org/10.1111/j.1466-8238.2012.00768.x
  • Garnery, L., Cornuet, J. M., & Solignac, M. (1992). Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Molecular Ecology, 1(3), 145–154. https://doi.org/10.1111/j.1365-294X.1992.tb00170.x
  • Gill, N. S., & Sangermano, F. (2016). Africanised honeybee habitat suitability: A comparison between models for southern Utah and southern Califonia. Applied Geography, 76, 14–21. https://doi.org/10.1016/j.apgeog.2016.09.002
  • González-Fernández, A., Manjarrez, J., García-Vázquez, U., D’Addario, M., & Sunny, A. (2018). Present and future ecological niche modeling of garter snake species from the Trans-Mexican Volcanic Belt. Peer Journal, 6, e4618. https://doi.org/10.7717/peerj.4618
  • Groh, C., Tautz, J., & Rössler, W. (2004). Synaptic organization in the adult honeybee brain is influenced by brood-temperature control during pupal development. Proceedings of National Academy of Science, 101, 4268–4273. https://doi.org/10.1073/pnas.0400773101
  • Guerin, E. (2020). Apis dorsata Honey Hunting and Honey Trading in Mondulkiri (EasternCambodia). Bee World, 97(2), 34–38. https://doi.org/10.1080/0005772X.2019.1692644
  • Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3), 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9
  • Guisan, A., Edwards, T. C., & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecological Modelling, 157(2–3), 89–100. https://doi.org/10.1016/S0304-3800(02)00204-1
  • Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
  • Guy, P. R. (1977). Notes on the vegetation types of the Zambezi Valley. Rhodesia, between the kariba and mpata gorges. Kirkia, 10(2), 543–557. http://www.jstor.org/stable/23502161
  • Hennessy, G., Harris, C., Eaton, C., Wright, P., Jackson, E., Goulson, D., & Ratnieks, F. F. (2020). Gone with the wind: Effects of wind on honeybee visit rate and foraging behaviour. Animal Behaviour, 161, 23–31. https://doi.org/10.1016/j.anbehav.2019.12.018
  • Hirt, C., Filmer, M. S., & Featherstone, W. E. (2010). Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTMver4.1 and GEODATA DEM- 9S ver3 digital elevation models over Australia. Australian Journal of Earth Sciences, 57(3), 337–347. https://doi.org/10.1080/08120091003677553
  • Hirzel, A. H., Hausser, J., Chessel, D., & Perrin, N. (2002). Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology, 83(7), 2027–2036. https://doi.org/10.1890/0012-965820020832027ENFAHT2.0.CO2
  • Human, H., Brodschneider, R., Dietemann, V., Dively, G., Ellis, J. D., Forsgren, E., Zheng, H. Q., Hatjina, F., Hu, F.-L., Jaffé, R., Jensen, A. B., Köhler, A., Magyar, J. P., Özkýrým, A., Pirk, C. W. W., Rose, R., Strauss, U., Tanner, G., Tarpy, D. R., … Zheng, H.-Q. (2013). Miscellaneous standard methods for Apis mellifera research. Journal of Apicultural Research, 52(4), 1–53. https://doi.org/10.3896/IBRA.1.52.4.10
  • Isack, H. A., & Reyer, H. U. (1989). Honeyguides and honey gatherers: Interspecific communication in a symbiotic relationship. Science, 243(4896), 1343–1346. https://doi.org/10.1126/science.243.4896.1343
  • Jones, J. C., & Oldroyd, B. P. (2007). Nest thermoregulation in social insects. Advances in Insect Physiology, 33, 154–191. https://doi.org/10.1016/S0065-2806(06)33003-2
  • Joshi, S. R., & Gurung, M. B. (2005). Non-destructive method of honey hunting. Bee World, 86(3), 63–64. https://doi.org/10.1080/0005772X.2005.11417313
  • Keenan, T., Maria Serra, J., Lloret, F., Ninyerola, M., & Sabate, S. (2011). Predicting the future of forests in the mediterranean under climate change, with niche‐and process‐based models: CO2 matters! Global Change Biology, 17(1), 565–579. https://doi.org/10.1111/j.1365-2486.2010.02254.x
  • Kumar, S., & Stohlgren, T. J. (2009). Maxent modelling for predicting suitable habitat for threatened and endangered tree canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Environment, 1(4), 094–098. https://doi.org/10.5897/JENE.9000071
  • Lensky, Y. (1964). Comportement d’une colonie d’abeilles a des temperatures extremes. Journal of Insect Physiology, 10(1), 1–12. https://doi.org/10.1016/0022-1910(64)90090-3
  • Lobo, J. M., Jiménez‐Valverde, A., & Real, R. (2008). AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x
  • Ma, B., & Sun, J. (2018). Predicting the distribution of stipa purpurea across the Tibetan plateau via the MaxEnt model. BMC Ecology, 18(1), 1–12. https://doi.org/10.1186/s12898-018-0165-0
  • Makori, D. M., Fombong, A. T., Abdel-Rahman, E. M., Nkoba, K., Ongus, J., Irungu, J., Landmann, T., Makau, S., Mutanga, O., Odindi, J., Raina, S., & Landmann, T. (2017). Predicting spatial distribution of key honeybee pests in Kenya using remotely sensed and bioclimatic variables: Key honeybee pests distribution models. ISPRS International Journal of Geo-Information, 6(3), 66. https://doi.org/10.3390/ijgi6030066
  • Marshman, J., Blay-Palmer, A., & Landman, K. (2019). Anthropocene crisis: Climate change, pollinators, and food security. Environments, 6(2), 22. https://doi.org/10.3390/environments6020022
  • McFarlane, B. (2007). Beginning AutoCAD 2007. Routledge).
  • Morin, X., & Thuiller, W. (2009). Comparing niche‐and process‐based models to reduce prediction uncertainty in species range shifts under climate change. Ecology, 90(5), 1301–1313. https://doi.org/10.1890/08-0134.1
  • Naimi, B. (2017). Package ‘usdm uncertainty analysis for species distribution models. Accessed 03 January 2022. Wien. www.cran.r-project.org
  • Ong, M., Bulmer, M., Groening, J., & Srinivasan, M. V. (2017). Obstacle traversal and route choice in flying honeybees: Evidence for individual handedness. PLoS One, 12(11), e0184343. https://doi.org/10.1371/journal.pone.0184343
  • Pearce, J. L., & Boyce, M. S. (2006). Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43(3), 405–412. https://doi.org/10.1111/j.1365-2664.2005.01112.x
  • Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecological Modelling, 213(1), 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008
  • Phillips, S. J., Dudik, M., & Schapire, R. E. (2004) A maximum entropy approach to species distribution modelling. 21st International conference on machine learning, 2004., Banff, Canada: AT&T Labs − Research, 1–8. https://doi.org/10.1145/1015330.1015412
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Ren, Z., Peng, H., & Liu, Z. W. (2016). The rapid climate change-caused dichotomy on subtropical evergreen broad-leaved forest in Yunnan: Reduction in habitat diversity and increase in species diversity. Plant Diversity, 38(3), 142–148. https://doi.org/10.1016/j.pld.2016.04.003
  • Rinnan, D. S., & Lawler, J. (2019). Climate‐niche factor analysis: A spatial approach to quantifying species vulnerability to climate change. Ecography, 42(9), 1494–1503. https://doi.org/10.1111/ecog.03937
  • Ruttner, F. (1988). Morphometric analysis and classification. Biogeography and taxonomy of honeybees (pp. 66–78). Springer. https://doi.org/10.1007/978-3-642-72649-1_6
  • Schouten, C., Lloyd, D., Ansharyani, I., Salminah, M., Somerville, D., & Stimpson, K. (2020). The role of honey hunting in supporting subsistence livelihoods in Sumbawa, Indonesia. Geographical Research, 58(1), 64–76. https://doi.org/10.1111/1745-5871.12380
  • Seeley, T. D. (1982). How honeybees find a home. Scientific American, 247(4), 158–168. https://doi.org/10.1038/scientificamerican1082-158
  • Southwick, E. E., & Heldmaier, G. (1987). Temperature control in honeybee colonies. Bioscience, 37(6), 395–399. https://doi.org/10.2307/1310562
  • Spottiswoode, C. N., Begg, K. S., & Begg, C. M. (2016). Reciprocal signalling in honey guide-human mutualism. Science, 353(6297), 387–389. https://doi.org/10.1126/science.aaf4885
  • Tagwireyi, P., Wenga, T., Ndaimani, H., & Mpakairi, K. S. (2020). Environmental correlates of cheetah (acinonyx jubatus) space-use in a savanna landscape. African Journal of Wildlife Research, 50(1). https://doi.org/10.3957/056.050.0000
  • Tarakini, G., Chemura, A., Tarakini, T., & Musundire, R. (2021). Drivers of diversity and community structure of bees in an agroecological region of Zimbabwe. Ecology and Evolution, 11(11), 1–12. https://doi.org/10.1002/ece3.7492
  • Tautz, J., Maier, S., Groh, C., Rössler, W., & Brockmann, A. (2003). Behavioral performance in adult honeybees is influenced by the temperature experienced during their pupal development. Proceedings of National Academy of Sciences, 100, 7343–7347. https://doi.org/10.1073/pnas.1232346100
  • Thuiller, W., Georges, D., Engler, R., & Breiner, F. (2016). Ensemble platform for species distribution modeling R Package Version. 1–3.
  • Visscher, P. K., & Seeley, T. D. (1982). Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology, 63(6), 1790–1801. https://doi.org/10.2307/1940121
  • Wood, B. M., Pontzer, H., Raichlen, D. A., & Marlowe, F. W. (2014). Mutualism and manipulation in Hadza–honeyguide interactions. Evolution and Human Behavior, 35(6), 540–546. https://doi.org/10.1016/j.evolhumbehav.2014.07.007
  • Zhu, H., Wang, D., Wang, L., Fang, J., Sun, W., & Ren, B. (2014). Effects of altered precipitation on insect community composition and structure in a meadow steppe. Ecological Entomology, 39(4), 453–461. https://doi.org/10.1111/een.12120