2,978
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Assessment of ground water potentiality in semi-arid area of central Tanzania. implication from geology and geomorphology of the dodoman supergroup

ORCID Icon &
Pages 165-184 | Received 04 Feb 2022, Accepted 02 Aug 2022, Published online: 10 Aug 2022

References

  • Adetunde, L., Sackey, I., & Bismark, D. (2014). Effects of mining activities on the quality of drinking water in obuasi mine area and its environs in Ashanti Region of Ghana. International Journal of Marine, Atmospheric and Earth Sciences, 2(1), 1–10. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adetunde%2C+L.%2C+Sackey%2C+I.%2C+%26+Bismark%2C+D.+%282014%29.+Effects+of+Mining+Activities+on+the+Quality+of+Drinking+Water+in+Obuasi+Mine+Area+and+Its+Environs+in+Ashanti+Region+of+Ghana.+International+Journal+of+Marine%2C+Atmospheric+and+Earth+Sciences%2C+2%281%29%2C+1-10&btnG=
  • Al-Abadi, A. M., Al-Temmeme, A. A., & Al-Ghanimy, M. A. (2016). A GIS-based combining of frequency ratio and index of entropy approaches for mapping groundwater availability zones at Badra–Al Al-Gharbi–Teeb areas, Iraq. Sustainable Water Resources Management, 2(3), 265–283. https://doi.org/10.1007/s40899-016-0056-5
  • Al-Abadi, A. M., Fryar, A. E., Rasheed, A. A., & Pradhan, B. (2021). Assessment of groundwater potential in terms of the availability and quality of the resource: A case study from Iraq. Environmental Earth Sciences, 80(12), 1–22. https://doi.org/10.1007/s12665-021-09725-0
  • Alsharhan, A. S., & Rizk, Z. E. (2020). Geomorphology and geology and their influence on water resources. In P. Singh, Vijay (ed.), Water resources and integrated management of the United Arab Emirates (pp. 65–111). Springer.
  • Arhin, E. (2010). Erratum for Arhin & Nude, geochemistry: Exploration, environment, analysis, 10 (4) 401-406: Use of termitaria in surficial. Geochemistry: Exploration, Environment, Analysis, 10(4), 401–406. https://d1wqtxts1xzle7.cloudfront.net/50860419/Erratum_for_Arhin__Nude_Geochemistry_Exp20161213-5494-1d4owb6-with-cover-page-v2.pdf?Expires=1659788071&Signature=SN13cXY2D9EdM35CmAjae~gdjiXJqwdDPH6Bb1Y5KSGimCOGkBxoW1jNWLNHlinB24XezGj~AHFh00BI3jEKEN3CKMaXqK-DMSHzk6lqgYs-6OxDXQgASFzD2MdtonYhBcw171vGxLha4qJvH1lr0civ~uFN0KlsXBbh3D4uGVaDQ7TFMHT9L~rHRrRPF14hAJs6zrVspDWl02A4tKww3he82UCgl84xaYcxG93T34HHLnYhEit1c4cIxvD6xdIoYWCw1DNFNaJPdgS6nwAiNr74QKdLXwOtn8e8ykaXV~Ourfm~LQf9XZVG9DjWyUQ1g7cpU2MA0XZrkdGIybqc6g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
  • Bakari, S. S., Aagaard, P., Vogt, R. D., Ruden, F., Brennwald, M. S., Johansen, I., & Gulliksen, S. (2012a). Groundwater residence time and paleorecharge conditions in the deep confined aquifers of the coastal watershed, South-East Tanzania. Journal of Hydrology, 466, 127–140. https://doi.org/10.1016/j.jhydrol.2012.08.016
  • Bakari, S. S., Aagaard, P., Vogt, R. D., Ruden, F., Johansen, I., & Vuai, S. A. (2012b). Delineation of groundwater provenance in a coastal aquifer using statistical and isotopic methods, Southeast Tanzania. Environmental Earth Sciences, 66(3), 889–902. https://doi.org/10.1007/s12665-011-1299-y
  • Balagizi, C. M., Kies, A., Kasereka, M. M., Tedesco, D., Yalire, M. M., & McCausland, W. A. (2018). Natural hazards in Goma and the surrounding villages. East African Rift System. Natural Hazards, 93(1), 31–66. https://doi.org/10.1007/s11069-018-3288-x
  • Ballukraya, P., & Kalimuthu, R. (2010). Quantitative hydrogeological and geomorphological analyses for groundwater potential assessment in hard rock terrains. Current Science, 98(2), 253–259. https://www.jstor.org/stable/pdf/24111519.pdf?refreqid=excelsior%3A46d356707083ce9ee34a7bb525da375f&ab_segments=&origin=&acceptTC=1
  • Bonacci, O. (2015). Karst hydrogeology/hydrology of Dinaric chain and isles. Environmental Earth Sciences, 74(1), 37–55. https://doi.org/10.1007/s12665-014-3677-8
  • Borg, G., & Shackleton, R. (1997). In deWit, M. & Ashwal, L. D. (eds.), Oxford Monographs on Geology and Geophysics, Oxford University Press, 608–619.
  • Bretzler, A., Lalanne, F., Nikiema, J., Podgorski, J., Pfenninger, N., Berg, M., & Schirmer, M. (2017). Groundwater arsenic contamination in Burkina Faso, West Africa: Predicting and verifying regions at risk. Science of the Total Environment, 584-585, 958–970. https://doi.org/10.1016/j.scitotenv.2017.01.147
  • Briški, M., Stroj, A., Kosović, I., & Borović, S. (2020). Characterization of aquifers in metamorphic rocks by combined use of electrical resistivity tomography and monitoring of spring hydrodynamics. geosciences, 10(4), 137. https://doi.org/10.3390/geosciences10040137
  • Brown, R. J., & Sparks, R. S. (2010). Mapping the Igwisi Hills kimberlite volcanoes, Tanzania: Understanding how deep-sourced mantle magmas behave at the Earths surface. https://gef.nerc.ac.uk/documents/report/894.pdf
  • Carrier, M.-A., Lefebvre, R., Racicot, J., & Asare, E. (2008). Northern Ghana hydrogeological Assessment Project 33rd WEDC International Conference, Accra, Ghana. http://espace.inrs.ca/id/eprint/4764/1/S2154%20.pdf
  • Chacha, N. (2020). Assessment of groundwater abstraction and hydrogeochemical investigation in Arusha city, Northern Tanzania Nelson Mandela -AIST]. https://dspace.nm-aist.ac.tz/handle/20.500.12479/954
  • Chakrabortty, R., Pal, S. C., Malik, S., & Das, B. (2018). Modeling and mapping of groundwater potentiality zones using AHP and GIS technique: A case study of Raniganj Block, Paschim Bardhaman, West Bengal. Modeling Earth Systems and Environment, 4(3), 1085–1110. https://doi.org/10.1007/s40808-018-0471-8
  • Chilton, P. J., & Foster, S. (1995). Hydrogeological characterisation and water-supply potential of basement aquifers in tropical Africa. Hydrogeology Journal, 3(1), 36–49. https://doi.org/10.1007/s100400050061
  • Chorowicz, J. (2005). The east African rift system. Journal of African Earth Sciences, 43(1–3), 379–410. https://doi.org/10.1016/j.jafrearsci.2005.07.019
  • Comte, J.-C., Cassidy, R., Nitsche, J., Ofterdinger, U., Pilatova, K., & Flynn, R. (2012). The typology of Irish hard-rock aquifers based on an integrated hydrogeological and geophysical approach. Hydrogeology Journal, 20(8), 1569–1588. https://doi.org/10.1007/s10040-012-0884-9
  • Dai, F., Lee, C., Li, J., & Xu, Z. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 40(3), 381–391. https://doi.org/10.1007/s002540000163
  • Das, B., & Pal, S. C. (2019). Combination of GIS and fuzzy-AHP for delineating groundwater recharge potential zones in the critical Goghat-II block of West Bengal, India. HydroResearch, 2, 21–30. https://doi.org/10.1016/j.hydres.2019.10.001
  • Davies, T. (2010). Medical geology in Africa. In Selinus, Olle, B. Finkelman, Robert, & A. Centeno, Jose. (Eds.), Medical geology (pp. 199–219). Springer.
  • Davies, J., & MacDonald, A. (1999). Final report: The groundwater potential of the Oju/Obi area, Eastern Nigeria. British geological survey technical report, overseas geology series. British Geological Survey.
  • De Vries, J. J., & Simmers, I. (2002). Groundwater recharge: An overview of processes and challenges. Hydrogeology Journal, 10(1), 5–17. https://doi.org/10.1007/s10040-001-0171-7
  • Dragičević, N., Karleuša, B., & Ožanić, N. (2018). Improvement of drainage density parameter estimation within erosion potential method. Multidisciplinary Digital Publishing Institute Proceedings.
  • DUWASA. (2015). Dodoma Urban Water Supply and Sewerage Authority Duwasa. Retrieved 21 September from www.duwasa.go.tz
  • Ejepu, J., Olasehinde, P., Omar, D., Abdullahi, D., Adebowale, T., & Ochimana, A. (2015). Integration of geology, remote sensing and geographic information system in assessing groundwater potential of Paiko sheet 185 North-Central Nigeria. Journal of Information, Education, Science and Technology (JIEST, 2(1), 145–155. http://repository.futminna.edu.ng:8080/jspui/handle/123456789/5025
  • Elisante, E., & Muzuka, A. N. (2017). Occurrence of nitrate in Tanzanian groundwater aquifers: A review. Applied Water Science, 7(1), 71–87. https://doi.org/10.1007/s13201-015-0269-z
  • Ernstson, K. (2006). Magnetic, geothermal, and radioactivity methods. In Kirsch, Reinhard (ed.), Groundwater geophysics (pp. 275–294). Springer.
  • Ettazarini, S., & El Jakani, M. (2020). Mapping of groundwater potentiality in fractured aquifers using remote sensing and GIS techniques: The case of Tafraoute Region, Morocco. Environmental Earth Sciences, 79(5), 1–13. https://doi.org/10.1007/s12665-020-8848-1
  • FAO. (2003). Digital soil map of the world and derived soil properties. Land and water development division In. Nations. Ed., F. A. O. o. t. U. www.fao.org
  • Gao, Q., Shang, Y., Hasan, M., Jin, W., & Yang, P. (2018). Evaluation of a weatheRed rock aquifer using ERT method in South Guangdong. China Water, 10(3), 293. https://doi.org/10.3390/w10030293
  • Ghosh, P. K., & Jana, N. C. (2018). Groundwater potentiality of the Kumari River Basin in drought-prone Purulia upland, Eastern India: A combined approach using quantitative geomorphology and GIS. Sustainable Water Resources Management, 4(3), 583–599. https://doi.org/10.1007/s40899-017-0142-3
  • Golkarian, A., & Rahmati, O. (2018). Use of a maximum entropy model to identify the key factors that influence groundwater availability on the Gonabad Plain, Iran. Environmental Earth Sciences, 77(10), 1–20. https://doi.org/10.1007/s12665-018-7551-y
  • Gustafson, G., & Krásný, J. (1994). Crystalline rock aquifers: Their occurrence, use and importance. Applied Hydrogeology, 2(2), 64–75. https://doi.org/10.1007/s100400050051
  • Herrera-Pantoja, M., & Hiscock, K. (2015). Projected impacts of climate change on water availability indicators in a semi-arid region of central Mexico. Environmental Science & Policy, 54, 81–89. https://doi.org/10.1016/j.envsci.2015.06.020
  • Hiji, M. F., & Ntalikwa, J. W. (2014). Investigations of Dodoma municipal hard water:(Part 1): Review of hard water treatment processes and identification of contaminants. International Journal of Environmental Monitoring and Protection, 1(3), 56–61.
  • Jones, M. (1985). The weathered zone aquifers of the basement complex areas of Africa. Quarterly Journal of Engineering Geology and Hydrogeology, 18(1), 35–46. https://doi.org/10.1144/GSL.QJEG.1985.018.01.06
  • Kashaigili, J. J. (2010). Assessment of groundwater availability and its current and potential use and impacts in Tanzania. International Water Management Institute (IWMI). https://gw-africa.iwmi.org/wp-content/uploads/sites/23/2018/10/Country_Report-Tanzania.pdf
  • Kasonta, L. J., & Kasonta, A. S. (1995). Exploration of sustainable water sources 21st WEDC Conference- Sustainability Of Water And Sanitation Systems, Kampla, Uganda. https://repository.lboro.ac.uk/articles/Exploration_of_sustainable_water_sources/9594209/files/17234387.pdf
  • Khodaei, K., & Nassery, H. R. (2013). Groundwater exploration using remote sensing and geographic information systems in a semi-arid area (Southwest of Urmieh, Northwest of Iran). Arabian Journal of Geosciences, 6(4), 1229–1240. https://doi.org/10.1007/s12517-011-0414-4
  • Kilham, P., & Hecky, R. E. (1973). Fluoride: Geochemical and ecological significance in East African waters and SEDIMENTS1. Limnology and Oceanography, 18(6), 932–945. https://doi.org/10.4319/lo.1973.18.6.0932
  • Kimerling, A. J., Muehrcke, P. C., Muehrcke, J. O., & Muehrcke, P. (2016). Map use: Reading, analysis, interpretation. ESRI Press Academic.
  • Kirsch, R. (2006). Groundwater geophysics (Vol. 493). Springer.
  • Klint, K. E. S., & Gravesen, P. (1999). Fractures and biopores in Weichselian Clayey till aquitards at Flakkebjerg, Denmark: Selected Paper–Conference, Copenhagen may 14-16, 1998, on mass transport in fractured aquifers and aquitards. Hydrology Research, 30(4–5), 267–284. https://doi.org/10.2166/nh.1999.0015
  • Komakech, H. C., Van der Zaag, P., & Van Koppen, B. (2012). The last will be first: Water transfers from agriculture to cities in the Pangani river basin, Tanzania. Water Alternatives, 5(3), 700–720. https://www.water-alternatives.org/index.php/volume5/v5issue3/193-a5-3-9/file
  • Kusiluka, L., Mlozi, M., Munishi, P., Karimuribo, E., Luoga, E., Mdegela, R., & Kambarage, D. (2004). Preliminary observations on accessibility and utilisation of water in selected villages in Dodoma Rural and Bagamoyo Districts, Tanzania. Physics and Chemistry of the Earth, Parts A/B/C, 29(15–18), 1275–1280. https://doi.org/10.1016/j.pce.2004.09.006
  • Kut, K. M. K., Sarswat, A., Srivastava, A., Pittman, C. U., Jr, & Mohan, D. (2016). A review of fluoride in African groundwater and local remediation methods. Groundwater for Sustainable Development, 2-3, 190–212. https://doi.org/10.1016/j.gsd.2016.09.001
  • Lee, S., & Evangelista, D. G. (2005). Landslide susceptibility mapping using probability and statistics models in Baguio City, Philippines. ISPRS 31st International Symposium On Remote Sensing Of Environment, Saint Petersburg, Russia,
  • Ligate, F., Ijumulana, J., Ahmad, A., Kimambo, V., Irunde, R., Mtamba, J. O., Mtalo, F., & Bhattacharya, P. (2021). Groundwater resources in the East African Rift Valley: Understanding the geogenic contamination and water quality challenges in Tanzania. Scientific African, 13, e00831. https://doi.org/10.1016/j.sciaf.2021.e00831
  • Lwimbo, Z. D., Komakech, H. C., & Muzuka, A. N. (2019a). Estimating groundwater recharge on the southern slope of Mount Kilimanjaro, Tanzania. Environmental Earth Sciences, 78(24), 1–22. https://doi.org/10.1007/s12665-019-8690-5
  • Lwimbo, Z. D., Komakech, H. C., & Muzuka, A. N. (2019b). Impacts of emerging agricultural practices on groundwater quality in Kahe catchment, Tanzania. Water, 11(11), 2263. https://doi.org/10.3390/w11112263
  • MacDonald, A., & Davies, J. (2000). A brief review of groundwater for rural water supply in sub-Saharan Africa (Overseas geology series issue). British Geological Survey. http://nora.nerc.ac.uk/id/eprint/501047
  • MacDonald, A. M., Davies, J., & Calow, R. C. (2008). African hydrogeology and rural water supply. CRC Press.
  • Maduka, I. C., Anakwuo, A. I., & Ogueche, N. P. (2018). Lead in potable water sources in Anambra State, South East, Nigeria. African Journal of Medical and Health Sciences, 17(1), 26–30. https://doi.org/10.4103/ajmhs.ajmhs_32_17
  • Manya, S., Kobayashi, K., Maboko, M. A., & Nakamura, E. (2006). Ion microprobe zircon U–Pb dating of the late Archaean metavolcanics and associated granites of the Musoma-Mara Greenstone Belt, Northeast Tanzania: Implications for the geological evolution of the Tanzania Craton. Journal of African Earth Sciences, 45(3), 355–366. https://doi.org/10.1016/j.jafrearsci.2006.03.004
  • Maurice, L., Taylor, R. G., Tindimugaya, C., MacDonald, A. M., Johnson, P., Kaponda, A., & Gooddy, D. (2019). Characteristics of high-intensity groundwater abstractions from weathered crystalline bedrock aquifers in East Africa. Hydrogeology Journal, 27(2), 459–474.
  • Mayaya, H., Opata, G., & Kipkorir, E. (2015). Understanding climate change and manifestation of its driven impacts in the semi arid areas of Dodoma Region, Tanzania. Ethiopian Journal of Environmental Studies and Management, 8(4), 364–376. https://doi.org/10.4314/ejesm.v8i4.2
  • McAuliffe, J. R. (1994). Landscape evolution, soil formation, and ecological patterns and processes in Sonoran Desert bajadas. Ecological Monographs, 64(2), 111–148. https://doi.org/10.2307/2937038
  • McMurry, J., & Fay, R. (2004). Hydrogen, oxygen and water. In K. P. Hamann (Ed.), McMurry fay chemistry 4th ed.,(Vol. 575, pp. 599). Pearson Education.
  • Mdee, O. J., & Tembo, M. M. (2021). Identification of potential sites for surface runoff harvesting in the semi-arid area for developing cities. A case study of Dodoma urban, Tanzania. Arabian Journal of Geosciences, 14(21), 1–17. https://doi.org/10.1007/s12517-021-08549-3
  • Mjemah, I. C., & Walraevens, K. (2015). Hydrogeological mapping and estimation of potential evapotranspiration and recharge rate of Quaternary sand aquifers in Dar-es-Salaam, Tanzania. International Journal Of Geomatics And Geosciences, 6(2), 1539–1555.
  • Mlangi, T. M., & Mulibo, G. D. (2018). Delineation of shallow stratigraphy and aquifer formation at Kahe Basin, Tanzania: Implication for potential aquiferous formation. Journal of Geoscience and Environment Protection, 6(1), 78–98. https://doi.org/10.4236/gep.2018.61006
  • Morris, B. L., Lawrence, A. R., Chilton, P., Adams, B., Calow, R. C., & Klinck, B. A.Groundwater and its susceptibility to degradation: A global assessment of the problem and options for management (2003). Division of Early Warning and Assessment United Nations Environment Programme. http://nora.nerc.ac.uk/id/eprint/19395
  • Mseli, Z. H., Mwegoha, W. J., & Gaduputi, S. (2021). Identification of potential groundwater recharge zones at Makutupora basin, Dodoma Tanzania. Geology, Ecology, and Landscapes, 1–14. https://doi.org/10.1080/24749508.2021.1952763
  • Mundalik, V., Fernandes, C., Kadam, A. K., & Umrikar, B. N. (2018). Integrated geomorphological, geospatial and AHP technique for groundwater prospects mapping in basaltic terrain. Hydrospatial Analysis, 2(1), 16–27. https://doi.org/10.21523/gcj3.18020102
  • Murty, B., & Raghavan, V. (2002). The gravity method in groundwater exploration in crystalline rocks: A study in the peninsular granitic region of Hyderabad, India. Hydrogeology Journal, 10(2), 307–321. https://doi.org/10.1007/s10040-001-0184-2
  • Namwata, B. M., Kikula, I. S., & Kopoka, P. A. (2015). Access of urban farmers to land, water and inputs for urban agriculture in Dodoma municipality, Tanzania. Journal of African Studies and Development, 7(1), 31–40. https://doi.org/10.5897/JASD2014.0302
  • Nkotagu, H. (1996). The groundwater geochemistry in a semi-arid, fractured crystalline basement area of Dodoma, Tanzania. Journal of African Earth Sciences, 23(4), 593–605. https://doi.org/10.1016/S0899-5362(97)00021–3
  • Olaka, L. A., Odada, E. O., Trauth, M. H., & Olago, D. O. (2010). The sensitivity of East African rift lakes to climate fluctuations. Journal of Paleolimnology, 44(2), 629–644. https://doi.org/10.1007/s10933-010-9442-4
  • Olaka, L. A., Wilke, F. D., Olago, D. O., Odada, E. O., Mulch, A., & Musolff, A. (2016). Groundwater fluoride enrichment in an active rift setting: Central Kenya Rift case study. Science of the Total Environment, 545, 641–653. https://doi.org/10.1016/j.scitotenv.2015.11.161
  • Pal, S. C., Ghosh, C., & Chowdhuri, I. (2020). Assessment of groundwater potentiality using geospatial techniques in Purba Bardhaman district, West Bengal. Applied Water Science, 10(10), 1–13. https://doi.org/10.1007/s13201-020-01302-3
  • Plessis, A. (2017). Global water availability, distribution and use. In Freshwater challenges of South Africa and its Upper Vaal River vol. 10. Springer International Publishing, 973–978. https://doi.org/10.1007/978-3-319-49502-6
  • Ponte, J.-P., Robin, C., Guillocheau, F., Popescu, S., Suc, J.-P., Dall’Asta, M., Melinte-Dobrinescu, M. C., Bubik, M., Dupont, G., & Gaillot, J. (2019). The Zambezi delta (Mozambique channel, East Africa): High resolution dating combining bio-orbital and seismic stratigraphies to determine climate (palaeoprecipitation) and tectonic controls on a passive margin. Marine and Petroleum Geology, 105, 293–312. https://doi.org/10.1016/j.marpetgeo.2018.07.017
  • Rahmati, O., Pourghasemi, H. R., & Melesse, A. M. (2016). Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena, 137, 360–372. https://doi.org/10.1016/j.catena.2015.10.010
  • Rajaveni, S., Brindha, K., & Elango, L. (2017). Geological and geomorphological controls on groundwater occurrence in a hard rock region. Applied Water Science, 7(3), 1377–1389. https://doi.org/10.1007/s13201-015-0327-6
  • Rani, V., Pandalai, H., Sajinkumar, K., & Pradeepkumar, A. (2015). Geomorphology and its implication in urban groundwater environment: Case study from Mumbai, India. Applied Water Science, 5(2), 137–151. https://doi.org/10.1007/s13201-014-0168-8
  • Rao, N. S. (2006). Groundwater potential index in a crystalline terrain using remote sensing data. Environmental Geology, 50(7), 1067–1076. https://doi.org/10.1007/s00254-006-0280-7
  • Rwebugisa, R. A. (2008). Groundwater recharge assessment in the Makutupora basin, Enschede, Netherland: International institute for Geo-Information Science and Earth Observation.
  • Sangana, P., Deus, D., & Chaula, J. (2019). Delineation of groundwater potential zones using GIS based multi-criteria data analysis. International European Extended Enablement in Science, Engineering & Management (IEEE-SEM), 7(7), 184–202. https://www.ieeesem.com/researchpaper/Delineation_of_groundwater_potential_zones_using_GIS_based_multi_criteria_data_analysis_A_case_study_of_Dodoma_City_Tanzania.pdf
  • Sappa, G., Ferranti, F., & De Filippi, F. M. (2017). Assessment of vulnerability to seawater intrusion for the coastal aquifer of Dar es Salaam (Tanzania). 17th International Multidisciplinary Scientific Geoconference Sgem 2017,
  • Saraf, A., & Choudhury, P. (1998). Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. International Journal of Remote Sensing, 19(10), 1825–1841. https://doi.org/10.1080/014311698215018
  • Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11(10), 1577–1593. https://doi.org/10.1111/j.1365-2486.2005.01026.x
  • Schlüter, T. (2008). Geological atlas of Africa. Springer.
  • Seddon, D., Kashaigili, J. J., Taylor, R. G., Cuthbert, M. O., Mwihumbo, C., & MacDonald, A. M. (2021). Focused groundwater recharge in a tropical dryland: Empirical evidence from central, semi-arid Tanzania. Journal of Hydrology: Regional Studies, 37, 100919. https://doi.org/10.1016/j.ejrh.2021.100919
  • Selley, R. C. (1997). African basins. Elsevier.
  • Shemsanga, C., Muzuka, A. N. N., Martz, L., Komakech, H. C., Elisante, E., Kisaka, M., & Ntuza, C. (2017). Origin and mechanisms of high salinity in Hombolo Dam and groundwater in Dodoma municipality Tanzania, revealed. Applied Water Science, 7(6), 2883–2905. https://doi.org/10.1007/s13201-017-0569-6
  • Shemsanga, C., Muzuka, A., Martz, L., Komakech, H., & Mcharo, E. (2018). Indigenous knowledge on development and management of shallow dug wells of Dodoma Municipality in Tanzania. Applied Water Science, 8(2), 1–20. https://doi.org/10.1007/s13201-018-0697-7
  • Shishaye, H. A., & Abdi, S. (2016). Groundwater exploration for water well site locations using geophysical survey methods. Hydrol Current Res, 7(226), 2. https://doi.org/10.4172/2157-7587.1000226
  • Singhal, B. B. S., & Gupta, R. P. (2010). Applied hydrogeology of fractuRed Rocks. Springer Science & Business Media.
  • Staley, D. M., Wasklewicz, T. A., & Blaszczynski, J. S. (2006). Surficial patterns of debris flow deposition on alluvial fans in Death Valley, CA using airborne laser swath mapping data. Geomorphology, 74(1–4), 152–163. https://doi.org/10.1016/j.geomorph.2005.07.014
  • Teeuw, R. M. (1995). Groundwater exploration using remote sensing and a low-cost geographical information system. Hydrogeology Journal, 3(3), 21–30. https://doi.org/10.1007/s100400050057
  • Thomas, R. J., Roberts, N. M., Jacobs, J., Bushi, A. M., Horstwood, M. S., & Mruma, A. (2013a). Geochronology and structure of the eastern margin of the Tanzania Craton east of Dodoma. British Geological Survey. http://nora.nerc.ac.uk/id/eprint/21389
  • Thomas, R. J., Roberts, N. M., Jacobs, J., Bushi, A. M., Horstwood, M. S., & Mruma, A. (2013b). Structural and geochronological constraints on the evolution of the eastern margin of the Tanzania Craton in the Mpwapwa area, central Tanzania. Precambrian Research, 224, 671–689. https://doi.org/10.1016/j.precamres.2012.11.010
  • Thomas, R. J., Spencer, C., Bushi, A. M., Baglow, N., Boniface, N., de Kock, G., Horstwood, M. S., Hollick, L., Jacobs, J., Kajara, S., Kamihanda, G., Key, R. M., Maganga, Z., Mbawala, F., McCourt, W., Momburi, P., Moses, F., Mruma, A., Myambilwa, Y., … Millar, I. (2016). Geochronology of the central Tanzania Craton and its southern and eastern orogenic margins. Precambrian Research, 277, 47–67. https://doi.org/10.1016/j.precamres.2016.02.008
  • Toth, J. (1963). A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research, 68(16), 4795–4812. https://doi.org/10.1029/JZ068i016p04795
  • Van Camp, M., Mjemah, I. C., Al Farrah, N., & Walraevens, K. (2013). Modeling approaches and strategies for data-scarce aquifers: Example of the Dar es Salaam aquifer in Tanzania. Hydrogeology Journal, 21(2), 341–356. https://doi.org/10.1007/s10040-012-0908-5
  • VanLoon, G. W., & Duffy, S. J. (2017). Environmental chemistry: A global perspective. Oxford university press.
  • Vogt, E. Z., & Golde, P. (1958). Some aspects of the folklore of water witching in the United States. The Journal of American Folklore, 71(282), 519–531. https://doi.org/10.2307/537458
  • Vogt, E. Z., & Hyman, R. (2000). Water witching USA. University of Chicago Press.
  • Walraevens, K. (2008). Hydrogeological and hydrogeochemical investigation of a coastal aquifer in Dar-es-Salaam, Tanzania. Afrika Focus, 21(1).
  • Waters, P., Greenbaum, D., Smart, P. L., & Osmaston, H. (1990). Applications of remote sensing to groundwater hydrology. Remote Sensing Reviews, 4(2), 223–264. https://doi.org/10.1080/02757259009532107
  • Wawa, A. I. (2020). Challenges facing wastewater management in fast growing cities in Tanzania: A case of Dodoma City council. Huria: Journal of the Open University of Tanzania, 27(1).
  • Wright, E. P. (1992). The hydrogeology of crystalline basement aquifers in Africa. Geological Society, London, Special Publications, 66(1), 1–27. https://doi.org/10.1144/GSL.SP.1992.066.01.01
  • Yeh, H.-F., Lee, C.-H., Hsu, K.-C., & Chang, P.-H. (2009). GIS for the assessment of the groundwater recharge potential zone. Environmental Geology, 58(1), 185–195. https://doi.org/10.1007/s00254-008-1504-9