669
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effects of nitrogen addition on Eucalyptus globulus growth and carbon sequestration potential under various CO2 climatic conditions

& ORCID Icon
Pages 185-193 | Received 14 Feb 2022, Accepted 02 Aug 2022, Published online: 10 Aug 2022

References

  • Abdullah, N., Zainodin, H. J., & Ahmed, A. (2012). Comparisons between Huber’s and Newton’s multiple regression models for stem biomass estimation. Malaysian Journal of Mathematical Sciences, 6(1), 1–28. https://einspem.upm.edu.my/journal/fullpaper/vol6no1/1.%20Noraini%20edit%204.1.12.pdf
  • Abeysekara, A. M. S. K., Yatigammana, S. K., & Premakantha, K. T. (2018). Biomass and carbon stock estimation of Udawattakele forest reserve in Kandy district of Sri Lanka. Journal of Tropical Forestry and Environment, 8(2), 12–28. http://dx.doi.org/10.31357/jtfe.v8i2.3760Awasthi
  • Awasthi, J. P., Paraste, K. S., Rathore, M., Varun, M., Jaggi, D., & Kumar, B. (2018). Effect of elevated CO2 on Vigna radiata and two weed species: Yield, physiology and crop–weed interaction. Crop Pasture Science, 69(6), 617–631.
  • Bai, Y., Yan, R., Schellenberg, M. P., Wang, H., Han, G., Zhang, R., Wei, Z., & Wei, Z. (2020). Nitrogen increased aboveground biomass of Leymus chinensis grown in semi-arid grasslands of inner Mongolia, China. Agronomy Journal, 112(1), 511–522. https://doi.org/10.1002/agj2.20080
  • Barickman, T. C., Olorunwa, O. J., Sehgal, A., Walne, C. H., Reddy, K. R., & Gao, W. (2021). Interactive impacts of temperature and elevated CO2 on Basil (Ocimum Basilicum L.) root and shoot morphology and growth. Horticulturae, 7(5), 112. https://doi.org/10.3390/horticulturae7050112
  • Baslam, M., Erice, G., & Goicoechea, N. (2012). Impact of arbuscular mycorrhizal fungi (AMF) and atmospheric CO2 concentration on the biomass production and partitioning in the forage legume alfalfa. Symbiosis, 58(1), 171–181. https://doi.org/10.1007/s13199-012-0199-6
  • Basu, J. P. (2014). Agroforestry, climate change mitigation and livelihood security in India. New Zealand Journal of Forestry Science, 44(Suppl 1), S11. https://doi.org/10.1186/1179-5395-44-S1-S11
  • Bhargava, S., & Mitra, S. (2021). Elevated atmospheric CO2 and the future of crop plants. Plant Breeding, 140(1), 1–11. http://dx.doi.org/10.1111/pbr.12871
  • Bicharanloo, B., Cavagnaro, T. R., Keitel, C., & Dijkstra, F. A. (2021). Nitrogen fertilisation increases specific root respiration in ectomycorrhizal but not in arbuscular mycorrhizal plants: A meta-analysis. Frontiers in Plant Science, 12, 1–10. https://doi.org/10.3389/fpls.2021.711720
  • Boutin, M., Corcket, E., Alard, D., Villar, L., Jimenez, J. J., Blaix, C., Pornon, A., Corriol, G., Lamaze, T., & Pornon, A. (2017). Nitrogen deposition and climate change have increased vascular plant species richness and altered the composition of grazed subalpine grasslands. Journal of Ecology, 105(5), 1199–1209. https://doi.org/10.1111/1365-2745.12743
  • Brienen, R. J., Caldwell, L., Duchesne, L., Voelker, S., Barichivich, J., Baliva, M., Gloor, E., Di Filippo, A., Helama, S., Locosselli, G. M., Lopez, L., Piovesan, G., Schöngart, J., Villalba, R., & Gloor, E. (2020). Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nature Communications, 11(1), 1–10. https://doi.org/10.1038/s41467-020-17966-z
  • Carter, T. S., Clark, C. M., Fenn, M. E., Jovan, S., Perakis, S. S., Riddell, J., Hastings, M. G., Greaver, T. L., & Hastings, M. G. (2017). Mechanisms of nitrogen deposition effects on temperate forest lichens and trees. Ecosphere, 8(3), 01717. https://doi.org/10.1002/ecs2.1717
  • Cha, S., Chae, H. M., Lee, S. H., & Shim, J. K. (2017). Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla. PloS One, 12(2), 0171197. https://doi.org/10.1371/journal.pone.0171197
  • Churkina, G. (2016). The role of urbanization in the global carbon cycle. Frontiers in Ecology and Evolution, 3, 144. https://doi.org/10.3389/fevo.2015.00144
  • Diagne, N., Ngom, M., Djighaly, P. I., Fall, D., Hocher, V., & Svistoonoff, S. (2020). Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity, 12(10), 370. https://doi.org/10.3390/d12100370
  • Eastman, B. A., Adams, M. B., Brzostek, E. R., Burnham, M. B., Carrara, J. E., Kelly, C., Peterjohn, W. T., Walter, C. A., & Peterjohn, W. T. (2021). Altered plant carbon partitioning enhanced forest ecosystem carbon storage after 25 years of nitrogen additions. New Phytologist, 230(4), 1435–1448. https://doi.org/10.1111/nph.17256
  • Farhate, C. V. V., Souza, Z. M. D., Oliveira, S. R. D. M., Tavares, R. L. M., & Carvalho, J. L. N. (2018). Use of data mining techniques to classify soil CO2 emission induced by crop management in sugarcane field. PLoS One, 13(3), 0193537. https://doi.org/10.1371/journal.pone.0193537
  • Gagne, M. A., Smith, D. D., & McCulloh, K. A. (2020). Limited physiological acclimation to recurrent heatwaves in two boreal tree species. Tree Physiology, 40(12), 1680–1696. https://doi.org/10.1093/treephys/tpaa102
  • Ganesh, K. P., & Pragasan, L. A. (2019). Effect of nitrogen addition on growth and carbon sequestration potential of Azadirachta indica under different climatic conditions. Journal of Emerging Technologies and Innovative Research, 6(5), 2743–2749. 10.1729/Journal.27758
  • Gupta, A., Medina, R. A., & Delgado, C. A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266–269. https://doi.org/10.1126/science.aaz7614
  • Hu, Y. L., Fan, H. H., Xuan, H. F., Mgelwa, A. S., & Chen, S. P. (2019). Distinct growth and nutrient status responses to fertilization regimes in two generations of Chinese Fir Seedlings. Forests, 10(9), 719. https://doi.org/10.3390/f10090719
  • Hu, M., & Wan, S. (2019). Effects of fire and nitrogen addition on photosynthesis and growth of three dominant understory plant species in a temperate forest. Journal of Plant Ecology, 12(4), 759–768. https://doi.org/10.1093/jpe/rtz014
  • Irigoyen, J. J., Goicoechea, N., Antolin, M. C., Pascual, I., Diaz, S. M., Aguirreolea, J., & Morales, F. (2014). Growth, photosynthetic acclimation and yield quality in legumes under climate change simulations: An updated survey. Plant Science, 226, 22–29. https://doi.org/10.1016/j.plantsci.2014.05.008
  • Jeong, H. M., Kim, H. R., Hong, S., & You, Y. H. (2018). Effects of elevated CO2 concentration and increased temperature on leaf quality responses of rare and endangered plants. Journal of Ecology and Environment, 42(1), 1–11. https://doi.org/10.1186/s41610-017-0061-0
  • Kenkel, J. A., Sisk, T. D., Hultine, K. R., Sesnie, S. E., Bowker, M. A., & Johnson, N. C. (2016). Indicators of vehicular emission inputs into semi-arid roadside ecosystems. Journal of Arid Environment, 134, 150–159. https://doi.org/10.1016/j.jaridenv.2016.06.007
  • Khan, N., Fahad, S., Faisal, S., Akbar, A., & Naushad, M. (2020). Socio-economic and medicinal review of eucalyptus tree in the world. http://dx.doi.org/10.2139/ssrn.3644215
  • Li, X., Dong, J., Gruda, N. S., Chu, W., & Duan, Z. (2020). Interactive effects of the CO2 enrichment and nitrogen supply on the biomass accumulation, gas exchange properties, and mineral elements concentrations in cucumber plants at different growth stages. Agronomy Journal, 10(1), 139. https://www.mdpi.com/2073-4395/10/1/139
  • Li, W., Jin, C., Guan, D., Wang, Q., Wang, A., Yuan, F., & Wu, J. (2015). The effects of simulated nitrogen deposition on plant root traits: A meta-analysis. Soil Biology and Biochemistry, 82, 112–118. https://doi.org/10.1016/j.soilbio.2015.01.001
  • Lu, X., Jiang, H., Liu, J., Zhang, X., Jin, J., Zhu, Q., & Peng, C. (2016). Simulated effects of nitrogen saturation on the global carbon budget using the IBIS model. Scientific Reports, 6(1), 1–10. https://doi.org/10.1038/srep39173
  • Martinez, F. M., Vicca, S., Janssens, I. A., Ciais, P., Obersteiner, M., Bartrons, M., & Penuelas, J. (2017). Atmospheric deposition, CO2, and change in the land carbon sink. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-08755-8
  • Murthy, I. K., Gupta, M., Tomar, S., Munsi, M., Tiwari, R., Hegde, G. T., & Ravindranath, N. H. (2013). Carbon sequestration potential of agroforestry systems in India. Journal of Earth Science and Climatic Change, 4(1), 1–7. https://doi.org/10.4172/2157-7617.1000131
  • Oliveira, M. F., & Marenco, R. A. (2019). Photosynthesis and biomass accumulation in Carapa surinamensis (Meliaceae) in response to water stress at ambient and elevated CO2. Número, 57(1), 137–146. https://doi.org/10.32615/ps.2019.023
  • Penuelas, J., Martínez, F. M., Vallicrosa, H., Maspons, J., Zuccarini, P., Carnicer, J., & Sardans, J. (2020). Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Communications Biology, 3(1), 1–11. https://www.nature.com/articles/s42003-020-0839-y
  • Pragasan, L. A., & Ganesh, K. P. (2021). Impact of nitrogen addition on growth and carbon sequestration potential of Syzygium cumini under different carbon dioxide environment conditions. Acta Ecologica Sinica, In Press. https://doi.org/10.1016/j.chnaes.2021.05.001
  • Rao, C. S., Gopinath, K. A., Prasad, J. V. N. S., & Singh, A. K. (2016). Climate resilient villages for sustainable food security in tropical India: Concept, process, technologies, institutions, and impacts. Advances in Agronomy, 140, 101–214. https://doi.org/10.1016/bs.agron.2016.06.003
  • Razaq, M., Zhang, P., & Shen, H. L. (2017). Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PloS One, 12(2), 0171321. https://doi.org/10.1371/journal.pone.0171321
  • Sabo, A., Haland, A., Skre, O., & Mortensen, L. M. (2001). Influence of nitrogen and winter climate stresses on Calluna vulgaris (L.) Hull. Annals of Botany, 88(5), 823–828. https://doi.org/10.1006/anbo.2001.1516
  • Silva, R. G. D., Alves, R. D. C., & Zingaretti, S. M. (2020). Increased CO2 causes changes in physiological and genetic responses in C4 crops: A brief review. Plants, 9(11), 1567. https://doi.org/10.3390/plants9111567
  • Sun, W., & Liu, X. (2020). Review on carbon storage estimation of forest ecosystem and applications in China. Forest Ecosystems, 7(1), 1–14. https://doi.org/10.1186/s40663-019-0210-2
  • Thomson, G., Mollah, M. R., Partington, D. L., Jones, R., Argall, R., Tregenza, J., & Fitzgerald, G. J. (2013). Effects of elevated carbon dioxide and soil nitrogen on growth of two leafy Brassica vegetables. New Zealand Journal of Crop and Horticultural Science, 41(2), 69–77. https://doi.org/10.1080/01140671.2013.772905
  • Velasquez, A. C., Castroverde, C. D. M., & He, S. Y. (2018). Plant–pathogen warfare under changing climate conditions. Current Biology, 28(10), 619–634. https://doi.org/10.1016/j.cub.2018.03.054
  • Verma, P., & Sagar, R. (2020). Effect of nitrogen (N) deposition on soil-N processes: A holistic approach. Scientific Reports, 10(1), 1–16. https://doi.org/10.1038/s41598-020-67368-w
  • Wang, X. (2007). Effects of species richness and elevated carbon dioxide on biomass accumulation: A synthesis using meta-analysis. Oecologia, 152(4), 595–605. https://doi.org/10.1007/s00442-007-0691-5
  • Wang, J., Luo, P., Yang, H., Mou, C., & Mo, L. (2016). Different responses of alpine plants to nitrogen addition: Effects on plant-plant interactions. Scientific Reports, 6(1), 1–11. https://doi.org/10.1038/srep38320
  • Wang, M., Shi, S., Lin, F., Hao, Z., Jiang, P., & Dai, G. (2012). Effects of soil water and nitrogen on growth and photosynthetic response of Manchurian ash (Fraxinus mandshurica) seedlings in Northeastern China. PloS One, 7(2), 30754. https://doi.org/10.1371/journal.pone.0030754
  • Wang, J., Wang, Z., Zhang, X., Zhang, Y., Ran, C., Zhang, J., & Zhang, B. (2015). Response of Kobresia pygmaea and Stipa purpurea grassland communities in Northern Tibet to nitrogen and phosphate addition. Mountain Research and Development, 35(1), 78–86. http://dx.doi.org/10.1659/MRD-JOURNAL-D-11-00104.1
  • Xu, F., Chu, C., & Xu, Z. (2020). Effects of different fertilizer formulas on the growth of loquat rootstocks and stem lignification. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-019-57270-5
  • Xu, Z., Jiang, Y., Jia, B., & Zhou, G. (2016). Elevated CO2 response of stomata and its dependence on environmental factors. Frontiers in Plant Science, 7, 657. https://doi.org/10.3389/fpls.2016.00657
  • Zhang, H., Li, W., Adams, H. D., Wang, A., Wu, J., Jin, C., Yuan, F., & Yuan, F. (2018). Responses of woody plant functional traits to nitrogen addition: A meta-analysis of leaf economics, gas exchange, and hydraulic traits. Frontiers in Plant Science, 9, 683. https://doi.org/10.3389/fpls.2018.00683
  • Zhang, F. F., Wang, Y. L., Huang, Z. Z., Zhu, X. C., Zhang, F. J., Chen, F. D., Teng, N. J., & Teng, N.-J. (2012). Effects of CO2 enrichment on growth and development of impatiens hawkeri. The Scientific World Journal, 2012, 1–9. https://doi.org/10.1100/2012/601263
  • Zhang, L., Wu, D., Shi, H., Zhang, C., Zhan, X., & Zhou, S. (2011). Effects of elevated CO2 and N addition on growth and N2 fixation of a legume subshrub (Caragana microphylla Lam.) in temperate grassland in China. PLoS One, 6(10), 26842. https://doi.org/10.1371/journal.pone.0026842
  • Zhang, L., Yang, Y., Zhan, X., Zhang, C., Zhou, S., & Wu, D. (2010). Responses of a dominant temperate grassland plant (Leymus chinensis) to elevated carbon dioxide and nitrogen addition in China. Journal of Environmental Quality, 39(1), 251–259. https://doi.org/10.2134/jeq2009.0109