223
Views
1
CrossRef citations to date
0
Altmetric
Articles

Variable-bandwidth recursive-filter design employing cascaded stability-guaranteed 2nd-order sections using coefficient transformations

Pages 149-166 | Received 17 Jul 2023, Accepted 03 Oct 2023, Published online: 14 Oct 2023

References

  • Deng, T.-B. (1997). Design of recursive 1-D variable filters with guaranteed stability. IEEE Transactions on Circuits and Systems II: Analog Digital Signal Processing, 44(9), 689–695.
  • Deng, T.-B. (1998). New method for designing stable recursive variable digital filters. Signal Processing, 64(2), 197–207. https://doi.org/10.1016/S0165-1684(97)00188-6
  • Deng, T.-B. (2001a). An improved method for designing variable recursive digital filters with guaranteed stability. Signal Processing, 81(2), 439–446. https://doi.org/10.1016/S0165-1684(00)00220-6
  • Deng, T.-B. (2001b). Discretization-free design of variable fractional-delay FIR digital filters. IEEE Transactions on Circuits and Systems II, Analog Digital Signal Processing, 48(6), 637–644. https://doi.org/10.1109/82.943337
  • Deng, T.-B. (2004). Closed-form design and efficient implementation of variable digital filters with simultaneously tuneable magnitude and fractional-delay. IEEE Transactions on Signal Processing, 52(6), 1668–1681. https://doi.org/10.1109/TSP.2004.827150
  • Deng, T.-B. (2014, Oct. 22–25). Variable-recursive-filter design with theoretical stability-guarantee. In Proc. IEEE TENCON 2014 (pp. 1–5). Bangkok, Thailand.
  • Deng, T.-B. (2016). Design of recursive variable-digital-filters with theoretically-guaranteed stability. International Journal of Electronics, 103(12), 2013–2028. https://doi.org/10.1080/00207217.2016.1175033
  • Deng, T.-B. (2018). The Lp-norm-minimization design of stable variable-bandwidth digital filters. Journal of Circuits, Systems, and Computers, 27(7), Article 1850102, 1–18. https://doi.org/10.1142/S0218126618501025
  • Deng, T.-B. (2023). Various unity-bounded functions for designing recursive digital filters with variable notch-frequency and guaranteed stability. Journal of Circuits, Systems, and Computers, 32(6), Article 2350095, 1–22. https://doi.org/10.1142/S0218126623500950
  • Deng, T.-B., & Lian, Y. (2006). Weighted-least-squares design of variable fractional-delay FIR filters using coefficient-symmetry. IEEE Transactions on Signal Processing, 54(8), 3023–3038. https://doi.org/10.1109/TSP.2006.875385
  • Deng, T.-B., & Nakagawa, Y. (2004). SVD-based design and new structures for variable fractional-delay digital filters. IEEE Transactions on Signal Processing, 52(9), 2513–2527. https://doi.org/10.1109/TSP.2004.831922
  • Farrow, C. W. (1988). A continuously variable digital delay element. In Proc. 1988 IEEE Int. Symp. Circuits Syst. (pp. 2641–2645).
  • Jackson, L. B. (1992). Digital filters and signa processing (2nd ed.). Kluwer Academic Publishers.
  • Shyu, J.-J., Pei, S.-C., & Huang, Y.-D. (2009). Design of variable two-dimensional FIR digital filters by McClellan transformation. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(3), 574–582. https://doi.org/10.1109/TCSI.2008.2002119
  • Soontornwong, P., Deng, T.-B., & Chivapreecha, S. (2017). Low-complexity and high-modularity structure for implementing transient-free Pascal-delay filter. IEEE Transactions on Signal Processing, 65(23), 6233–6243. https://doi.org/10.1109/TSP.2017.2750117
  • Sutthikarn, P., Chivapreecha, S., Trirat, A., & Jongsataporn, T. (2020). A simple tunable biquadratic digital bandpass filter design for spectrum sensing in cognitive radio. In Proc. IEEE ECTI-CON 2020 (pp. 71–75).
  • Zarour, R., & Fahmy, M. M. (1989a). A design technique for variable digital filters. IEEE Transactions on Circuits and Systems, 36(11), 1473–1478. https://doi.org/10.1109/31.41307
  • Zarour, R., & Fahmy, M. M. (1989b). A design technique for variable two-dimensional recursive digital filters. Signal Processing, 17(2), 175–182. https://doi.org/10.1016/0165-1684(89)90021-2