391
Views
0
CrossRef citations to date
0
Altmetric
Articles

Efficient near-field localization aided with reconfigurable intelligent surface using geometric dilution of precision

ORCID Icon, &
Pages 208-230 | Received 21 Jul 2023, Accepted 14 Oct 2023, Published online: 26 Oct 2023

References

  • Abdullah, Z., Kisseleff, S., Martins, W. A., Chen, G., Sanguinetti, L., Ntontin, K., Papazafeiropoulos, A., Chatzinotas, S., & Ottersten, B. (2022). Cooperative hybrid networks with active relays and RISs for B5G: Applications, challenges, and research directions. IEEE Wireless Communications, 1–7. https://doi.org/10.1109/MWC.012.2200292
  • Abu-Shaban, Z., Keykhosravi, K., Keskin, M. F., Alexandropoulos, G. C., Seco-Granados, G., & Wymeersch, H. (2021). Near-field localization with a reconfigurable intelligent surface acting as lens. IEEE International Conference on Communications. https://doi.org/10.1109/ICC42927.2021.9500663
  • Albaidhani, A., & Alsudani, A. (2021). Anchor selection by geometric dilution of precision for an indoor positioning system using ultra-wide band technology. IET Wireless Sensor Systems, 11(1), 22–31. https://doi.org/10.1049/wss2.12006
  • Alhafid, A. K., & Younis, S. (2020). Observed time difference of arrival based position estimation for LTE systems: Simulation framework and performance evaluation. Eastern-European Journal of Enterprise Technologies, 3(9–105)), 20–28. https://doi.org/10.15587/1729-4061.2020.201382
  • Björnson, E., Sanguinetti, L., Wymeersch, H., Hoydis, J., & Marzetta, T. L. (2019). Massive MIMO is a reality—What is next? Digital Signal Processing, 94, 3–20. https://doi.org/10.1016/j.dsp.2019.06.007
  • Dardari, D., Decarli, N., Guerra, A., & Guidi, F. (2022). Los/NLOS near-field localization with a large reconfigurable intelligent surface. IEEE Transactions on Wireless Communications, 21(6), 4282–4294. https://doi.org/10.1109/TWC.2021.3128415
  • Deng, Z., Wang, H., Zheng, X., Fu, X., Yin, L., Tang, S., & Yang, F. (2019). A closed-form localization algorithm and GDOP analysis for multiple TDOAs and single TOA based hybrid positioning. Applied Sciences, 9(22), 4935–4957. https://doi.org/10.3390/app9224935
  • Deng, Z., Wang, H., Zheng, X., & Yin, L. (2020). Base station selection for hybrid TDOA/RTT/DOA positioning in mixed LOS/NLOS environment. Sensors, 20(15), 4132–4149. https://doi.org/10.3390/s20154132.
  • Elzanaty, A., Guerra, A., Guidi, F., & Alouini, M. (2021). Reconfigurable intelligent surfaces for localization: Position and orientation error bounds. IEEE Transactions on Signal Processing, 69, 5386–5402. https://doi.org/10.1109/TSP.2021.3101644
  • Han, Y., Tang, W., Jin, S., Wen, C. K., & Ma, X. (2019). Large intelligent surface-assisted wireless communication exploiting statistical CSI. IEEE Transactions on Vehicular Technology, 68(8), 8238–8242. https://doi.org/10.1109/TVT.2019.2923997
  • He, J., Wymeersch, H., Kong, L., Silven, O., & Juntti, M. (2020). Large intelligent surface for positioning in millimeter wave MIMO systems. IEEE Vehicular Technology Conference. (pp. 1–5). https://doi.org/10.1109/VTC2020-Spring48590.2020.9129075
  • He, J., Wymeersch, H., Sanguanpuak, T., Silven, O., & Juntti, M. (2020). Adaptive beamforming design for mmWave RIS-aided joint localization and communication. 2020 IEEE Wireless Communications and Networking Conference Workshops, WCNCW 2020 - Proceedings, (pp. 1–6). https://doi.org/10.1109/WCNCW48565.2020.9124848
  • He, Q., Sun, Sh., & Zhou, L. (2019). Tunable/Reconfigurable Metasurfaces: Physics and Applications. Research, 2019(2), 1–16. https://doi.org/10.34133/2019/1849272
  • Hu, S., Rusek, F., & Edfors, O. (2018). Beyond massive MIMO: The potential of positioning with large intelligent surfaces. IEEE Transactions on Signal Processing, 66(7), 1761–1774. https://doi.org/10.1109/TSP.2018.2795547
  • Huang, C., Alexandropoulos, G. C., Zappone, A., Debbah, M., & Yuen, C. (2018). Energy efficient multi-user MISO communication using Low resolution large intelligent surfaces. 2018 IEEE Globecom Workshops, GC Wkshps 2018 - Proceedings https://doi.org/10.1109/GLOCOMW.2018.8644519
  • Huang, C., Zappone, A., Alexandropoulos, G. C., Debbah, M., & Yuen, C. (2019). Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Transactions on Wireless Communications, 18(8), 4157–4170. https://doi.org/10.1109/TWC.2019.2922609
  • Keykhosravi, K., Keskin, M. F., Seco-Granados, G., & Wymeersch, H. (2021, June 14–23). SISO RIS-Enabled joint 3D downlink localization and synchronization. IEEE International Conference on Communications, Montreal, QC, Canada. https://doi.org/10.1109/ICC42927.2021.9500281
  • Laveti, G., Rao, G. S., Chaitanya, D. E., & Kumar, M. N. V. S. S. (2016). Tdoa measurement based GDOP analysis for radio source localization. Procedia Computer Science, 85(Cms), 740–747. https://doi.org/10.1016/j.procs.2016.05.261
  • Liaskos, C., Nie, S., Tsioliaridou, A., Pitsillides, A., Ioannidis, S., & Akyildiz, I. (2018). A New wireless communication paradigm through software-controlled metasurfaces. IEEE Communications Magazine, 56(9), 162–169. https://doi.org/10.1109/MCOM.2018.1700659
  • Ma, T., Xiao, Y., Lei, X., Xiong, W., & Ding, Y. (2021). Indoor localization with reconfigurable intelligent surface. IEEE Communications Letters, 25(1), 161–165. https://doi.org/10.1109/LCOMM.2020.3025320
  • Mohammad Razavizadeh, S., & Svensson, T. (2020, February 18–20). 3D beamforming in reconfigurable intelligent surfaces-assisted wireless communication networks. WSA 2020 - 24th International ITG Workshop on Smart Antennas, Hamburg, Germany.
  • Najafi, M., Jamali, V., Schober, R., & Poor, H. V. (2021). Physics-Based modeling and scalable optimization of large intelligent reflecting surfaces. IEEE Transactions on Communications, 69(4), 2673–2691. https://doi.org/10.1109/TCOMM.2020.3047098
  • Ozdogan, O., Bjornson, E., & Larsson, E. G. (2020). Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling. IEEE Wireless Communications Letters, 9(5), 581–585. https://doi.org/10.1109/LWC.2019.2960779
  • Ozturk, C., Keskin, M. F., Wymeersch, H., & Gezici, S. (2022). RIS-aided near-field localization under phase-dependent amplitude variations. 1–13. http://arxiv.org/abs/2204.12783
  • Rahal, M., Denis, B., Keykhosravi, K., Uguen, B., & Wymeersch, H. (2021, September 27–30). RIS-Enabled localization continuity under near-field conditions. IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy. https://doi.org/10.1109/SPAWC51858.2021.9593200
  • Sarieddeen, H., Saeed, N., Al-Naffouri, T. Y., & Alouini, M. S. (2020). Next generation terahertz communications: A rendezvous of sensing, imaging, and localization. IEEE Communications Magazine, 58(5), 69–75. https://doi.org/10.1109/MCOM.001.1900698
  • Tataria, H., Shafi, M., Molisch, A. F., Dohler, M., Sjoland, H., & Tufvesson, F. (2021). 6G wireless systems: Vision, requirements, challenges, insights, and opportunities. Proceedings of the IEEE, 109(7), 1166–1199. https://doi.org/10.1109/JPROC.2021.3061701
  • Teng, Y., Wang, J., Huang, Q., & Liu, B. (2018). New characteristics of weighted GDOP in multi-GNSS positioning. GPS Solutions, 22(3), 1–9. https://doi.org/10.1007/s10291-018-0740-z
  • Tsilipakos, O., Tasolamprou, A. C., Pitilakis, A., Liu, F., Wang, X., Mirmoosa, M. S., Tzarouchis, D. C., Abadal, S., Taghvaee, H., Liaskos, C., Tsioliaridou, A., Georgiou, J., Cabellos-Aparicio, A., Alarcón, E., Ioannidis, S., Pitsillides, A., Akyildiz, I. F., Kantartzis, N. V., Economou, E. N., & Tretyakov, S. (2020). Toward intelligent metasurfaces: The progress from globally tunable metasurfaces to software-defined metasurfaces with an embedded network of controllers. Advanced Optical Materials, 8(17), https://doi.org/10.1002/adom.202000783
  • Wu, P., Su, S., Zuo, Z., Guo, X., Sun, B., & Wen, X. (2019). Time difference of arrival (TDOA) localization combining weighted least squares and firefly algorithm. Sensors, 19, https://doi.org/10.3390/s19112554
  • Wu, Q., & Zhang, R. (2020). Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Communications Magazine, 58(1), 106–112. https://doi.org/10.1109/MCOM.001.1900107
  • Wymeersch, H. (2020). A fisher information analysis of joint localization and synchronization in near field. 2020 IEEE International Conference on Communications Workshops, ICC Workshops 2020 - Proceedings, 1–6. https://doi.org/10.1109/ICCWorkshops49005.2020.9145059
  • Wymeersch, H., He, J., Denis, B., Clemente, A., & Juntti, M. (2019). Radio localization and mapping with reconfigurable intelligent surfaces. grant, 318927, 1–9. http://arxiv.org/abs/1912.09401
  • Yang, Z., Zhang, H., Zhang, H., Di, B., Dong, M., Yang, L., & Song, L. (2023). Metaslam: Wireless simultaneous localization and mapping using reconfigurable intelligent surfaces. IEEE Transactions on Wireless Communications, 22(4), 2606–2620. https://doi.org/10.1109/TWC.2022.3213053
  • Zhang, H., Zhang, H., Di, B., Bian, K., Han, Z., & Song, L. (2021). Metalocalization: Reconfigurable intelligent surface aided multi-user wireless indoor localization. IEEE Transactions on Wireless Communications, 20(12), 7743–7757. https://doi.org/10.1109/TWC.2021.3087354