578
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Sustainable bioplastic: a comprehensive review on sources, methods, advantages, and applications of bioplastics

, &
Pages 913-938 | Received 30 Oct 2023, Accepted 16 Jan 2024, Published online: 06 Mar 2024

References

  • Adelaja, O. A.; Daramola, O. E. Preparation and Characterization of Low Density Polyethylene-Chitosan Nanoparticles Biocomposite as a Source of Biodegradable Plastics. Euro. J. Advan. Chem. Res. 2022, 3(1), 25–38. DOI: 10.24018/ejchem.2022.3.1.85.
  • Jambeck, J. R.; Geyer, R.; Wilcox, C. Plastic Waste Inputs from Land into the Ocean. Sci. (1979). 2015, 347(6223), 768–771. DOI: 10.1126/science.1260352.
  • Hoornweg, D.; Bhada-Tata, P.; Kennedy, C. Environment: Waste Production Must Peak This Century. Nature. 2013, 502(7473), 615–617. DOI: 10.1038/502615a.
  • Wilson, D.;; UNEP; International Solid Waste Association. Global Waste Management Outlook, United Nations Environment Programme: Nairobi, Kenya, 2015. https://digitallibrary.un.org/record/1324051?ln=en (accessed October, 24, 2023).
  • Hopewell, J.; Dvorak, R.; Kosior, E. Plastics Recycling: Challenges and Opportunities. Philos. Trans. R.Soc. Lond., B, Biol. Sci. PHILOS T R SOC B. 2009, 364(1526), 2115–2126. DOI: 10.1098/rstb.2008.0311.
  • Abbott, A. P.; Ballantyne, A. D.; Conde, J. P.; Ryder, K. S.; Wise, W. R. Salt Modified Starch: Sustainable, Recyclable Plastics. Green Chem. 2012, 14(5), 1302. DOI: 10.1039/c2gc16568f.
  • Rutkowskal, M.; Krasowska, K.; Heimowska, A.; Gmiechowska, M.; Janik, H. The Influence of Different Processing Additives on Biodegradation of Poly(E-Caprolactone. Iran. Polym. J. 2000, 9, 4.
  • Ojha, S.; Kapoor, S. Bio-Plastics: The Suitable and Sustainable Alternative to Polyethylene Based Plastics. Microbiol. (N Y). 2019, 2, 145–148. DOI: 10.31080/ASMI.2019.02.0254.
  • Yu, L.; Dean, K.; Li, L. Polymer Blends and Composites from Renewable Resources. Prog. Polym. Sci. 2006, 31(6), 576–602. DOI: 10.1016/j.progpolymsci.2006.03.002.
  • Unmar, G.; Mohee, R. Assessing the Effect of Biodegradable and Degradable Plastics on the Composting of Green Wastes and Compost Quality. Bioresour. Technol. 2008, 99(15), 6738–6744. DOI: 10.1016/j.biortech.2008.01.016.
  • Mohamed, S. A. A.; El-Sakhawy, M.; El-Sakhawy, M.; Polysaccharides, A.-M. Protein and Lipid -based Natural Edible Films in Food Packaging: A Review. Carbohydr. Polym. 2020, 238, 116178. DOI: 10.1016/j.carbpol.2020.116178.
  • Jayaraj, J. J.; Chandrasekaran, M.; Govindaraj, M.; Britto, G. A Brief Review on Edible Food Packaging Materials. Glob. J. Res. Eng. 2017, 1(1), 9–19.
  • Tulamandi, S.; Rangarajan, V.; Rizvi, S. S. H.; Singhal, R. S.; Chattopadhyay, S. K.; Saha, N. C. A Biodegradable and Edible Packaging Film Based on Papaya Puree, Gelatin, and Defatted Soy Protein. Food Packag. Shelf Life. 2016, 10, 60–71. DOI: 10.1016/j.fpsl.2016.10.007.
  • Rhim, J. W.; Shellhammer, T. H. Lipid-Based Edible Films and Coatings. Innov. Food Sci. Emerg. Technol. 2005, 362–383. 10.1016/B978-012311632-1/50053-X.
  • Rodríguez, G. M.; Rodríguez, G. M.; Sibaja, J. C.; Espitia, P. J. P.; Otoni, C. G. Antioxidant Active Packaging Based on Papaya Edible Films Incorporated with Moringa Oleifera and Ascorbic Acid for Food Preservation. Food Hydrocoll. 2020, 103, 105630. DOI: 10.1016/j.foodhyd.2019.105630.
  • Afifah, N.; Ratnawati, L.; Darmajana, D. A. Evaluation of Plasticizer Addition in Composite Edible Coating on Quality of Fresh-Cut Mangoes during Storage. IOP Conf. Ser. Earth Environ. Sci. 2019, 251, 012029. DOI: 10.1088/1755-1315/251/1/012029.
  • DiGregorio, B. E. Biobased Performance Bioplastic: Mirel. Chem. Biol. 2009, 16(1), 1–2. DOI: 10.1016/j.chembiol.2009.01.001.
  • Thakur, S.; Chaudhary, J.; Sharma, B.; Verma, A.; Tamulevicius, S.; Thakur, V. K. Sustainability of Bioplastics: Opportunities and Challenges. Curr. Opin. Green Sustain. Chem.2018. 2018, 13, 68–75. DOI: 10.1016/j.cogsc.2018.04.013.
  • Shruti, V. C.; Kutralam-Muniasamy, G. Bioplastics: Missing Link in the Era of Microplastics. Sci. Total Environ. 2019, 697, 134139. DOI: 10.1016/j.scitotenv.2019.134139.
  • Shamsuddin, I. Bioplastics as Better Alternative to Petroplastics and Their Role in National Sustainability: A Review. Advan. Biosci. & Bioengi. 2017, 5(4), 63. DOI: 10.11648/j.abb.20170504.13.
  • Van den Oever, M.; Molenveld, K.; van der Zee, M.; Bos, H. Bio-Based and Biodegradable Plastics : Facts and Figures : Focus on Food Packaging in the Netherlands. 2017. doi:10.18174/408350.
  • Kershaw, P. J. Biodegradable Plastics & Marine Litter : Misconceptions, Concerns and Impacts on Marine Environments. United Nations Environment Programme Global Programme of Action for the Protection of the Marine Environment from Land-based Activities: Nairobi, Kenya, 2015. https://wedocs.unep.org/handle/20.500.11822/7468 (accessed October, 24, 2023).
  • Emadian, S. M.; Onay, T. T.; Demirel, B. Biodegradation of Bioplastics in Natural Environments. Waste Manag. Res. 2017, 59, 526–536. DOI: 10.1016/j.wasman.2016.10.006.
  • Sriyapai, P.; Chansiri, K.; Sriyapai, T. Isolation and Characterization of Polyester-Based Plastics-Degrading Bacteria from Compost Soils. Microbiol. (N Y). 2018, 87(2), 290–300. DOI: 10.1134/S0026261718020157.
  • Bugnicourt, E.; Cinelli, P.; Lazzeri, A.; Lazzeri, A. Polyhydroxyalkanoate (PHA): Review of Synthesis, Characteristics, Processing and Potential Applications in Packaging. Express Polym. Lett. 2014, 8(11), 791–808. DOI: 10.3144/expresspolymlett.2014.82.
  • Kumar, S.; Thakur, K. S. B.-C. Production and Their Potential Food Applications. J. Hill Agric. 2017, 8(2), 118–129. DOI: 10.5958/2230-7338.2017.00024.6.
  • Tang, X. Z.; Kumar, P.; Alavi, S.; Sandeep, K. P. Recent Advances in Biopolymers and Biopolymer-Based Nanocomposites for Food Packaging Materials. Crit. Rev. Food Sci. Nutr. 2012, 52(5), 426–442. DOI: 10.1080/10408398.2010.500508.
  • Hirschi, K. Nutrient Biofortification of Food Crops. Annu. Rev. Nutr. 2009, 29(1), 401–421. DOI: 10.1146/annurev-nutr-080508-141143.
  • Song, J. H.; Murphy, R. J.; Narayan, R.; Davies, G. B. H. Biodegradable and Compostable Alternatives to Conventional Plastics. Philos. Trans. R. Soc. B. 2009, 364(1526), 2127–2139. DOI: 10.1098/rstb.2008.0289.
  • Vroman, I.; Tighzert, L. Biodegradable Polymers. Materials. 2009, 2(2), 307–344. DOI: 10.3390/ma2020307.
  • Amin, M.; Abu-Sharkh, B.; Al-Harthi, M. Effect Of Starch Addition On The Properties Of Low Density Polyethylene For Developing Environmentally Degradable Plastic Bags. J. Chem. Eng. 2012, 26(1), 38–40. DOI: 10.3329/jce.v26i1.10180.
  • Performance Evaluation of Environmentally Degradable Plastic Packaging and Disposable Food Service Ware-Final Report; 2007, www.ciwmb.ca.gov/Publications/.
  • Ltd, N.-I. P.; Australia, A.; Heritage, E.; Australia, D. O. T. E. A.; Australia, E.; Association, P.; I, C. Biodegradable Plastics: Developments and Environmental Impacts; PANDORA Electronic Collection; Department of the Environment and Heritage, Commonwealth Government of Australia: Canberra, 2002.
  • European Bioplastics Driving the Evolution of Plastics. https://www.european-bioplastics.org/bioplastics/ (accessed on October, 24, 2023).
  • Jabeen, N.; Majid, I.; Nayik, G. A. Bioplastics and Food Packaging: A Review. Cogent Food Agric. 2015, 1(1), 1117749. DOI: 10.1080/23311932.2015.1117749.
  • de Oever, V. M.; Molenveld, K.; der Zee, V. M.; Bos, H. Bio-based and Biodegradable Plastics - Facts and Figures; Wageningen Food & Biobased Research: Wageningen, Netherlands, 2017.
  • Jasiūnas, L.; McKenna, S. T.; Bridžiuvienė, D.; Miknius, L. M. Thermal Properties and Stability of Rigid Polyurethane Foams Produced with Crude-Glycerol Derived Biomass Biopolyols. J. Polym. Environ. 2020, 28(5), 1378–1389. DOI: 10.1007/s10924-020-01686-y.
  • Sudesh, K.; Abe, H.; Doi, Y. Synthesis, Structure and Properties of Polyhydroxyalkanoates: Biological Polyesters. Prog. Polym. Sci. 2000, 25(10), 1503–1555. DOI: 10.1016/S0079-6700(00)00035-6.
  • Luengo, J.; García, B.; Sandoval, A.; Carrasco, G.; Olivera, E. Bioplastics from Microorganisms. Curr. Opin. Microbiol. 2003, 6(3), 251–260. DOI: 10.1016/S1369-5274(03)00040-7.
  • Son, H.; Park, G.; Lee, S. Growth-associated Production of poly-β-hydroxybutyrate from Glucose or Alcoholic Distillery Wastewater by Actinobacillus Sp. EL-9. Biotechnol. Lett. 1996, 18(11),1229–1234. DOI: 10.1007/BF00129945.
  • Müller, C.; Townsend, K.; Matschullat, J. Experimental Degradation of Polymer Shopping Bags (Standard and Degradable Plastic, and Biodegradable) in the Gastrointestinal Fluids of Sea Turtles. Sci. Total Environ. 2012, 416, 464–467. DOI: 10.1016/j.scitotenv.2011.10.069.
  • Thakur, S.; Verma, A.; Sharma, B.; Chaudhary, J.; Tamulevicius, S.; Thakur, V. K. Recent Development in Recycling of Polystyrene Based Plastics. Curr. Opin. Green Sustain. Chem. 2018, 13, 32–38. DOI: 10.1016/j.cogsc.2018.03.011.
  • Chen, Y. J. Bioplastics and Their Role in Achieving Global Sustainability. J. Chem. Pharm. Res. 2014, 6(1), 226–231.
  • Yu, J.; Chen, L. X. L. The Greenhouse Gas Emissions and Fossil Energy Requirement of Bioplastics from Cradle to Gate of a Biomass Refinery. Environ. Sci. Technol. 2008, 42(18), 6961–6966. DOI: 10.1021/es7032235.
  • Demirbas, A. Biodegradable Plastics from Renewable Resources. Energy Sources A: Recovery Util. Environ. Eff. 2007, 29(5), 419–424. DOI: 10.1080/009083190965820.
  • Prasteen, P.; Yathavakulasingam, T.; Mikunthan, T.; Prabhaharan, M. Bio-Plastics-An Alternative to Petroleum Based Plastics. Int. j. res. stud. agric. sci. 2018, 4(1),1–7. DOI: 10.20431/2454-6224.0401001.
  • Gross, R. A.; Kalra, B. Biodegradable Polymers for the Environment. Science. 2002, 297(5582), 803–807. DOI: 10.1126/science.297.5582.803.
  • Selvamurugan Muthusamy, M.; Pramasivam, S. Bioplastics – An Eco-Friendly Alternative to Petrochemical Plastics. Curr. World Environ. 2019, 14(1), 49–59. DOI: 10.12944/CWE.14.1.07.
  • Pilla, S. Handbook of Bioplastics and Biocomposites Engineering Applications; Pilla, S.,Ed.; Wiley: 2011; DOI:10.1002/9781118203699
  • Kerry, J.; Butler, P. Smart Packaging Technologies for Fast Moving Consumer Goods; John Wiley & Sons: Ltd UK, 2008.
  • Assis, R. Q.; Pagno, C. H.; Costa, T. M. H.; Flôres, S. H.; de O Rios, A. Synthesis of Biodegradable Films Based on Cassava Starch Containing Free and Nanoencapsulated β-Carotene. Packag. Technol. Sci. 2018, 31(3), 157–166. DOI: 10.1002/pts.2364.
  • Mustafa, P.; Niazi, M. B. K.; Jahan, Z.; Samin, G.; Hussain, A.; Ahmed, T.; Naqvi, S. R. PVA/Starch/Propolis/Anthocyanins Rosemary Extract Composite Films as Active and Intelligent Food Packaging Materials. J. Food Saf. 2020, 40(1), e12725. DOI: 10.1111/jfs.12725.
  • Riaz, A.; Lei, S.; Akhtar, H. M. S.; Wan, P.; Chen, D.; Jabbar, S.; Abid, M.; Hashim, M. M.; Zeng, X. Preparation and Characterization of Chitosan-Based Antimicrobial Active Food Packaging Film Incorporated with Apple Peel Polyphenols. Int. J. Biol. Macromol. 2018, 114, 547–555. DOI: 10.1016/j.ijbiomac.2018.03.126.
  • Choi, I.; Chang, Y.; Shin, S.-H.; Joo, E.; Song, H. J.; Eom, H.; Han, J. Development of Biopolymer Composite Films Using a Microfluidization Technique for Carboxymethylcellulose and Apple Skin Particles. Int. J. Mol. Sci. 2017, 18(6), 6. DOI: 10.3390/ijms18061278.
  • Priyadarshi, R.; Sauraj, K.; Deeba, B.; Kulshreshtha, F.; Negi, A.; S, Y. Chitosan Films Incorporated with Apricot (Prunus Armeniaca) Kernel Essential Oil as Active Food Packaging Material. Food Hydrocoll. 2018, 85, 158–166. DOI: 10.1016/j.foodhyd.2018.07.003.
  • Zhang, W.; Li, X.; Jiang, W. Development of Antioxidant Chitosan Film with Banana Peels Extract and Its Application as Coating in Maintaining the Storage Quality of Apple. Int. J. Biol. Macromol. 2020, 154, 1205–1214. DOI: 10.1016/j.ijbiomac.2019.10.275.
  • Mishra, V.; Patel, A.; Rana, D.; Nakum, S.; Singh, B. Preparation of Bio-Bag Using Banana Peel as an Alternative of Plastic Bag. Ijsrd. 2015, 3(4), 452–455.
  • Astuti, P.; Erprihana, A. A. Antimicrobial Edible Film from Banana Peels as Food Packaging; Agric. Food Sci. 2014, pp, 2, 66–70.
  • Fabra, M. J.; Martínez-Sanz, M.; Gómez-Mascaraque, L. G.; Gavara, R.; López-Rubio, A. Structural and Physicochemical Characterization of Thermoplastic Corn Starch Films Containing Microalgae. Carbohydr. Polym. 2018, 186, 184–191. DOI: 10.1016/j.carbpol.2018.01.039.
  • Acquavia, M. A.; Pascale, R.; Martelli, G.; Bondoni, M.; Bianco, G. Natural Polymeric Materials: A Solution to Plastic Pollution from the Agro-Food Sector. Polymers (Basel). 2021, 13, 1. DOI: 10.3390/polym13010158.
  • Jafarzadeh, S.; Jafarzadeh, S.; Jafari, S. M.; Salehabadi, A.; Nafchi, A. M.; Kumar, U. S. U.; Khalil, H. P. S. A. Biodegradable Green Packaging with Antimicrobial Functions Based on the Bioactive Compounds from Tropical Plants and Their By-Products. Trends Food Sci. Technol. 2020, 100, 262–277. DOI: 10.1016/j.tifs.2020.04.017.
  • Torres-León, C.; Vicente, A. A.; Flores-López, M. L.; Rojas, R.; Serna-Cock, L.; Alvarez-Pérez, O. B.; Aguilar, C. N. Edible Films and Coatings Based on Mango (Var. Ataulfo) by-Products to Improve Gas Transfer Rate of Peach. Lebensmittel-Wissenschaft. Tech. 2018, 97, 624–631. DOI: 10.1016/j.lwt.2018.07.057.
  • Maryam Adilah, Z. A.; Jamilah, B.; Nur Hanani, Z. A. Functional and Antioxidant Properties of Protein-Based Films Incorporated with Mango Kernel Extract for Active Packaging. Food Hydrocoll. 2018, 74, 207–218. DOI: 10.1016/j.foodhyd.2017.08.017.
  • Nishant, K.; Nishant, K.; Pratibha, N.; Ojha, A.; Upadhyay, A.; Singh, R.; Kumar, S. Effect of Active Chitosan-Pullulan Composite Edible Coating Enrich with Pomegranate Peel Extract on the Storage Quality of Green Bell Pepper. Lebensmittel-Wissenschaft. Tech. 2021, 138, 110435–112021. DOI: 10.1016/j.lwt.2020.110435.
  • Mushtaq, M.; Gani, A.; Gani, A.; Punoo, H. A.; Masoodi, F. A. Use of Pomegranate Peel Extract Incorporated Zein Film with Improved Properties for Prolonged Shelf Life of Fresh Himalayan Cheese (Kalari/Kradi). Innov. Food Sci. Emerg. Technol. 2018, 48, 25–32. DOI: 10.1016/j.ifset.2018.04.020.
  • Mostafa, N. A.; Farag, A. A.; Abo-dief, H. M.; Tayeb, A. M. Production of Biodegradable Plastic from Agricultural Wastes. Arab. J. Chem. 2018, 11(4), 546–553. DOI: 10.1016/j.arabjc.2015.04.008.
  • Kim, J.-H.; Hong, W.; Oh, S.-W. Effect of Layer-by-Layer Antimicrobial Edible Coating of Alginate and Chitosan with Grapefruit Seed Extract for Shelf-Life Extension of Shrimp (Litopenaeus Vannamei) Stored at 4 °C. Int. J. Biol. Macromol. 2018, 120, 1468–1473. DOI: 10.1016/j.ijbiomac.2018.09.160.
  • Dilucia, F.; Lacivita, V.; Conte, A.; Del Nobile, M. A. Sustainable Use of Fruit and Vegetable By-Products to Enhance Food Packaging Performance. Foods. 2020, 9(7), 857. DOI: 10.3390/foods9070857.
  • Stoll, L.; Rech, R.; Flôres, S. H.; Nachtigall, S. M. B.; de Oliveira Rios, A. Poly(Acid Lactic) Films with Carotenoids Extracts: Release Study and Effect on Sunflower Oil Preservation. Food Chem. 2019, 281, 213–221. DOI: 10.1016/j.foodchem.2018.12.100.
  • Mohammadi, H.; Kamkar, A.; Misaghi, A.; Zunabovic-Pichler, M.; Fatehi, S. Nanocomposite Films with CMC, Okra Mucilage, and ZnO Nanoparticles: Extending the Shelf-Life of Chicken Breast Meat. Food Packag. Shelf Life. 2019, 21, 100330. DOI: 10.1016/j.fpsl.2019.100330.
  • Samer, M.; Khalefa, Z.; Abdelall, T.; Moawya, W.; Farouk, A.; Abdelaziz, S.; Soliman, N.; Salah, A.; Gomaa, M.; Mohamed, M. et al. Bioplastics production from agricultural crop residue. Cigr J. 2019, 21, 3.
  • Kurek, M.; Benbettaieb, N.; Ščetar, M.; Chaudy, E.; Repajić, M.; Klepac, D.; Valić, S.; Debeaufort, F.; Galić, K. Characterization of Food Packaging Films with Blackcurrant Fruit Waste as a Source of Antioxidant and Color Sensing Intelligent Material. Molecules. 2021, 26(9), 2569. DOI: 10.3390/molecules26092569.
  • Uranga, J.; Etxeberria, A.; Guerrero, P.; De la Caba, K. Development of Active Fish Gelatin Films with Anthocyanins by Compression Molding. Food Hydrocoll. 2018, 84, 313–320. DOI: 10.1016/j.foodhyd.2018.06.018.
  • Musso, Y. S.; Salgado, P. R.; Mauri, A. N. Smart Gelatin Films Prepared Using Red Cabbage (Brassica Oleracea L.) Extracts as Solvent. Food Hydrocoll. 2019, 89, 674–681. DOI: 10.1016/j.foodhyd.2018.11.036.
  • Vannini, M.; Marchese, P.; Sisti, L.; Saccani, A.; Mu, T.; Sun, H.; Celli, A. Integrated Efforts for the Valorization of Sweet Potato By-Products within a Circular Economy Concept: Biocomposites for Packaging Applications Close the Loop. Polymers (Basel). 2021, 13
  • Bilo, F.; Pandini, S.; Sartore, L.; Depero, L. E.; Gargiulo, G.; Bonassi, A.; Federici, S.; Bontempi, E. A Sustainable Bioplastic Obtained from Rice Straw. J. Clean. Prod. 2018, 200, 357–368. DOI: 10.1016/j.jclepro.2018.07.252.
  • Szabo, K.; Teleky, B.-E.; Mitrea, L.; Călinoiu, L.-F.; Martău, G.-A.; Simon, E.; Varvara, R.-A.; Vodnar, D. C. Active Packaging—Poly (Vinyl Alcohol) Films Enriched with Tomato By-Products Extract. Coatings. 2020, 10, 2). DOI: 10.3390/coatings10020141.
  • Mitrea, L.; Călinoiu, L.-F.; Martău, G.-A.; Szabo, K.; Teleky, B.-E.; Mureșan, V.; Rusu, A.-V.; Socol, C.-T.; Vodnar, D.-C. Poly(Vinyl Alcohol)-Based Biofilms Plasticized with Polyols and Colored with Pigments Extracted from Tomato By-Products. Polymers (Basel). 2020, 12(3), 532. DOI: 10.3390/polym12030532.
  • Jane, J. Starch Properties, Modifications, and Applications. J. Polym. Sci. Part A. 1995, 32(4), 751–757. DOI: 10.1080/10601329508010286.
  • Jariyasakoolroj, P.; Leelaphiwat, P.; Harnkarnsujarit, N. Advances in Research and Development of Bioplastic for Food Packaging. J. Sci. Food Agric. 2020, 100(14), 5032–5045. DOI: 10.1002/jsfa.9497.
  • Laycock, B. G.; Halley, P. J. Chapter 14 - Starch Applications: State of Market and New Trends. In Starch Polymers; Halley, P. J., Avérous, L., Eds.; Elsevier: Amsterdam, 2014; pp 381–419. DOI: 10.1016/B978-0-444-53730-0.00026-9.
  • Gáspár, M.; Benkő, Z.; Dogossy, G.; Réczey, K.; Czigány, T. Reducing Water Absorption in Compostable Starch-Based Plastics. Polym. Degrad. Stab. 2005, 90(3), 563–569. DOI: 10.1016/j.polymdegradstab.2005.03.012.
  • Gadhave, R. V.; Das, A.; Mahanwar, P. A.; Gadekar, P. T. Starch Based Bio-Plastics: The Future of Sustainable Packaging. Open J. Polym. Chem. 2018, 8(2), 21–33. DOI: 10.4236/ojpchem.2018.82003.
  • Zaid, M.; Abidin, A. Z.; Muhd Julkapli, N.; Juahir, H.; Azaman, F.; Sulaiman, N. H.; Abidin, I. Z. Fabrication and Properties of Chitosan with Starch for Packaging Application. Mal. J. Anal. Sci. 2015, 19(5), 1032–1042.
  • Momani, B. Assessment of the Impacts of Bioplastics: Energy Usage, Fossil Fuel Usage, Pollution, Health Effects, Effects on the Food Supply, and Economic Effects Compared to Petroleum Based Plastics. Bachleor’s Dissertation, Worcester Polytechnic Institute, Worcester, United States., 2009.
  • Jamshidi, K.; Hyon, S.-H.; Ikada, Y. Thermal Characterization of Polylactides. Polymer (Guildf.). 1988, 29(12), 2229–2234. DOI: 10.1016/0032-3861(88)90116-4.
  • Avérous, L.; Fringant, C.; Moro, L. Plasticized Starch–Cellulose Interactions in Polysaccharide Composites. Polymer (Guildf.). 2001, 42(15), 6565–6572. DOI: 10.1016/S0032-3861(01)00125-2.
  • Cyras, V. P.; Commisso,; Ma, S.; Mauri, A. N.; Vázquez, A. Biodegradable Double-Layer Films Based on Biological Resources: Polyhydroxybutyrate and Cellulose. J. Appl. Polym. Sci. 2007, 106(2), 749–756. DOI: 10.1002/app.26663.
  • Zepnik, S.; Kesselring, A.; Kopitzky, R.; Michels, C. Basics of Cellulosics. Bioplast. Mag. 2010, 5, 44–47.
  • Petersen, K.; Væggemose Nielsen, P.; Bertelsen, G.; Lawther, M.; Olsen, M. B.; Nilsson, N. H.; Mortensen, G. Potential of Biobased Materials for Food Packaging. Trends Food Sci. Technol. 1999, 10(2), 52–68. DOI: 10.1016/S0924-2244(99)00019-9.
  • Gennadios, A.; Weller, C. L.; Testin, R. F. Property Modification of Edible Wheat, Gluten-Based Films; Trans ASABE. 1993, 36(2), 465–470.
  • Morillon, V.; Debeaufort, F.; Blond, G.; Capelle, M.; Voilley, A. Factors Affecting the Moisture Permeability of Lipid-Based Edible Films: A Review. Crit. Rev. Food Sci. Nutr. 2002, 42(1), 67–89. DOI: 10.1080/10408690290825466.
  • Shahidi, F.; Arachchi, J. K. V.; Jeon, Y.-J. Food Applications of Chitin and Chitosans. Trends Food Sci. Technol. 1999, 10(2), 37–51. DOI: 10.1016/S0924-2244(99)00017-5.
  • Sánchez-González, L.; González-Martínez, C.; Chiralt, A.; Cháfer, M. Physical and Antimicrobial Properties of Chitosan–Tea Tree Essential Oil Composite Films. J. Food Eng. 2010, 98(4), 443–452. DOI: 10.1016/j.jfoodeng.2010.01.026.
  • Shah, M.; Rajhans, S.; Pandya, H.; Mankad, A. Bioplastic for Future: A Review Then and Now. WJARR. 2021, 9, 56–67. DOI: 10.30574/wjarr.2021.9.2.0054.
  • Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly(Lactic Acid) Modifications. Prog Polym. Sci. 2010, 35(3), 338–356. DOI: 10.1016/j.progpolymsci.2009.12.003.
  • Faris, N. A.; Noriman, N. Z.; Sam, S. T.; Ruzaidi, C. M.; Omar, M. F.; Kahar, A. W. M. Current Research in Biodegradable Plastics. Appl. Mech. Mater. 2014, 679, 273–280. DOI: 10.4028/www.scientific.net/AMM.679.273.
  • Gupta, B.; Revagade, N.; Hilborn, J. Poly (Lactic Acid) Fiber: An Overview. Prog. Polym. Sci. 2007, 32(4), 455–482. DOI: 10.1016/j.progpolymsci.2007.01.005.
  • Huda, M. S.; Drzal, L. T.; Mohanty, A. K.; Misra, M. Effect of Fiber Surface-Treatments on the Properties of Laminated Biocomposites from Poly(Lactic Acid) (PLA) and Kenaf Fibers. Compos Sci. Technol. 2008, 68(2), 424–432. DOI: 10.1016/j.compscitech.2007.06.022.
  • Inoue, K.; Serizawa, S.; Yamashiro, M.; Iji, M. Highly Functional Bioplastics (PLA Compounds) Used for Electronic Products. In Polytronic 2007 - 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics; IEEE, 2007, 73–76.DOI: 10.1109/POLYTR.2007.4339141.
  • Özçimen, D.; İnan, B.; Morkoç, O.; Efe, A. A Review on Algal Biopolymers. J. Chem. Eng. Res. Updates. 2017, 4, 7–14. DOI: 10.15377/2409-983X.2017.04.2.
  • Galindo, E.; Peña, C.; Núñez, C.; Segura, D.; Espín, G. Molecular and Bioengineering Strategies to Improve Alginate and Polydydroxyalkanoate Production by Azotobacter Vinelandii. Microb Cell. Fact. 2007, 6(1), 7. DOI: 10.1186/1475-2859-6-7.
  • Kumar, Y.; Shukla, P.; Singh, P. J. Bioplastics: A perfect Tool for eco-friendly food packaging: A reviewJ. Food Prod. Dev. Packag. 2014, 1–6.
  • Koller, I.; Owen, A. J. Starch-Filled PHB and PHB/HV Copolymer. Polym. Int. 1996, 39(3), 175–181. DOI: 10.1002/(SICI)1097-0126(199603)39:3<175::AID-PI472>3.0.CO;2-0.
  • Jafari Sales, A. Bioplastics and the environment. Electronic J. Biol. 2017, 13(3). 274–279.
  • Venkatachalam, H.; Palaniswamy, R. Bioplastic World: A Review. J. Adv. Sci. Res. 2020, 11(3), 43–53.
  • Saharan, B.; Sharma, D. Bioplastics-For Sustainable Development: A Review. Int. J. Microbiol. Res. 2012, 11, 11–23.
  • Nikel, P. I.; Pettinari, M. J.; Galvagno, M. A.; Méndez, B. S. Poly(3-Hydroxybutyrate) Synthesis by Recombinant Escherichia Coli ArcA Mutants in Microaerobiosis. Appl. Environ. Microbiol. 2006, 72(4), 2614–2620. DOI: 10.1128/AEM.72.4.2614-2620.2006.
  • Koller, M.; Bona, R.; Chiellini, E.; Fernandes, E. G.; Horvat, P.; Kutschera, C.; Hesse, P.; Braunegg, G. Polyhydroxyalkanoate Production from Whey by Pseudomonas Hydrogenovora. Bioresour. Technol. 2008, 99(11), 4854–4863. DOI: 10.1016/j.biortech.2007.09.049.
  • Van-Thuoc, D.; Quillaguamán, J.; Mamo, G.; Mattiasson, B. Utilization of Agricultural Residues for Poly(3-Hydroxybutyrate) Production by Halomonas Boliviensis LC1. J. Appl. Microbiol. 2007, 071003000434003-???. DOI: 10.1111/j.1365-2672.2007.03553.x.
  • Halami, P. M. Production of Polyhydroxyalkanoate from Starch by the Native Isolate Bacillus Cereus CFR06. World J. Microbiol. Biotechnol. 2008, 24(6), 805–812. DOI: 10.1007/s11274-007-9543-z.
  • Bhubalan, K.; Lee, W.-H.; Loo, C.-Y.; Yamamoto, T.; Tsuge, T.; Doi, Y.; Sudesh, K. Controlled Biosynthesis and Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate-Co-3-Hydroxyhexanoate) from Mixtures of Palm Kernel Oil and 3HV-Precursors. Polym. Degrad. Stab. 2008, 93(1), 17–23. DOI: 10.1016/j.polymdegradstab.2007.11.004.
  • Jiang, Y.; Chen, Y.; Zheng, X. Efficient Polyhydroxyalkanoates Production from a Waste-Activated Sludge Alkaline Fermentation Liquid by Activated Sludge Submitted to the Aerobic Feeding and Discharge Process. Environ. Sci. Technol. 2009, 43(20), 7734–7741. DOI: 10.1021/es9014458.
  • Chou, K. S.; Chang-Ho, H. W. R.; Goodrich, P. R. Poly(hydroxybutyrate-co-hydroxy-valerate) from Swine Waste Liquor by Azotobacter Vinelandii UWD. Biotechnol. Lett. 1997, 19(1), 7–10. DOI: 10.1023/A:1018342332141.
  • Reddy, C. S. K.; Ghai, R.; Rashmi, K. V. C. Polyhydroxyalkanoates: An Overview. Bioresour. Technol. 2003, 87(2), 137–146. DOI: 10.1016/S0960-8524(02)00212-2.
  • Chung, Y. J.; Cha, H. J.; Yeo, J. S.; Yoo, Y. J. Production of poly(3-hydroxybutyric-co-3-hydroxyvaleric)acid Using Propionic Acid by pH Regulation. J. Ferment. Bioeng. 1997, 83(5), 492–495. DOI: 10.1016/S0922-338X(97)83009-7.
  • Patnaik, P. R. Perspectives in the Modeling and Optimization of PHB Production by Pure and Mixed Cultures. Crit. Rev. Biotechnol. 2005, 25(3), 153–171. DOI: 10.1080/07388550500301438.
  • Madhumitha, G.; Fowsiya, J.; Mohana Roopan, S.; Thakur, V. K. Recent Advances in starch–clay Nanocomposites. Int. J. Polym. Anal. Charact. 2018, 23(4), 331–345. DOI: 10.1080/1023666X.2018.1447260.
  • Siemann, U. Solvent Cast Technology – A Versatile Tool for Thin Film Production. In Scattering Methods and the Properties of Polymer Materials. Stribeck, N., Smarsly, B. Eds. Springer: Berlin, Heidelberg, 2005; pp 1–14.
  • de Moraes, J. O.; Scheibe, A. S.; Sereno, A.; Laurindo, J. B. Scale-up of the Production of Cassava Starch Based Films Using tape-casting. J. Food Eng. 2013, 119(4), 800–808. DOI: 10.1016/j.jfoodeng.2013.07.009.
  • Mangaraj, S.; Goswami, T. K.; Panda, D. K. Modeling of Gas Transmission Properties of Polymeric Films Used for MA Packaging of Fruits. J. Food Sci. Technol. 2015, 52(9), 5456–5469. DOI: 10.1007/s13197-014-1682-2.
  • Oliveira de Moraes, J.; Scheibe, A. S.; Augusto, B.; Carciofi, M.; Laurindo, J. B. Conductive Drying of starch-fiber Films Prepared by Tape Casting: Drying Rates and Film Properties. LWT - Food Sci. Technol. 2015, 64(1), 356–366. DOI: 10.1016/j.lwt.2015.05.038.
  • Tatara, R. A. Compression Molding. In Applied Plastics Engineering Handbook, 2nd ed.; Kutz, M., Ed.; William Andrew Publishing: New York, USA, 2017; pp 291–320.
  • Marçal, R. L. S. B. Biomaterials Produced by Injection Molding. In Reference Module in Materials Science and Materials Engineering, Hashmi, S. Ed. Elsevier: Amsterdam, Netherlands, 2016; pp .1–4.
  • Emin, M. A.; Schuchmann, H. P. A Mechanistic Approach to Analyze Extrusion Processing of Biopolymers by Numerical, Rheological, and Optical Methods. Trends Food Sci. Technol. 2017, 60, 88–95. DOI: 10.1016/j.tifs.2016.10.003.
  • Bouvier, J.; Campanella, O. H. Extrusion Processing Technology; John Wiley& Sons, Ltd: New Jersey, United States, 2014.
  • Massoud, K. Introduction to Extrusion Technology, CRC Press: Boca Raton, Florida, 2016.
  • Valle, G. D.; Berzin, F.; Vergnes, B. Modeling of Twin Screw Extrusion Process for Food Products Design and Process Optimization. Advan. Food Extrusion Tech. 2011. DOI: 10.1201/b11286-14.
  • N, M. A.; S, S. K.; Nidoni, U. Recent Trends of Biodegradable Polymer: Biodegradable Films for Food Packaging and Application of Nanotechnology in Biodegradable Food Packaging. J. Curr. Trends Sci. Technol. 2014, 3(2), 73–79.
  • da Silva, A. S.; Sobral Teixeira, R. S.; de Oliveira, R. Sugarcane and Woody Biomass Pretreatments for Ethanol Production. In Sustainable Degradation of Lignocellulosic Biomass - Techniques, Applications and Commercialization, Chandel, A., da Silva, S. S. Eds. InOpen Tech: London, United Kingdom, 2013; pp 47–88.
  • Emin, M. A.; Schuchmann, H. P. Analysis of the Dispersive Mixing Efficiency in a twin-screw Extrusion Processing of Starch Based Matrix. J. Food Eng. 2013, 115(1), 132–143. DOI: 10.1016/j.jfoodeng.2012.10.008.
  • Formela, K.; Zedler, Ł.; Hejna, A.; Tercjak, A. Reactive Extrusion of bio-based Polymer Blends and Composites – Current Trends and Future Developments. Express Polym. Lett. 2018, 12(1), 24–57. DOI: 10.3144/expresspolymlett.2018.4.
  • Vergnes, B.; Berzin, F. Modelling of Flow and Chemistry in Twin Screw Extruders. Plast., Rubber Compos. 2004, 33(9–10), 409–415. DOI: 10.1179/174328904X24916.
  • Wang, G.; Chen, F. Development of Bamboo fiber-based Composites. In Advanced High Strength Natural Fibre Composites in ConstructionFan, M., Fu, F. Eds. Woodhead Publishing, Elsevier Inc: Cambridge, England, 2017; pp 235–255.
  • Mazerolles, T.; Heuzey, M. C.; Soliman, M.; Martens, H.; Kleppinger, R.; Huneault, M. A. Development of Multilayer Barrier Films of Thermoplastic Starch and low-density Polyethylene. J. Polym. Res. 2020, 27(2), 44. DOI: 10.1007/s10965-020-2015-y.
  • Selke, S. E., Hernandez, R. J.; Packaging: Polymers in Flexible Packaging. In Encyclopedia of Materials: Science and Technology, 2nd ed.; Jurgen Buschow, K. H., Cahn, R. W., Veyssiere, P. Eds. Pergamon Press, Elsevier: Oxford, UK, 2019; pp 6652–6656.
  • Liu, W.; Wang, Z.; Liu, J. Preparation, Reinforcement and Properties of Thermoplastic Starch Film by Film Blowing. Food Hydrocoll. 2020, 108, 106006. DOI: 10.1016/j.foodhyd.2020.106006.
  • Mukhopadhyay, R.; Divya Sree, K.; Saneeha, R.; Kale, P.; Iram, U. Preparation and Characterization of Biodegradable Plastics Out of Food Wastes as Prospective and Eco-Friendly Medical Devices. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 134–142.
  • Avérous, L.; Pollet, E. Environmental Silicate Nano-Biocomposites; Springer: London, 2012.
  • Mukhopadhyay, R.; Divya Sree, K.; Saneeha, R.; Kale, P.; Iram, U. Preparation and Characterization of Biodegradable Plastics Out of Food Wastes as Prospective and Eco-Friendly Medical Devices. 2017.
  • Rahman, R. Bioplastics for Food Packaging: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8(3), 2311–2321. DOI: 10.20546/ijcmas.2019.803.274.
  • Molenveld, K.; van den Oever, M. J. A.; Bos, H. L. Biobased Packaging Catalogue; Wageningen UR Food & Biobased Research: Wageningen, 2015.
  • Bakir, A.; Rowland, S. J.; Thompson, R. C. Transport of Persistent Organic Pollutants by Microplastics in Estuarine Conditions. Estuar Coast Shelf. Sci. 2014, 140, 14–21. DOI: 10.1016/j.ecss.2014.01.004.
  • Rujnić-Sokele, M.; Pilipović, A. Challenges and Opportunities of Biodegradable Plastics: A Mini Review. Waste Manag. & Res: The J. for a Sust. Circular Eco. 2017, 35(2), 132–140. DOI: 10.1177/0734242X16683272.
  • Nolan-ITU. Biodegradable_Plastics: Developments and Environmental Impacts; Department of the Environment and Heritage: Australia, 2002.
  • Rivero, C. P.; Hu, Y.; Kwan, T. H. Bioplastics from Solid Waste. In Current Developments in Biotechnology and Bioengineering, Wong, J. W. C., Tyagi, R. D., and Pandey, A. Eds. Elsevier: Amsterdam, Netherlands, 2017, pp. 1–26.
  • Anderson, J. M.; Shive, M. S. Biodegradation and Biocompatibility of PLA and PLGA. Microspheres. 1997, 28. DOI: 10.1016/S0169-409X(97)00048-3.
  • Sin, L. T.; Rahmat, A. R.; Rahman, W. A. W. A. Applications of Poly(lactic Acid). In Polylactic Acid, 1st ed.; Sin, L. T., Rahmat, A. R., Rahman, W. A. W. A., Eds. William Andrew Publishing: Norwich, New York, 2013; pp. 301–327.
  • Bioplastics, E. Global Production Capacities of Bioplastics 2016-2021. https://www.european-bioplastics.org/market-data-update-2016/ (accessed October 24, 2023).
  • Park, H. M.; Li, X.; Jin, C. Z.; Park, C. Y.; Cho, W. J.; Ha, C. S. Preparation and Properties of Biodegradable Thermoplastic Starch/Clay Hybrids. Macromol. Mater. Eng. 2002, 287(8), 553–558. DOI: 10.1002/1439-2054(20020801)287:8.
  • Ribeiro, C.; Vicente, A. A.; Teixeira, J. A.; Miranda, C. Optimization of Edible Coating Composition to Retard Strawberry Fruit Senescence. Postharvest. Biol. Technol. 2007, 44(1), 63–70. DOI: 10.1016/j.postharvbio.2006.11.015.
  • Jabeen, N.; Majid, I.; Nayik, G. A. Bioplastics and Food Packaging: A Review. Cogent Food Agric. 2015, 1(1), 1117749. DOI: 10.1080/23311932.2015.1117749.
  • Sushmitha, B. S.; Vanitha, K. P.; Rangaswamy, B. E. Bioplastics – A Review. Int. J. Mod. Trends. Eng. Res. 2016, 3(4), 411–413.
  • Ackermann, J. U.; Babel, W. Growth-associated Synthesis of Poly(hydroxybutyric Acid) in Methylobacterium Rhodesianum as an Expression of an Internal Bottleneck. Appl. Microbiol. Biotechnol. 1997, 47(2), 144–149. DOI: 10.1007/s002530050903.
  • Barker, M.; Safford, R. Industrial Uses for Crops: Markets for Bioplastics. https://projectblue.blob.core.windows.net/media/Default/Research%20Papers/Cereals%20and%20Oilseed/pr450-final-project-report.pdf (accessed 24 October,2023).
  • Orts, W. J.; Shey, J.; Imam, S. H.; Glenn, G. M.; Guttman, M. E.; Revol, J. F. Application of Cellulose Microfibrils in Polymer Nanocomposites. J. Polym. Environ. 2005, 13(4), 301–306. DOI: 10.1007/s10924-005-5514-3.
  • Kumar, M. V.; Shrives, Y.; Sharma, C.; Kumar, S. P.; Kumar, B. S. Review on Green Polymer Nanocomposite and Their Applications. Int. J. Innov. Res. Sci. Engi. & Tech. (An ISO). 2007, 3297(11), 2319–8753. DOI: 10.15680/IJIRSET.2014.0311079.
  • Fabra, M. J.; Sánchez, G.; López-Rubio, A.; Lagaron, J. M. Microbiological and Ageing Performance of polyhydroxyalkanoate-based Multilayer Structures of Interest in Food Packaging. LWT - Food Sci. Technol. 2014, 59(2, Part 1), 760–767. DOI: 10.1016/j.lwt.2014.07.021.
  • Coltelli, M. B.; Panariello, L.; Morganti, P. Skin-Compatible Biobased Beauty Masks Prepared by Extrusion. J. Funct. Biomater. 2020, 11(2), 23. DOI: 10.3390/jfb11020023.
  • Ragaert, P.; Buntinx, M.; Maes, C.; Polyhydroxyalkanoates for Food Packaging Applications. In Reference Module in Food Science Smithers, G., Ed. Elsevier: Amsterdam, Netherlands, 2019; pp 1–9.
  • Khoo, H. H.; Tan, R. B. H.; Chng, K. W. L. Environmental Impacts of Conventional Plastic and bio-based Carrier Bags. Int. J. Life Cycle Assess. 2010, 15(3), 284–293. DOI: 10.1007/s11367-010-0162-9.
  • Rekhi, P.; Goswami, M.; Ramakrishna, S.; Debnath, M. Polyhydroxyalkanoates Biopolymers toward Decarbonizing Economy and Sustainable Future. Crit. Rev. Biotechnol. 2022, 42(5), 668–692. DOI: 10.1080/07388551.2021.1960265.
  • Kalia, V. C.; Singh Patel, S. K.; Shanmugam, R.; Lee, J. K. Polyhydroxyalkanoates: Trends and Advances toward Biotechnological Applications. Bioresour. Technol. 2021, 326, 124737. DOI: 10.1016/j.biortech.2021.124737.
  • Risyon, N. P.; Othman, S. H.; Basha, R. K.; Talib, R. A. Characterization of Polylactic acid/halloysite Nanotubes Bionanocomposite Films for Food Packaging. Food Packag. Shelf Life. 2020, 23, 100450. DOI: 10.1016/j.fpsl.2019.100450.
  • Swaroop, C.; Shukla, M. Development of Blown Polylactic acid-MgO Nanocomposite Films for Food Packaging. Compos Part A Appl Sci Manuf. 2019, 124, 105482. DOI: 10.1016/j.compositesa.
  • Chiesa, E.; Dorati, R.; Pisani, S. Graphene Nanoplatelets for the Development of Reinforced PLA–PCL Electrospun Fibers as the Next-Generation of Biomedical Mats. Polymers (Basel). 2020, 12(6), 1390. DOI: 10.3390/polym12061390.
  • Thakur, V. K.; Thakur, M. Handbook of Sustainable Polymers; Jenny Stanford Publishing: New York, 2016.
  • Babu, R. P.; O’Connor, K.; Seeram, R. Current Progress on bio-based Polymers and Their Future Trends. Prog. Biomater. 2013, 2(1), 8. DOI: 10.1186/2194-0517-2-8.
  • Avella, M.; De Vlieger, J. J.; Errico, M. E.; Fischer, S.; Vacca, P.; Volpe, M. G. Biodegradable starch/clay Nanocomposite Films for Food Packaging Applications. Food Chem. 2005, 93(3), 467–474. DOI: 10.1016/j.foodchem.2004.10.024.
  • Sanyang, M. L.; Sapuan, S. M.; Jawaid, M.; Ishak, M. R.; Sahari, J. Effect of Plasticizer Type and Concentration on Physical Properties of Biodegradable Films Based on Sugar Palm (Arenga Pinnata) Starch for Food Packaging. J. Food Sci. Technol. 2016, 53(1), 326–336. DOI: 10.1007/s13197-015-2009-7.
  • Ferreira, A.; Alves, V.; Coelhoso, I. Polysaccharide-Based Membranes in Food Packaging Applications. Membranes (Basel). 2016, 6(2), 22. DOI: 10.3390/membranes6020022.
  • Boesel, L. F.; Mano, J. F.; Reis, R. L. Optimization of the Formulation and Mechanical Properties of Starch Based Partially Degradable Bone Cements. J. Mater. Sci. Mater. Med. 2004, 15(1), 73–83. DOI: 10.1023/b:jmsm.0000010100.07715.eb.
  • Çalgeris, İ.; Çakmakçı, E.; Ogan, A.; Kahraman, M. V.; Kayaman-Apohan, N. Preparation and Drug Release Properties of lignin-starch Biodegradable Films. Starch - Stärke. 2012, 64(5), 399–407. DOI: 10.1002/star.201100158.
  • Reddy, R. L.; Reddy, V.; Gupta, G. A. Study of Bio-plastics as Green & Sustainable Alternative to Plastics. Int. J. Emerg. Technol. Adv. Eng. 2013. 3(5), 76–81
  • Sharif Hossain, A. B. M.; Ibrahim, N. A.; AlEissa, M. S. Nano-cellulose Derived Bioplastic Biomaterial Data for Vehicle bio-bumper from Banana Peel Waste Biomass. Data Brief. 2016, 8, 286–294. DOI: 10.1016/j.dib.2016.05.029.
  • Sahnoun, N.; Abdelaziz, A.; Trache, D.; Tarchoun, A. F.; Bessa, W.; Mahdjoub, A. S.; Thakur, S. Unrevealing the Role of the Sulfonitric Media Composition on the Design and Properties of Potato starch-based nitrogen-rich Biopolymer. Ind. Crop Prod. 2023, 205, 117536. DOI: 10.1016/j.indcrop.2023.117536.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.