248
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Metal organic frameworks (MOFs)@conducting polymeric nanoarchitectures for electrochemical energy storage applications

& ORCID Icon
Pages 939-974 | Received 24 Oct 2023, Accepted 03 Jan 2024, Published online: 05 Feb 2024

References

  • Muzaffar, N.; Afzal, A. M.; Hegazy, H. H.; Iqbal, M. W. Recent Advances in Two-Dimensional Metal-Organic Frameworks as an Exotic Candidate for the Evaluation of Redox-Active Sites in Energy Storage Devices. J. Energy Storage. 2023, 64, 107142. DOI: 10.1016/j.est.2023.107142.
  • Prajapati, M.; Singh, V.; Jacob, M. V.; Kant, C. R. Recent Advancement in Metal-Organic Frameworks and Composites for High-Performance Supercapacitor Batteries. Renewable Sustainable Energy Rev. 2023, 183, 113509. DOI: 10.1016/j.rser.2023.113509.
  • Liu, X. F.; Wang, Y. R.; Chen, H.; Li, B.; Zang, S. Q. Conducting Polymer-Functionalized Mesoporous Metal-Organic Frameworks for High-Performance Li-S Battery. Nano Res. 2023, 16(4), 4867–4873. DOI: 10.1007/s12274-022-5116-6.
  • Zhao, W.; Zeng, Y.; Zhao, Y.; Wu, X. Recent Advances in Metal-Organic Framework-Based Electrode Materials for Supercapacitors: A Review. J. Energy Storage. 2023, 62, 106934. DOI: 10.1016/j.est.2023.106934.
  • Hong, C. N.; Crom, A. B.; Feldblyum, J. I.; Lukatskaya, M. R. Metal-Organic Frameworks for Fast Electrochemical Energy Storage: Mechanisms and Opportunities. Chem. 2023, 9, 798–822. DOI: 10.1016/j.chempr.2023.02.016.
  • Zhang, R.; Zhang, Z.; Jiang, J.; Pang, H. Recent Electrochemical-Energy-Storage Applications of Metal–Organic Frameworks Featuring Iron-Series Elements (Fe, Co, and Ni). J. Energy Storage. 2023, 65, 107217. DOI: 10.1016/j.est.2023.107217.
  • Zhao, R.; Liang, Z.; Zou, R.; Xu, Q. Metal-Organic Frameworks for Batteries. Joule. 2018, 2, 2235–2259. DOI: 10.1016/j.joule.2018.09.019.
  • Yan, Y.; Lin, X.; Xiao, H.; Xinhua, L. Nonconductive Two-Dimensional metal− Organic Frameworks for High-Performance Electrochemical Energy Storage. Electrochim. Acta. 2023, 441, 141808.
  • Sang, Z.; Tong, Y.; Hou, F.; Liang, J. Recent Progress of Conductive Metal–Organic Frameworks for Electrochemical Energy Storage. Trans. Tianjin Univ. 2023, 29(2), 136–150. DOI: 10.1007/s12209-022-00352-9.
  • Xu, G.; Nie, P.; Dou, H.; Ding, B.; Li, L.; Zhang, X. Exploring Metal Organic Frameworks for Energy Storage in Batteries and Supercapacitors. Mater. Today. 2017, 20(4), 191–209. DOI: 10.1016/j.mattod.2016.10.003.
  • Hu, X.; Zheng, W.; Wu, M.; Chen, L.; Chen, S. Composites of Metal-Organic Frameworks (MOFs) and LDHs for Energy Storage and Environmental Applications: Fundamentals, Progress, and Perspectives. Sus. Mater. Technol. 2023, 37, e00691. DOI: 10.1016/j.susmat.2023.e00691.
  • Sasmal, A.; Senthilnathan, J.; Arockiarajan, A.; Yoshimura, M. Two-Dimensional Metal-Organic Framework Incorporated Highly Polar PVDF for Dielectric Energy Storage and Mechanical Energy Harvesting. Nanomaterials. 2023, 13(6), 1098. DOI: 10.3390/nano13061098.
  • Dutt, S.; Kumar, A.; Singh, S. Synthesis of Metal Organic Frameworks (MOFs) and Their Derived Materials for Energy Storage Applications. Clean Technol. 2023, 5(1), 140–166. DOI: 10.3390/cleantechnol5010009.
  • Xu, D.; Zhang, Z.; Tao, K.; Han, L. A Heterostructure of a 2D Bimetallic Metal–Organic Framework Assembled on an MXene for High-Performance Supercapacitors. Dalton Trans. 2023, 52(8), 2455–2462. DOI: 10.1039/D2DT03872B.
  • Safari, M.; Mazloom, J. Outstanding Energy Storage Performance in CoFe Bimetallic Metal-Organic Framework Spindles via Decorating with Reduced Graphene Oxide Nanosheets. J. Energy Storage. 2023, 58, 106390. DOI: 10.1016/j.est.2022.106390.
  • He, M.; Melvin, G. J. H.; Wang, M.; Fan, W.; Lin, J.; Chen, X.; Wang, Z. Hierarchically Structured Electrode Materials Derived from Metal-Organic Framework/Vertical Graphene Composite for High-Performance Flexible Asymmetric Supercapacitors. J. Energy Storage. 2023, 70, 108055. DOI: 10.1016/j.est.2023.108055.
  • Winter, M.; Brodd, R. J. What are batteries, fuel cells and supercapacitors? Chem. Rev. 2004, 104, 4245–4269. DOI: 10.1021/cr020730k.
  • Ramulu, B.; Mule, A. R.; Arbaz, S. J.; Yu, J. S. Design of High-Mass Loading Metal–Organic Framework-Based Electrode Materials with Excellent Redox Activity for Long-Lasting Electrochemical Energy Storage Applications. Chem. Eng. J. 2023, 455, 140905. DOI: 10.1016/j.cej.2022.140905.
  • Parsapour, F.; Moradi, M.; Bahadoran, A. Metal-Organic Frameworks-Derived Layered Double Hydroxides: From Controllable Synthesis to Various Electrochemical Energy Storage/Conversion Applications. Adv. Coll. Interf. Sci. 2023, 313, 102865. DOI: 10.1016/j.cis.2023.102865.
  • Xin, W.; Xiao, J.; Li, J.; Zhang, L.; Peng, H.; Yan, Z.; Zhu, Z. Metal-Organic Frameworks with Carboxyl Functionalized Channels as Multifunctional Ion-Conductive Interphase for Highly Reversible Zn Anode. Energy Storage Mater. 2023, 56, 76–86. DOI: 10.1016/j.ensm.2023.01.006.
  • Siddiqui, R.; Rani, M.; Shah, A. A.; Razaq, A.; Iqbal, R.; Neffati, R.; Arshad, M. Fabrication of Tricarboxylate-Neodymium Metal Organic Frameworks and Its Nanocomposite with Graphene Oxide by Hydrothermal Synthesis for a Symmetric Supercapacitor Electrode Material. Mater. Sci. Eng. 2023, 295, 116530. DOI: 10.1016/j.mseb.2023.116530.
  • Salunkhe, A. D.; Pagare, P. K.; Torane, A. P. Review on Recent Modifications in Nickel Metal-Organic Framework Derived Electrode (Ni-MOF) Materials for Supercapacitors. J. Inorg. Organomet. Polym. 2023, 33(2), 287–318. DOI: 10.1007/s10904-022-02503-w.
  • Iqbal, M. Z.; Shaheen, M.; Khan, M. W.; Siddique, S.; Farid, S.; Aftab, S.; Wabaidur, S. M. Elucidating D-π Conjugated Two-Dimensional 2, 3, 6, 7, 10, 11-Hexahydroxytriphenylene Based Conductive Metal-Organic Framework for Hybrid Supercapacitors. J. Electroanal. Chem. 2023, 943(943), 117564. DOI: 10.1016/j.jelechem.2023.117564.
  • Lamiel, C.; Hussain, I.; Rabiee, H.; Ogunsakin, O. R.; Zhang, K. Metal-Organic Framework-Derived Transition Metal Chalcogenides (S, Se, and Te): Challenges, Recent Progress, and Future Directions in Electrochemical Energy Storage and Conversion Systems. Coord. Chem. Rev. 2023, 480, 215030. DOI: 10.1016/j.ccr.2023.215030.
  • Király, N.; Capková, D.; Gyepes, R.; Vargová, N.; Kazda, T.; Bednarčík, J.; Almáši, M. Sr (II) and Ba (II) Alkaline Earth Metal–Organic Frameworks (AE-MOFs) for Selective Gas Adsorption. Energy Storage, And Environmental Application. Nanomaterials. 2023, 13(2), 234. DOI: 10.3390/nano13020234.
  • Deng, F.; Zhang, Y.; Yu, Y. Conductive Metal–Organic Frameworks for Rechargeable Lithium Batteries. Batteries. 2023, 9(2), 109. DOI: 10.3390/batteries9020109.
  • Javed, N.; Noor, T.; Iqbal, N.; Naqvi, S. R. A Review on Development of Metal–Organic Framework-Derived Bifunctional Electrocatalysts for Oxygen Electrodes in Metal–Air Batteries. R.S.C. Adv. 2023, 13(2), 1137–1161. DOI: 10.1039/D2RA06741B.
  • Sun, X.; Yan, X.; Song, K.; Zhang, T.; Yang, Z.; Su, X.; Chen, L. A Pyrazine‐Based 2D Conductive Metal‐Organic Framework for Efficient Lithium Storage. Chin. J. Chem. 2023.
  • Sang, Z.; Liu, J.; Zhang, X.; Yin, L.; Hou, F.; Liang, J. One-Dimensional π–D Conjugated Conductive Metal–Organic Framework with Dual Redox-Active Sites for High-Capacity and Durable Cathodes for Aqueous Zinc Batteries. ACS Nano. 2023, 17(3), 3077–3087. DOI: 10.1021/acsnano.2c11974.
  • Sheibanizadeh, Z.; Khalaj, Z.; Behzad, K.; Pedram, M. Z.; Monajjemi, M. Formation of Reduced Graphene Oxide Encapsulated Zirconium Based Metal-Organic Frameworks Covered by Polyaniline as High-Performance Electrodes for Hybrid Supercapacitor. Available at SSRN 4435252.
  • Yao, S.; Ramakrishna, S.; Chen, G. Recent Advances in Metal–Organic Frameworks Based on Electrospinning for Energy Storage. Adv. Fiber Mater. 2023, 5(5), 1592–1617. DOI: 10.1007/s42765-023-00287-3.
  • Zhao, J.; Zhang, T.; Ren, J.; Zhao, Z.; Su, X.; Chen, W.; Chen, L. A tribenzocoronene-based 2D conductive metal–organic framework for efficient energy storage. Chem. Commun. 2023, 59(20), 2978–2981. DOI: 10.1039/D2CC07081B.
  • Mousavi, S. R.; Hosseini, H. Metal–Organic Frameworks/MXenes Hybrid Nanomaterials for Energy Storage Applications. J. Mater. Sci.: Mater. Electron. 2023, 34(9), 818. DOI: 10.1007/s10854-023-10234-y.
  • Wang, T.; Chen, S.; Chen, K. J. Metal‐Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives. Chem. Rec. 2023, 23(6), e202300006. DOI: 10.1002/tcr.202300006.
  • Xiong, D.; Deng, X.; Cao, Z.; Tao, S.; Song, Z.; Xiao, X.; Ji, X. (2023). 2D Metal–Organic Frameworks for Electrochemical Energy Storage. Energy & Environmental Materials, e12521.
  • Prajapati, M.; Singh, V.; Jacob, M. V.; Kant, C. R. Recent Advancement in Metal-Organic Frameworks and Composites for High-Performance Supercapatteries. Renewable Sustainable Energy Rev. 2023, 183, 113509. DOI: 10.1016/j.rser.2023.113509.
  • Bhosale, R.; Bhosale, S.; Vadiyar, M.; Jambhale, C.; Nam, K. W.; Kolekar, S. Recent Progress on Functional Metal‐Organic Framework for Supercapacitive Energy Storage Systems; Energy Technology.
  • Ramandi, S.; Entezari, M. H. Self-Supporting Electrode for Flexible Supercapacitors: NiCo-Layered Double Hydroxide Derived from Metal Organic Frameworks Wrapped on Graphene/Polyaniline Nanotubes@ Cotton Cloth. J. Energy Storage. 2022, 56, 106106. DOI: 10.1016/j.est.2022.106106.
  • Ferhi, N.; Desalegn Assresahegn, B.; Ardila-Suarez, C.; Dissem, N.; Guay, D.; Duong, A. Defective Metal–Organic Framework-808@ Polyaniline Composite Materials for High Capacitance Retention Supercapacitor Electrodes. ACS Appl. Energy Mater. 2022, 5(1), 1235–1243. DOI: 10.1021/acsaem.1c03649.
  • Ramandi, S.; Entezari, M. H. Design of New, Efficient, and Suitable Electrode Material Through Interconnection of ZIF-67 by Polyaniline Nanotube on Graphene Flakes for Supercapacitors. J. Power Sources. 2022, 538, 231588. DOI: 10.1016/j.jpowsour.2022.231588.
  • Zhang, Y.; Li, Z.; Liu, M.; Liu, J. Construction of Novel Polyaniline-Intercalated Hierarchical Porous V2O5 Nanobelts with Enhanced Diffusion Kinetics and Ultra-Stable Cyclability for Aqueous Zinc-Ion Batteries. Chem. Eng. J. 2023, 463, 142425. DOI: 10.1016/j.cej.2023.142425.
  • Kumar, S.; Weng, P. H.; Fu, Y. P. NiO/g-C3N4/PANI/Ni-Metal-Organic Framework Composite for High-Energy Supercapacitor Electrodes. Mater. Today Chem. 2023, 28, 101385. DOI: 10.1016/j.mtchem.2023.101385.
  • Fatemi, S.; Ganjali, M. R. Fabrication and comparison of composites of cerium metal-organic framework/reduced graphene oxide as the electrode in supercapacitor application. J. Energy Storage. 2022, 55, 105545. DOI: 10.1016/j.est.2022.105545.
  • Xue, Z.; Tao, K.; Han, L. Stringing Metal–Organic Framework-Derived Hollow Co3S4 Nanopolyhedra on V2O5 Nanowires for High-Performance Supercapacitors. Appl. Surf. Sci. 2022, 600, 154076. DOI: 10.1016/j.apsusc.2022.154076.
  • Mateen, A.; Javed, M. S.; Khan, S.; Saleem, A.; Majeed, M. K.; Khan, A. J.; Peng, K. Q. Metal-Organic Framework-Derived Walnut-Like Hierarchical Co-O-Nanosheets as an Advanced Binder-Free Electrode Material for Flexible Supercapacitor. J. Energy Storage. 2022, 49, 104150. DOI: 10.1016/j.est.2022.104150.
  • Li, A.; Huang, M.; Hu, D.; Tang, Z.; Xu, J.; Li, Y.; Wang, G. Polydopamine-Coated Metal-Organic Framework-Based Composite Phase Change Materials for Photothermal Conversion and Storage. Chin. Chem. Lett. 2023, 34(8), 107916. DOI: 10.1016/j.cclet.2022.107916.
  • Wang, L.; Feng, X.; Ren, L.; Piao, Q.; Zhong, J.; Wang, Y.; Haiwei, L.; Chen, Y.; Wang, B. Flexible Solid-State Supercapacitor Based on a Metal–Organic Framework Interwoven by Electrochemically-Deposited PANI. J. Am. Chem. Soc. 2015, 137(15), 4920–4923.
  • Zhang, F.; Zhang, J.; Jinjin, M.; Zhao, X.; Yaoyao, L.; Rongqiang, L. Polyvinylpyrrolidone (PVP) Assisted in-Situ Construction of Vertical Metal-Organic Frameworks Nanoplate Arrays with Enhanced Electrochemical Performance for Hybrid Supercapacitors. J. Coll. Interf. Sci. 2021, 593, 32–40.
  • Zhang, Y.; Lin, B.; Sun, Y.; Han, P.; Wang, J.; Ding, X.; Zhang, X.; Yang, H. MoO2@ Cu@ C Composites Prepared by Using Polyoxometalates@ Metal-Organic Frameworks as Template for All-Solid-State Flexible Supercapacitor. Electrochim. Acta. 2016, 188, 490–498.
  • Wang, S.; Wang, J.; Zeng, M.; Yang, J.; Nantao, H.; Yanjie, S.; Zhou, Z.; Pang, H.; Yang, Z. Synthesis of Nickel-Metal Organic Framework Nanoplates with Pyridine Modulation and Application to Supercapacitors. J. Energy Storage. 2021, 38, 102528.
  • Shi, L.; Yang, W.; Zha, X.; Zeng, Q.; Tu, D.; Li, Y.; Chen, F. In situ Deposition of Conducting Polymer on Metal Organic Frameworks for High Performance Hybrid Supercapacitor Electrode Materials. J. Energy Storage. 2022, 52, 104729. DOI: 10.1016/j.est.2022.104729.
  • Wang, B.; Liu, S.; Liu, L.; Song, W.-W.; Zhang, Y.; Wang, S.-M.; Han, Z.-B. MOF/PEDOT/HPMo-Based Polycomponent Hierarchical Hollow Micro-Vesicles for High Performance Flexible Supercapacitors. J. Mater. Chem. A. 2021, 9(5), 2948–2958.
  • Jiang, W.; Han, Y.; Xiaole, Y.; Yanmei, X.; Wang, L.; Zhang, X.; Qin, X.; Zhu, Y.; Zhang, Y. PEDOT: PSS for Reinforced Performances of Co/ni-MOF as Flexible Supercapacitor Electrodes. J. Electron. Mater. 2023, 1–11.
  • Yang, A. N.; Lin, J. T.; Li, C. T. Electroactive and Sustainable Cu-MoF/pedot Composite Electrocatalysts for Multiple Redox Mediators and for High-Performance Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces. 2021, 13(7), 8435–8444. DOI: 10.1021/acsami.0c21542.
  • Gan, D.; Huang, Z.; Wang, X.; Dejia, X.; Rao, S.; Wang, K.; Ren, F.; Jiang, L.; Xie, C.; Xiong, L. Bioadhesive and Electroactive Hydrogels for Flexible Bioelectronics and Supercapacitors Enabled by a Redox-Active Core–Shell PEDOT@ PZIF-71 System. Mater. Horiz. 2023.
  • Huang, Y.; Wang, J.; Ju, X.; Zhang, S.; Sun, X. Poly (3, 4-Ethylenedioxythiophene) Engineered Hollow Bi2O3 Core-Shell Architectures for Long Cycle Performance of Flexible Supercapacitors. J. Energy Storage. 2023, 72, 108460. DOI: 10.1016/j.est.2023.108460.
  • Shelake, A. S.; Pore, O. C.; Shejwal, R. V.; Kanase, D. G.; Lohar, G. M. Polymer-MOFs Nanocomposite for Supercapacitor. In Recent Advancements in Polymeric Materials for Electrochemical Energy Storage; Springer Nature Singapore: Singapore, 2023; pp. 187–209.
  • Li, S.; Chai, H.; Zhang, L.; Xu, Y.; Jiao, Y.; Chen, J. Constructing Oxygen Vacancy-Rich MXene@ Ce-MOF Composites for Enhanced Energy Storage and Conversion. J. Coll. Interf. Sci. 2023, 642, 235–245. DOI: 10.1016/j.jcis.2023.03.120.
  • Salcedo-Abraira, P.; Santiago-Portillo, A.; Atienzar, P.; Bordet, P.; Salles, F.; Guillou, N.; Elkaim, E.; Garcia, H.; Navalon, S.; Horcajada, P. A Highly Conductive Nanostructured PEDOT Polymer Confined into the Mesoporous MIL-100 (Fe. Dalton Trans. 2019, 48(26), 9807–9817.
  • Yue, T.; Douka, A. I.; Qi, K.; Qiu, Y.; Guo, X.; Xia, B. Y. Flexible and Hollow Polypyrrole Foam with High Loading of Metal–Organic Framework Nanowires for Wearable Supercapacitors. J. Mater. Chem. A. 2021, 9(38), 21799–21806. DOI: 10.1039/D1TA05330B.
  • Yue, T.; Hou, R.; Liu, X.; Kai, Q.; Chen, Z.; Qiu, Y.; Guo, X.; Yu Xia, B. Hybrid Architecture of a Porous Polypyrrole Scaffold Loaded with Metal–Organic Frameworks for Flexible Solid-State Supercapacitors. ACS Appl. Energy Mater. 2020, 3(12), 11920–11928.
  • Wang, H. N.; Zhang, M.; Zhang, A. M.; Shen, F. C.; Wang, X. K.; Sun, S. N.; Lan, Y. Q. Polyoxometalate-Based Metal–Organic Frameworks with Conductive Polypyrrole for Supercapacitors. ACS Appl. Mater. Interfaces. 2018, 10(38), 32265–32270. DOI: 10.1021/acsami.8b12194.
  • Cao, Y.; Ning, W.; Yang, F.; Yang, M.; Zhang, T.; Guo, H.; Yang, W. Interpenetrating Network Structures Assembled by “String of Candied haws”-Like PPY Nanotube-Interweaved NiCo-MOF-74 Polyhedrons for High-Performance Supercapacitors. Colloids Surf. A Physicochem. Eng. Aspects. 2022, 646, 128954.
  • Xingtao, X.; Tang, J.; Qian, H.; Hou, S.; Bando, Y.; Hossain, M. S. A.; Pan, L.; Yamauchi, Y. Three-Dimensional Networked Metal–Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors. ACS Appl. Mater. Interfaces. 2017, 9(44), 38737–38744.
  • Ren, Y.; Xu, Y. Three-Dimensional Graphene/metal–Organic Framework Composites for Electrochemical Energy Storage and Conversion. Chem. Commun. 2023, 59(43), 6475–6494. DOI: 10.1039/D3CC01167D.
  • Li, Z.; Pan, Z.; Fan, X.; Wang, H.; Cheng, Y.; Ding, X.; Zhai, J. Suppressing Charge Injection and Preventing the Extension of Electrical Trees of Polymer-Based Composites Through Two-Dimensional Metal–Organic Frameworks Nanosheets. Chem. Eng. J. 2023, 466, 143328. DOI: 10.1016/j.cej.2023.143328.
  • Mageto, T.; de Souza, F. M.; Kaur, J.; Kumar, A.; Gupta, R. K. Chemistry and Potential Candidature of Metal-Organic Frameworks for Electrochemical Energy Storage Devices. Fuel Process. Technol. 2023, 242, 107659. DOI: 10.1016/j.fuproc.2023.107659.
  • Liu, S.; Liu, C.; Bai, Z.; Lin, G.; Liu, X. Metal-Organic Frameworks Mediated Interface Engineering of Polymer Nanocomposites for Enhanced Dielectric Constant and Low Dielectric Loss. Surf. Interfaces. 2023, 36, 102586. DOI: 10.1016/j.surfin.2022.102586.
  • Hong, C. N.; Crom, A. B.; Feldblyum, J. I.; Lukatskaya, M. R. Metal-Organic Frameworks for Fast Electrochemical Energy Storage: Mechanisms and Opportunities. Chem. 2023, 9(4), 798–822. DOI: 10.1016/j.chempr.2023.02.016.
  • Milakin, K. A.; Gupta, S.; Kobera, L.; Mahun, A.; Konefał, M.; Kočková, O.; Bober, P.; Morávková, Z.; Chin, J. M.; Allahyarli, K.; Bober, P. Effect of a Zr-Based Metal–Organic Framework Structure on the Properties of Its Composite with Polyaniline. ACS Appl. Mater. Interfaces. 2023, 15(19), 23813–23823. DOI: 10.1021/acsami.3c03870.
  • Shah, R.; Ali, S.; Raziq, F.; Ali, S.; Ismail, P. M.; Shah, S.; Qiao, L. Exploration of Metal Organic Frameworks and Covalent Organic Frameworks for Energy-Related Applications. Coord. Chem. Rev. 2023, 477, 214968. DOI: 10.1016/j.ccr.2022.214968.
  • Meng, Z.; Qiu, Z.; Shi, Y.; Wang, S.; Zhang, G.; Pi, Y.; Pang, H. Micro/Nano Metal–Organic Frameworks Meet Energy Chemistry: A Review of Materials Synthesis and Applications; eScience: USA, 2023; p. 100092.
  • Lou, R.; Cao, Q.; Niu, T.; Zhang, Y.; Zhang, Y.; Wang, Z.; Zhang, X. Metal–Organic-framework-mediated Fast Self-Assembly 3D Interconnected Lignin-Based Cryogels in Deep Eutectic Solvent for Supercapacitor Applications. Polymers. 2023, 15(8), 1824. DOI: 10.3390/polym15081824.
  • Wang, F.; Cai, J.; Yang, C.; Luo, H.; Li, X.; Hou, H.; Zhang, D. Improved Capacitive Energy Storage Nanocomposites at High Temperature Utilizing Ultralow Loading of Bimetallic MOF; Small: UK, 2023; p. 2300510.
  • Guo, J.; Liu, J.; Ma, W.; Sang, Z.; Yin, L.; Zhang, X.; Yang, D. A. Vanadium Oxide Intercalated with Conductive Metal–Organic Frameworks with Dual Energy‐Storage Mechanism for High Capacity and High‐Rate Capability Zn Ion Storage. Adv. Funct. Mater. 2023, 2302659. DOI: 10.1002/adfm.202302659.
  • Yang, X.; Zhang, Q.; Liu, Y.; Nian, M.; Xie, M.; Xie, S.; Xing, H., Metal‐Organic Framework Nanoparticles with Universal Dispersibility Through Crown Ether Surface Coordination for Phase‐Transfer Catalysis and Separation Membranes. Angew. Chem. Int. Ed. 2023, 135, e202303280. DOI:10.1002/ange.202303280.
  • Chang, Z.; Zhu, M.; Sun, Y.; He, F.; Li, Y.; Ye, C.; Xu, W. A Conductive 2D Conjugated Tetrathia[8]circulene-Based Nickel Metal–Organic Framework for Energy Storage. Adv. Funct. Mater. 2023, 2301513. DOI: 10.1002/adfm.202301513.
  • Zhao, K.; Sun, X.; Fu, H.; Guo, H.; Wang, L.; Li, D.; Liu, J. In situ Construction of Metal-Organic Frameworks on Chitosan-Derived Nitrogen Self-Doped Porous Carbon for High-Performance Supercapacitors. J. Coll. Interf. Sci. 2023, 632, 249–259. DOI: 10.1016/j.jcis.2022.11.038.
  • Yan, J.; Su, C.; Lou, K.; Gu, M.; Wang, X.; Pan, D.; Yang, M. Constructing Liquid Metal/metal-Organic Framework Nanohybrids with Strong Sonochemical Energy Storage Performance for Enhanced Pollutants Removal. J. Hazard. Mater. 2023, 452, 131285. DOI: 10.1016/j.jhazmat.2023.131285.
  • Yan, Y.; Lin, X.; Xiao, H.; Li, X. Nonconductive Two-Dimensional metal− Organic Frameworks for High-Performance Electrochemical Energy Storage. Electrochim. Acta. 2023, 441, 141808. DOI: 10.1016/j.electacta.2022.141808.
  • Nagappan, S.; Duraivel, M.; Elayappan, V.; Muthuchamy, N.; Mohan, B.; Dhakshinamoorthy, A.; Park, K. H. Metal–Organic Frameworks‐Based Cathode Materials for Energy Storage Applications: A Review. Energy Technol. 2023, 11(3), 2201200. DOI: 10.1002/ente.202201200.
  • Ahn, C. H.; Kim, J. J.; Yang, W. S.; Cho, H. K. Multiple Functional Biomolecule-Based Metal-Organic-Framework-Reinforced Polyethylene Oxide Composite Electrolytes for High-Performance Solid-State Lithium Batteries. J. Power Sources. 2023, 557, 232528. DOI: 10.1016/j.jpowsour.2022.232528.
  • Li, X.; Zhang, F.; Zhang, M.; Zhou, Z.; Zhou, X. Chromium-Based Metal-Organic Framework Coated Separator for Improving Electrochemical Performance and Safety of Lithium-Ion Battery. J. Energy Storage. 2023, 59, 106473. DOI: 10.1016/j.est.2022.106473.
  • Vallem, S.; Bae, J. The Active Role of Conjugate Polymer Composites in Electrochemical Storage: A Themed Perspective on Polymer-MOF Nanocomposites for Metal-Ion Batteries. In Recent Advancements in Polymeric Materials for Electrochemical Energy Storage; Springer Nature Singapore: Singapore, 2023; pp. 211–228.
  • Zihuan, L.; Li, S.; Wang, K.; Zhang, Y. Wide Application of Metal Organic Frameworks in Lithium Sulfur Battery. Mater. Today Sustain. 2023, 100392.
  • Liu, X.; Zhang, Y.; Guo, X.; Pang, H. Electrospun Metal–Organic Framework Nanofiber Membranes for Energy Storage and Environmental Protection. Adv. Fiber Mater. 2022, 4(6), 1463–1485. DOI: 10.1007/s42765-022-00214-y.
  • Souri, Z.; Mazloum-Ardakani, M.; Alizadeh, S.; Nematollahi, D. Template-Free Electrodeposition of Sponge-Like Porous Polymer Interwoven with the Bi-Metallic Metal-Organic Framework and Reduced Graphene Oxide and Application in Energy Storage Device. J. Energy Storage. 2022, 55, 105381. DOI: 10.1016/j.est.2022.105381.
  • Xu, G.; Zhu, C.; Gao, G. Recent Progress of Advanced Conductive Metal–Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges. Small. 2022, 18(44), 2203140. DOI: 10.1002/smll.202203140.
  • Mubarak, S.; Dhamodharan, D.; Ghoderao, P. N.; Byun, H. S. A Systematic Review on Recent Advances of Metal–Organic Frameworks-Based Nanomaterials for Electrochemical Energy Storage and Conversion. Coord. Chem. Rev. 2022, 471, 214741. DOI: 10.1016/j.ccr.2022.214741.
  • Zhao, Y.; Song, Y.; Wang, B.; Zhang, Y.; Zhu, X.; Zhang, Y.; Li, W. Hierarchical NiCo2@ PEDOT/PMo12 Core and Shell Architectures for High-Performance Supercapacitors. Mater. Technol. 2022, 37(14), 3205–3211. DOI: 10.1080/10667857.2022.2137758.
  • Faruk, O.; Adak, B. Recent Advances in PEDOT: PSS Integrated Graphene and MXene-Based Composites for Electrochemical Supercapacitor Applications. Synth. Met. 2023, 297, 117384. DOI: 10.1016/j.synthmet.2023.117384.
  • Baumann, A.; Burns, D.; Liu, B.; Thoi, V. Metal-Organic Framework Functionalization and Design Strategies for Advanced Electrochemical Energy Storage Devices. Commun. Chem. 2019, 2, 86. DOI: 10.1038/s42004-019-0184-6.
  • Dedek, I.; Kupka, V.; Jakubec, P.; Šedajová, V.; Jayaramulu, K.; Otyepka, M. Metal-Organic Framework/Conductive Polymer Hybrid Materials for Supercapacitors. Appl. Mater. Today. 2022, 26, 101387. DOI: 10.1016/j.apmt.2022.101387.
  • Liu, Y.-N.; Feng, L.-J.; Bian, S.-W. Surface Structure Construction of Fibers in a Conductive Metal–Organic Framework/Metal/Cotton Electrode for Flexible Textile Supercapacitors. ACS Appl. Electron. Mater. 2022, 4(9), 4595–4604. DOI: https://doi.org/10.1021/acsaelm.2c00795.
  • Tsai, M.-D.; Wang, Y.-C.; Chen, Y.-L.; Chen, Y.-H.; Shen, C.-H.; Kung, C.-W. Selectively Confined Poly(3,4-Ethylenedioxythiophene) in the Nanopores of a Metal–Organic Framework for Electrochemical Nitrite Detection with Reduced Limit of Detection. Acs Appl. Nano Mater. 2022, 5(9), 12980–12990. DOI: https://doi.org/10.1021/acsanm.2c02790.
  • Liu, Y.; Li, X.; Gao, M.; Hao, X.; Li, J.; Liu, Y.; Li, Y.; Cai, K. High-Energy-Density Asymmetric Supercapacitor Based on a Nickel Cobalt Double Hydroxide/reduced-Graphene-Oxide Fiber Electrode. ACS Appl. Energy Mater. 2022, 5(8), 9605–9615. DOI: https://doi.org/10.1021/acsaem.2c01243.
  • Xu, Y.; Li, Q.; Guo, X.; Zhang, S.; Li, W.; Pang, H. Metal Organic Frameworks and Their Composites for Supercapacitor Application. J. Energy Storage. 2022, 56, 105819. DOI: 10.1016/j.est.2022.105819.
  • Chen, K.; Zhao, S.; Sun, J.; Zhou, J.; Wang, Y.; Tao, K.; Xiao, X.; Han, L. Enhanced Capacitance Performance by Coupling 2D Conductive Metal–Organic Frameworks and Conducting Polymers for Hybrid Supercapacitors. ACS Appl. Energy Mater. 2021, 4(9), 9534–9541. DOI: https://doi.org/10.1021/acsaem.1c01694.
  • Zang, Y.; Luo, H.; Zhang, H.; Xue, H. Polypyrrole Nanotube-Interconnected NiCo-LDH Nanocages Derived by ZIF-67 for Supercapacitors. ACS Appl. Energy Mater. 2021, 4(2), 1189–1198. DOI: https://doi.org/10.1021/acsaem.0c02465.
  • Yue, T.; Hou, R.; Liu, X.; Qi, K.; Chen, Z.; Qiu, Y.; Guo, X.; Xia, B. Y. Bao Yu Xia. Hybrid Architecture of a Porous Polypyrrole Scaffold Loaded with Metal–Organic Frameworks for Flexible Solid-State Supercapacitors. ACS Appl. Energy Mater. 2020, 3(12), 11920–11928. DOI: https://doi.org/10.1021/acsaem.0c02062.
  • Udayan, A. P. M.; Sadak, O.; Gunasekaran, S. Metal–Organic Framework/Polyaniline Nanocomposites for Lightweight Energy Storage. ACS Appl. Energy Mater. 2020, 3(12), 12368–12377. DOI: https://doi.org/10.1021/acsaem.0c02376.
  • Zhou, S.; Kong, X.; Zheng, B.; Huo, F.; Strømme, M.; Xu, C. Cellulose Nanofiber @ Conductive Metal–Organic Frameworks for High-Performance Flexible Supercapacitors. ACS Nano. 2019, 13(8), 9578–9586. DOI: https://doi.org/10.1021/acsnano.9b04670.
  • Xingtao, X.; Chenglong, L.; Wang, C.; Ji, L.; Valentino Kaneti, Y.; Huang, H.; Yang, T.; Wu, K. C. W.; Yamauchi, Y. Three-Dimensional Nanoarchitecture of Carbon Nanotube-Interwoven Metal–Organic Frameworks for Capacitive Deionization of Saline Water. ACS Sustainable Chem. Eng. 2019, 7(16), 13949–13954. DOI: 10.1021/acssuschemeng.9b02367.
  • Wang, H.-N.; Mi Zhang, A.-M. Z.; Shen, F.-C.; Wang, X.-K.; Sun, S.-N.; Chen, Y.-J.; Lan, Y.-Q. Polyoxometalate-Based Metal–Organic Frameworks with Conductive Polypyrrole for Supercapacitors. ACS Appl. Mater. Interfaces. 2018, 10(38), 32265–32270. DOI: 10.1021/acsami.8b12194.
  • Zhao, G.; Ning, K.; Wei, M.; Zhang, L.; Han, L.; Zhu, G.; Yang, J.; Wang, H.; Huang, F. Fabrication and Enhanced Supercapacitive Performance of Fe2N@Cotton-Based Porous Carbon Fibers as Electrode Material. Resources Chemicals And Materials. 2023, 2(4), 277–287. DOI: 10.1016/j.recm.2023.07.005.
  • Hamedani, H.; Khosravi Ghasemi, A.; Seyfi Kafshgari, M.; Zolfaghari, Y.; Asadi Kafshgari, L. Electrochemical performance of 3D porous PANI/Gr/MIL-100(Fe) nanocomposite as a novel smart supercapacitor electrode material. Synth. Met. 2023, 298, 117428. DOI: 10.1016/j.synthmet.2023.117428.
  • Gan, D.; Huang, Z.; Wang, X.; Dejia, X.; Rao, S.; Wang, K.; Ren, F.; Jiang, L.; Xie, C.; Xiong, L. Bioadhesive and Electroactive Hydrogels for Flexible Bioelectronics and Supercapacitors Enabled by a Redox-Active Core–Shell Pedot@PZIF-71 System. Mater. Horiz. 2023, 10(6), 2169–2180. DOI: 10.1039/D2MH01234K.
  • Feng, M.; Chen, S.; Guiying, L.; Yingxin, Y.; Zhang, W.; Chen, J.; Liu, H.; An, T. Boosting Solar-Driven Volatile Organic Compounds Desorption via the Synergy of NH2-UiO-66 with Hollow Polypyrrole Nanotube. Chem. Eng. J. 2023, 464, 142503. DOI: 10.1016/j.cej.2023.142503.
  • Sharma, S. S.; Palatty, S. Advances in Functionalized Polyaniline Nanocomposites for Electrochemical Sensing and Energy Storage Applications. In Applications of Multifunctional Nanomaterials; Elsevier, 2023; pp. 177–196.
  • Yin, C.; Pan, C.; Pan, Y.; Hu, J.; Fang, G. Proton Self‐Doped Polyaniline with High Electrochemical Activity for Aqueous Zinc‐Ion Batteries. Small Methods. 2023, 2300574. DOI: 10.1002/smtd.202300574.
  • Wang, T.; Chen, S.; Chen, K. J. Metal‐Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives. Chem. Rec. 2023, 23, e202300006. DOI: 10.1002/tcr.202300006.
  • Yatoo, M. A.; Gupta, J.; Habib, F.; Alfantazi, A.; Ansari, Z.; Ahmad, Z. Metal-Organic Framework Based Nanomaterials: An Advanced Review of Their Synthesis and Energy Storage Applications. 2023.
  • Khan, R.; Afzal, A. M.; Zhaid, M.; Iqbal, M. W.; Imran, M.; Hamza, M.; Mumtaz, S. MnNbS/polyaniline composite‐based electrode material for high‐performance energy storage hybrid supercapacitor device. Phys. Status Solidi A.
  • Varghese, A.; KR, S. D.; Kausar, F.; Pinheiro, D. Evaluative Study on Supercapacitance Behavior of Polyaniline/polypyrrole–Metal Oxide Based Composites Electrodes: A Review. Mater. Today Chem. 2023, 29, 101424. DOI: 10.1016/j.mtchem.2023.101424.
  • Tian, J.; Lin, B.; Sun, Y.; Zhang, X.; Yang, H. Porous WO3@ CuO Composites Derived from Polyoxometalates@ Metal Organic Frameworks for Supercapacitor. Mater. Lett. 2017, 206, 91–94. DOI: 10.1016/j.matlet.2017.06.116.
  • Garg, G.; Garg, N.; Deep, A.; Soni, D. Zr-MOF and PEDOT: PSS composite sensor for chemoresistive sensing of toluene at room temperature. J. Alloys Compound. 2023, 956, 170309. DOI: 10.1016/j.jallcom.2023.170309.
  • Zou, J.; Zou, J.; Zhong, W.; Liu, Q.; Huang, X.; Gao, Y.; Limin, L.; Liu, S. PEDOT Coating Boosted NiCo-LDH Nanocage on CC Enable High-Rate and Durable Pseudocapacitance Reaction. J. Electroanal. Chem. 2023, 928, 117069.
  • Chuhadiya, S.; Suthar, D.; Patel, S. L.; Dhaka, M. S. Metal Organic Frameworks as Hybrid Porous Materials for Energy Storage and Conversion Devices: A Review. Coord. Chem. Rev. 2021, 446, 214115. DOI: 10.1016/j.ccr.2021.214115.
  • Chang, Y. L.; Tsai, M. D.; Shen, C. H.; Huang, C. W.; Wang, Y. C.; Kung, C. W. Cerium-Based Metal–Organic Framework-Conducting Polymer Nanocomposites for Supercapacitors. Mater. Today Sustain. 2023, 23, 10044. DOI: 10.1016/j.mtsust.2023.100449.
  • Idumah, C. I.; Iwuchukwu, F.; Okoye, I.; Ogbu, J. Flame Retardant Mechanisms of Metal Organic Frameworks (MOFs) Polymeric Nanoarchitectures. Polym. Plast. Technol. Eng. 2023, 63, DOI–. DOI: 10.1080/25740881.2023.2280600.
  • Idumah, C. I.; Iwuchukwu, F. U.; Ogbu, J. E. Progress in Multifunctional Properties of Phosphorene Polymeric Nanocomposites: A Review. Inorg. Chem. Commun. 2023, 158, 111640. DOI: 10.1016/j.inoche.2023.111640.
  • Idumah, C. ‘Recent Advancements in Polymer MXenes Nanoarchitectures and Applications’ in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encycl. Pol. Pol. Mat. Pol. Technol. (Forthcoming). [email protected]. 2024.
  • Idumah, C.; Nwuzor, I.; Ezeani, E.; Nwogu, N.; Ugwu, S.; Okpechi, V.; Onyeoka, H.; Ibenta, M.; Odera, S.; Hassan, A. ‘Advancements in Biomolecules Immobilization on Natural Fiber Polymeric Nanobiocomposites for Biomedical Applications’ in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encycl. Pol. Pol. Mat. Pol. Technol. (Forthcoming). [email protected]. 2024.
  • Idumah, C.; Ezika, A.; Ezeani, E.; Obele, C. ‘Natural Plant Fiber Polymer Biocomposites and Its Applications’ in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encycl. Pol. Pol. Mat. Pol. Technol. (forthcoming) [email protected]. 2024.
  • Idumah, N. I.; Ezika, A.; Nwogu, N.; Ugwu, S.; Okpechi, U.; Oyeoka, H.; Ibenta, M.; Odera, S.; Ukeme, T. ‘Poly (Lactic) Acid Hybrid Bionanocomposites and Applications’ in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encycl. Pol. Pol. Mat. Pol. Technol. (Forthcoming). [email protected]. 2024.
  • Idumah, C. ‘Recent Advancements in Flame Retardancy of Polymer Nanocomposites’ in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encycl. Pol. Pol. Mat. Pol. Technol. (Forthcoming). [email protected]. 2024.
  • Idumah, C. ‘Bioactive Glass Polymer Nanocomposite Architectures for Biomedical Applications’ in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encycl. Pol. Pol. Mat. Pol. Technol. (Forthcoming)[email protected]. 2024.
  • Idumah, C. ‘Recent Advancements in Polymer Aerogel Nanocomposite Architectures and Applications’ in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology. Routledge. (Forthcoming). [email protected].
  • Idumah, C. Recent Advancements in Polymer MXenes Nanoarchitectures and Applications in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encycl. Pol. Pol. Mat. Pol. Technol. (Forthcoming). [email protected]. 2024.
  • Idumah, C. Current Trends in Natural Fibers Polymer Biocomposites, Hybrid Nano- Biocomposites and Applications in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge.Encyclopedia of Polymers. Poly. Mat. Polymer Technol. (Forthcoming). [email protected]. 2024.
  • Idumah, C. Recent Advancements in Polymeric Magnetic Nanocomposites and Applications in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encycl. Pol. Pol. Mat. Pol. Technol. (Forthcoming). [email protected]. 2024.
  • Idumah, C. Recently Emerging Trends in Additive Manufacturing of PLA Nanocomposites Applications in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encycl. Pol. Pol. Mat. Pol. Technol. 2024, [email protected].
  • Idumah, C. Recently Emerging Trends in Additive Manufacturing of PLA Nano- Composites Applications in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology. Routledge. [email protected].
  • Idumah, C. I. Recent Advancements in Fire Retardant Mechanisms of Carbon Nanotubes, Graphene, and Fullerene Polymeric Nanoarchitectures. J. Anal. Appl. Pyrolysis. 2023, 174, 106113. DOI: https://doi.org/10.1016/j.jaap.2023.106113.
  • Idumah, C. I. Emerging Advances in Thermal Conductivity of Polymeric Nanoarchitectures; Polymer-Plastics Technology and Materials, 2023. DOI: 10.1080/25740881.2023.2240404.
  • Idumah, C. I. Molybdenum Disulfide Polymeric Nanoarchitectures and Applications: A Review. 2023. DOI: 10.1002/pen.26421.
  • Idumah, C. I. Influence of Interfacial Engineering on Properties of Polymeric Nanoarchitectures; Polymer-Plastics Technology and Materials, 2023. DOI: 10.1080/25740881.2023.2240393.
  • Idumah, C. I. Phosphorene Polymeric Nanocomposites for Electrochemical Energy Storage Applications. J. Energy Storage. 2023, 69, 107940. DOI: 10.1016/j.est.2023.107940.
  • Idumah, C. I.; Odera, R. S.; Ezeani, E. O.; Low, J. H.; Tanjung, F. A.; Damiri, F.; Wong, S. L. Construction, Characterization, Properties and Multifunctional Applications of Stimuli-Responsive Shape Memory Polymeric Nanoarchitectures: A Review. Polym. Plast. Technol. Eng. 2023, 62(10), 1247–1272. DOI: 10.1080/25740881.2023.2204936.
  • Idumah, C. I. Design, Fabrication, Characterization and Properties of Metallic and Conductive Smart Polymeric Textiles for Multifunctional Applications. Nano-Struct. Nano-Object. 2023, 35, 100982. DOI: 10.1016/j.nanoso.2023.100982.
  • Idumah, C. I. Thermal Expansivity of Polymer Nanocomposites and Applications. Polym. Plast. Technol. Eng. 2023, 62(9), 1178–1203. DOI: 10.1080/25740881.2023.2204952.
  • Idumah, C. I. Borophene Polymeric Nanoarchitecture and Applications: A Review. Polym. Plast. Technol. Eng. 2023, 62(12), 1560–1575. DOI: 10.1080/25740881.2023.2222798.
  • Idumah, C. I.; Obumneme, E. E. Novel Trends in Phosphorene and Phosphorene@ Polymeric Nanoarchitectures and Applications. Emergent Mater. 2023, 6(3), 853–874. DOI: 10.1007/s42247-023-00507-x.
  • Idumah, C. I. Numerical Modelling of Effects of Biphasic Layers of Corrosion Products to the Degradation of Magnesium Metal in vitro. J. Porous Mater. 2017, 11, 1–19. DOI: 10.3390/ma11010001.
  • Idumah, C. I. Design, Development, and Drug Delivery Applications of Graphene Polymeric Nanocomposites and Bionanocomposites. Emer. Mat. 1–31.
  • Ng, Q. Y.; Low, J. H.; Pang, M. M.; Idumah, C. I. Properties Enhancement of Waterborne Polyurethane Bio-Composite Films with 3-Aminopropyltriethoxy Silane Functionalized Lignin. J Polym. Environ. 2023, 31(2), 688–697. DOI: 10.1007/s10924-022-02595-y.
  • Odera, R. S.; Idumah, C. I. Novel Advancements in Additive Manufacturing of PLA: A reviewPolymer Engineering and Science. 1–20.
  • Idumah, C. I. Recently Emerging Trends in Flame Retardancy of Phosphorene Polymeric Nanocomposites and Applications. J. Anal. Appl. Pyrolysis. 2023, 169, 105855. DOI: 10.1016/j.jaap.2022.105855.
  • Idumah, C. I. Recent Advancements in Electromagnetic Interference Shielding of Polymer and MXene Nanocomposites. Polym. Plast. Technol. Eng. 2023, 62(1), 19–53. DOI: 10.1080/25740881.2022.2089581.
  • Idumah, C. I.; Ezeani, O. E.; Okonkwo, U. C.; Nwuzor, I. C.; Odera, S. R. Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters. J. Clust. Sci. 2023, 34(1), 45–76. DOI: 10.1007/s10876-022-02243-4.
  • Idumah, C. I. Phosphorene Polymeric Nanocomposites for Biomedical Applications: A Review. Int. J. Polym. Mater. Polym. Biomater. 2022, 73, 1–18. DOI: 10.1080/00914037.2022.2158333.
  • Idumah, C. I. Emerging Advancements in Xerogel Polymeric Bionanoarchitectures and Applications; JCIS Open, 2022; p. 100073.
  • Idumah, C. I. Novel Advancements in Xerogel Polymeric Nanoarchitectures and Multifunctional Applications. J. Porous. Mater. 2023, 30(5), 1597–1615. DOI: 10.1007/s10934-023-01446-y.
  • Idumah, C. I. Design, Development, and Drug Delivery Applications of Graphene Polymeric Nanocomposites and Bionanocomposites. Emergent Mater. 2023, 6(3), 777–807. DOI: 10.1007/s42247-023-00465-4.
  • Ng, Q.; Low, J. H.; Pang, M. M.; Idumah, C. I. Properties Enhancement of Waterborne Polyurethane Bio-Composite Films with 3-Aminopropyltriethoxy Silane Functionalized Lignin. J Polym. Environ. 2023, 31(2), 688–697. DOI: 10.1007/s10924-022-02595-y.
  • Idumah, C. I.; Ezeani, O.; Okonkwo, U. C.; Nwuzor, I. C.; Odera, S. R. Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters. J. Clust. Sci. 2023, 34(1), 45–76. DOI: 10.1007/s10876-022-02243-4.
  • Idumah, C. I. Emerging Advancements in Xerogel Polymeric Bionanoarchitectures and Applications
  • Idumah, C. I.; Low, J. H.; Emmanuel, E. O. Recently emerging trends in xerogel polymeric nanoarchitectures and multifunctional applications. Polym. Bull. 1–31 2.
  • Idumah, C. I. Emerging Advancements in Flame Retardancy of Polypropylene Nanocomposites. J. Thermoplast. Compos. Mater. 2022, 35(12), 2665–2704. DOI: 10.1177/0892705720930782.
  • Idumah, C. I. Recent Advances on Graphene Polymeric Bionanoarchitectures for Biomedicals. JCIS Open. 2022, 9, 100070. DOI: 10.1016/j.jciso.2022.100070.
  • Idumah, C. I. A Review on Polyaniline and Graphene Nanocomposites for Supercapacitors. Polym. Plast. Technol. Eng. 2022, 61(17), 1871–1907. DOI: 10.1080/25740881.2022.2086810.
  • Idumah, C. I.; Ezika, A. C. Recent Advancements in Hybridized Polymer Nano-Biocomposites for Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 1262–1276. DOI: 10.1080/00914037.2021.1960344.
  • Idumah, C. I. Recently Emerging Advancements in Polymeric Nanogel Nanoarchitectures for Drug Delivery Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 73, 1–13. DOI: 10.1080/00914037.2022.2120875.
  • Idumah, C. I. Recently Emerging Advancements in Thermal Conductivity and Flame Retardancy of MXene Polymeric Nanoarchitectures. Polym. Plast. Technol. Eng. 2022, 62, 1–37. DOI: 10.1080/25740881.2022.2121220.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, S. R.; Timothy, U. J.; Ngenegbo, U.; Tanjung, F. A. Recent Advances in Polymeric Hydrogel Nanoarchitectures for Drug Delivery Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 73, 1–32. DOI: 10.1080/00914037.2022.2120875.
  • Idumah, C. I.; Ezika, A. C.; Enwerem, U. E. A review on biomolecular immobilization of polymeric textile biocomposites, bionanocomposites, and nano-biocomposites. J. Text. Inst. 2022, 113(9), 2016–2032. DOI: 10.1080/00405000.2021.1957277.
  • Idumah, C. I. MXene polymeric nanoarchitectures mechanical, deformation, and failure mechanism: A review. Polym. Plast. Technol. Eng. 2023, 1–24.
  • Idumah, C. I. On MXene Conducting Polymer Nanocomposites Micro-Supercapacitors and Applications. 2022.
  • Idumah, C. I. Influence of Morphology and Architecture on Properties and Applications of MXene Polymeric Nanocomposites. J. Thermoplast. Compos. Mater. 2022, 36, 4124–4161. DOI: 10.1177/08927057221122096.
  • Idumah, C. I. Characterization and Fabrication of Xerogel Polymeric Nanocomposites and Multifunctional Applications. 2022.
  • Okonkwo, U. C.; Idumah, C. I.; Okafor, C. E.; Ohagwu, C. C.; Aronu, M. E. Development, Characterization, and Properties of Polymeric Nanoarchitectures for Radiation Attenuation. J. Inorg. Organomet. Polym. Mater. 2022, 1–21.
  • Idumah, C. I. Influence of Surfaces and Interfaces on MXene and MXene Hybrid Polymeric Nanoarchitectures, Properties, and Applications. J. Mater. Sci. 2022, 57(31), 14579–14619. DOI: 10.1007/s10853-022-07526-9.
  • Idumah, C. I. Recently Emerging Advancements in Polymeric Cryogel Nanostructures and Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 72, 1–21. DOI: 10.1080/00914037.2022.2097678.
  • Idumah, C. I. Emerging Advancements in MXene Polysaccharide Bionanoarchitectures and Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 72, 1–22. DOI: 10.1080/00914037.2022.2098297.
  • Idumah, C. I. Recently Emerging Trends in Magnetic Polymer Hydrogel Nanoarchitectures. Polym. Plast. Technol. Eng. 2022, 61(10), 1039–1070. DOI: 10.1080/25740881.2022.2033769.
  • Idumah, C. I. Emerging Trends in Poly (Lactic-Co-Glycolic) Acid Bionanoarchitectures and Applications Cleaner Materials. Cleaner Mater. 2022, 5, 100102–100114. DOI: 10.1016/j.clema.2022.100102.
  • Idumah, C. I. Recent Trends in MXene Polymeric Hydrogel Bionanoarchitectures and Applications. Cleaner Mater. 2022, 100103. DOI: 10.1016/j.clema.2022.100103.
  • Okonkwo, U. C.; Ohagwu, C.; Aronu, M. E.; Okafor, C. E.; Idumah, C. I.; Okokpujie, I. P.; Chukwu, N. N.; Chukwunyelu, C. E. Ionizing Radiation Protection and the Linear No-Threshold Controversy: Extent of Support or Counter to the Prevailing Paradigm. J. Environ. Radioact. 2022, 253-254, 106984. DOI: 10.1016/j.jenvrad.2022.106984.
  • Ezika, A. C.; Sadiku, E. R.; Idumah, C. I.; Ray, S. S.; Adekoya, G. J.; Odera, R. S. Recently Emerging Trends in MXene Hybrid Conductive Polymer Energy Storage Nanoarchitectures. Polym. Plast. Technol. Eng. 2022, 61(8), 861–887. DOI: 10.1080/25740881.2022.2029888.
  • Idumah, C. I. Recent Advancements in Conducting Polymer Bionanocomposites and Hydrogels for Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 513–530. DOI: 10.1080/00914037.2020.1857384.
  • Idumah, C. I.; Okonkwo, U. C.; Obele, C. M. Recently Emerging Advancements in Montmorillonite Polymeric Nanoarchitectures and Applications. Cleaner Mater. 2022, 4, 100071. DOI: 10.1016/j.clema.2022.100071.
  • Tanjung, F. A.; Kuswardani, R. A.; Idumah, C. I.; Siregar, J. P.; Karim, A. Characterization of Mechanical and Thermal Properties of Esterified Lignin Modified Polypropylene Composites Filled with Chitosan Fibers. Polym. Polym. Composites. 2022, 30, 09673911221082482. DOI: 10.1177/09673911221082482.
  • Ezika, A. C.; Sadiku, E. R.; Idumah, C. I.; Ray, S. S.; Hamam, Y. On Energy Storage Capacity of Conductive MXene Hybrid Nanoarchitectures. J. Energy Storage. 2022, 45, 103686. DOI: 10.1016/j.est.2021.103686.
  • Idumah, C. I.; Nwabanne, J. T.; Tanjung, F. A. Novel trends in poly (lactic) acid hybrid bionanocomposites. Cleaner Mater. 2021, 2, 100022. DOI: 10.1016/j.clema.2021.100022.
  • Idumah, C. I. Influence of Nanotechnology in Polymeric Textiles, Applications, and Fight Against COVID-19. J. Text. Inst. 2021, 112(12), 2056–2076 59. DOI: 10.1080/00405000.2020.1858600.
  • Idumah, C. I.; Ezeani, E. O.; Ezika, A. C.; Timothy, U. J. Recent Advancements in Flame Retardancy of MXene Polymer Nanoarchitectures. Saf. Extreme Environ. 2021, 3(3), 253–273. DOI: 10.1007/s42797-021-00046-w.
  • Idumah, C. I. Novel trends in polymer aerogel nanocomposites. Polym. Plast. Technol. Eng. 2021, 60(14), 1519–1531. DOI: 10.1080/25740881.2020.1869780.
  • Idumah, C. I.; Nwuzor, I.; Odera, S. R. Recent Advancements in Self-Healing Polymeric Hydrogels, Shape Memory, and Stretchable Materials. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 941–966. DOI: 10.1080/00914037.2020.1767615.
  • Idumah, C. I.; Ezika, A. C.; Okpechi, V. U. Emerging Trends in Polymer Aerogel Nanoarchitectures, Surfaces, Interfaces and Applications. Surf. Interfaces. 2021, 25, 101258. DOI: 10.1016/j.surfin.2021.101258.
  • Idumah, C. I. Progress in Polymer Nanocomposites for Bone Regeneration and Engineering. Polym. Polym. Composites. 2021, 29(5), 509–527. DOI: 10.1177/0967391120913658.
  • Idumah, C. I. Novel Trends in Self-Healable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2021, 34(6), 834–858. DOI: 10.1177/0892705719847247.
  • Idumah, C. I. Novel Trends in Magnetic Polymeric Nanoarchitectures. Polym. Plast. Technol. Eng. 2021, 60(8), 830–848. DOI: 10.1080/25740881.2020.1869780.
  • Idumah, C. I.; Ezeani, E. O.; Nwuzor, I. C. A Review: Advancements in Conductive Polymers Nanocomposites. Polym. Plast. Technol. Eng. 2021, 60(7), 756–783. DOI: 10.1080/25740881.2020.1850783.
  • Idumah, C. I. Recent Advancements in Self-Healing Polymers, Polymer Blends, and Nanocomposites. Polym. Polym. Composites. 2021, 29(4), 246–258. DOI: 10.1177/0967391120910882.
  • Nwuzor, I. C.; Idumah, C. I.; Nwanonenyi, S. C.; Ezeani, O. E. Emerging Trends in Self-Polishing Anti-Fouling Coatings for Marine Environment. Saf. Extreme Environ. 2021, 3(1), 9–25. DOI: 10.1007/s42797-021-00031-3.
  • Idumah, C. I. Novel Trends in Conductive Polymeric Nanocomposites, and Bionanocomposites. Synth. Met. 2021, 273, 116674. DOI: 10.1016/j.synthmet.2020.116674.
  • Idumah, C. I.; Obele, C. M. Understanding Interfacial Influence on Properties of Polymer Nanocomposites. Surf. Interfaces. 2021, 22, 100879. DOI: 10.1016/j.surfin.2020.100879.
  • Idumah, C. I. Novel Advancements in Green and Sustainable Polymeric Nanocomposites Coatings. Curr. Res. Green Sustainable Chem. 2021, 4, 100173. DOI: 10.1016/j.crgsc.2021.100173.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, R. S. Current Research in Green and Sustainable Chemistry. 2021.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, R. S. Recent Advances in Polymer Hydrogel Nanoarchitectures and Applications. Curr. Res. Green Sustainable Chem. 2021, 4, 100143. DOI: 10.1016/j.crgsc.2021.100143.
  • Idumah, C. I.; Obele, C. M.; Enwerem, U. E. On Interfacial and Surface Behavior of Polymeric MXenes Nanoarchitectures and Applications. Curr. Res. Green Sustainable Chem. 2021, 4, 100104. DOI: 10.1016/j.crgsc.2021.100104.
  • Idumah, C. I. Recent Advancements in Thermolysis of Plastic Solid Wastes to Liquid Fuel. J. Therm. Anal. Calorim. 2022, 147(5), 3495–3508. DOI: 10.1007/s10973-021-10776-5.
  • Idumah, C. I.; Obele, C. M.; Ezeani, E. O.; Hassan, A. Recently Emerging Nanotechnological Advancements in Polymer Nanocomposite Coatings for Anti-Corrosion, Anti-Fouling and Self-Healing. Surf. Interfaces. 2020, 21, 100734. DOI: 10.1016/j.surfin.2020.100734.
  • Idumah, C. I.; Obele, C. M.; Ezeani, E. O. Understanding interfacial dispersions in ecobenign polymer nano-biocomposites. J. Polym. Plast. Technol. Mater. 2020, 60, 233–252. DOI: 10.1080/25740881.2020.1811312.
  • Idumah, S. O. Recent Advancement in Self-Healing Graphene Polymer Nanocomposites, Shape Memory, and Coating Materials. Polym. Plast. Technol. Eng. 2020, 59(11), 1167–1190. DOI: 10.1080/25740881.2020.1725816.
  • Idumah, C. I.; Hassan, A.; Ogbu, J. E.; Ndem, J. U.; Oti, W.; Obiana, V. Electrical, Thermal and Flammability Properties of Conductive Filler Kenaf–Reinforced Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2020, 33(4), 516–540. DOI: 10.1177/0892705718807957.
  • Idumah, C. I.; Zurina, M.; Ogbu, J.; Ndem, J. U.; Igba, E. C. A Review on Innovations in Polymeric Nanocomposite Packaging Materials and Electrical Sensors for Food and Agriculture. Compos. Interfaces. 2020, 27(1), 1–72. DOI: 10.1080/09276440.2019.1600972.
  • Idumah, C. I.; Nwuzor, I. C. Novel trends in plastic waste management. Sn. Appl. Sci. 2019, 1(11), 1–14. DOI: 10.1007/s42452-019-1468-2.
  • Idumah, C. I.; Ogbu, J. E.; Ndem, J. U.; Obiana, V. Influence of Chemical Modification of Kenaf Fiber on xGNP-PP Nano-Biocomposites. Sn. Appl. Sci. 2019, 1(10), 1–11 54. DOI: 10.1007/s42452-019-1319-1.
  • Idumah, C. I.; Hassan, A.; Ogbu, J.; Ndem, J. U.; Nwuzor, I. C. Nwuzor ICRecently Emerging Advancements in Halloysite Nanotubes Polymer Nanocomposites. Compos. Interfaces. 2019, 26(9), 751–824. DOI: 10.1080/09276440.2018.1534475.
  • Idumah, C. I.; Hassan, A.; Ihuoma, D. E. Recently Emerging Trends in Polymer Nanocomposites Packaging Materials. Polym. Plast. Technol. Eng. 2019, 58(10), 1054–1109. DOI: 10.1080/03602559.2018.1542718.
  • Idumah, C. I.; Zurina, M.; Hassan, A.; Orhayani, O.; Shuhadah, I. Recently Emerging Trends in Bone Replacement Polymer Nanocomposites. Nano. Poly. Comp. Biomed. Appl. 2019, 139–166.
  • Akubue, B. N.; Idumah, C. I.; David, E. Challenges of Teaching and Learning Clothing and Textiles for Entrepreneurship: Case Study of Ebonyi State University, Abakaliki. JHER. 2018, 25(2).
  • Idumah, C. I.; Hassan, A.; Bourbigot, S. Synergistic Effect of Exfoliated Graphene Nanoplatelets and Non-Halogen Flame Retardants on Flame Retardancy and Thermal Properties of Kenaf Flour-PP Nanocomposites. J. Therm. Anal. Calorim. 2018, 134(3), 1681–1703. DOI: 10.1007/s10973-018-7833-3.
  • Idumah, C. I.; Hassan, A. Hibiscus Cannabinus Fiber/PP Based Nano-Biocomposites Reinforced with Graphene Nanoplatelets. J. Nat. Fibers. 2017, 14(5), 691–706. DOI: 10.1080/15440478.2016.1277817.
  • Idumah, C. I.; Hassan, A.; Bourbigot, S. Influence of Exfoliated Graphene Nanoplatelets on Flame Retardancy of Kenaf Flour Polypropylene Hybrid Nanocomposites. J. Anal. Appl. Pyrolysis. 2017, 123, 65–72. DOI: 10.1016/j.jaap.2017.01.006.
  • Idumah, C. I.; Hassan, A. Effect of Exfoliated Graphite Nanoplatelets on Thermal and Heat Deflection Properties of Kenaf Polypropylene Hybrid Nanocomposites. J. Polymer Eng. 2016, 36(9), 877–889. DOI: 10.1515/polyeng-2015-0445.
  • Idumah, C. I.; Hassan, A. Recently Emerging Trends in Thermal Conductivity of Polymer Nanocomposites. Rev. Chem. Eng. 2016, 32(4), 413–457. DOI: 10.1515/revce-2016-0004.
  • Idumah, C. I.; Hassan, A. Emerging Trends in Eco-Compliant, Synergistic, and Hybrid Assembling of Multifunctional Polymeric Bionanocomposites. Rev. Chem. Eng. 2016, 32(3), 305–361 67.
  • Idumah, C. I.; Hassan, A. Emerging Trends in Graphene Carbon Based Polymer Nanocomposites and Applications. Rev. Chem. Eng. 2016, 32(2), 223–264. DOI: 10.1515/revce-2015-0038.
  • Idumah, C.; Hassan, A. Characterization and Preparation of Conductive Exfoliated Graphene Nanoplatelets Kenaf Fibre Hybrid Polypropylene Composites. Synth. Met. 2016, 212, 91–104. DOI: 10.1016/j.synthmet.2015.12.011.
  • Idumah, C. I.; Hassan, A. Emerging Trends in Flame Retardancy of Biofibers, Biopolymers, Biocomposites, and Bionanocomposites. Rev. Chem. Eng. 2016, 32(1), 115–148. DOI: 10.1515/revce-2015-0017.
  • Idumah, C. I.; Hassan, A.; Affam, A. C. A Review of Recent Developments in Flammability of Polymer Nanocomposites. Rev. Chem. Eng. 2015, 31(2), 149–177. DOI: 10.1515/revce-2014-0038.
  • Idumah, C. I. Comparative Evaluation of the Effects of Time of Heat Setting and Wet Processing on Shearing Properties of Knitted Ingeo™ Poly (Lactic Acid) (PLA) and Polyethyleneterepthalate. Am. J. Eng. Mater. Technol. 2014, 2(1), 1–6 ….
  • Idumah, C. I.; Nwachukwu, A. Comparative Analysis of the Effect of Heatsetting and Wet Processes on the Tensile Properties of Poly Lactic Acid (PLA) and Poly Ethylene Terephthalate (PET) Knitted Fabrics. Int. J. Mater. Prod. Technol. 2013, 1(4), 45–64.
  • Idumah, C. I.; Nwachukwu, A. N. Effects of Time of Heatsetting on the Tensile Properties of ingeo™ Poly (Lactic Acid) (PLA) Fabric. J. Homepage. 2013, 4(5), 797–806.
  • Idumah, C. I. Effects of Time of Heat Setting and Wet Processes on Tensile Properties of Griege Knitted Ingeo™ Poly Lactic Acid (PLA) Fabric. J Textile SciEng 2013, 3, 137. 3. DOI: 10.4172/2165-8064.1000137.
  • Idumah, C. I. Comparative Analysis of the Effects of Time of Heat Setting and Wet Processing on Tensile Properties of Treated and Untreated Knitted PLA Fabric. American J. Mater. Sci. 2013, 1(3), 40–45 ….
  • Idumah, C. I. A Study of the Effects of Time of Heat Setting and Wet Processes on Shearing (Gf/Cm) Properties of Treated and Untreated Griege Knitted Ingeo™ Poly (Lactic Acid) (Pla) and …. J Textile SciEng, 4, 148. DOI: 10.4172/2165-8064.1000148.
  • Idumah, C. I.; Nwachukwu, A. N. Effects of Time of Heat Setting and Wet Processes on Tensile Properties of Griege Knitted Ingeo™ Poly Lactic Acid (PLA) Fabric. J. Text. Sci. Eng. 2013, 4, 797–806. DOI: 10.4172/2165-8064.1000137.
  • Idumah, C. I. Halloysite Nanotubes Assisted Design of Polymeric Nanoarchitectures for Multifarious Applications–A Review. Polym. Plast. Technol. Eng. 2023, 62: (15, 2043–2062. DOI: 10.1080/25740881.2023.2251562.
  • Idumah, C. I.; Iwuchukwu, F. U.; Okoye, I.; Ogbu, J. E. Construction, Characterization, Properties and Electromagnetic Interference Applications of MXene Polymeric Nanoarchitectures. Polym. Plast. Technol. Eng. 2023, 62, 1247–1272. DOI: 10.1080/25740881.2023.2204936.
  • Idumah, C. I.; Ogbu, J. E. Flame Retardant Mechanisms of Montmorillonites, Layered Double Hydroxides and Molybdenum Disulfide Polymeric Nanoarchitectures for Safety in Extreme Environments. Polym. Plast. Technol. Eng. 2024, 1–28. DOI: 10.1080/25740881.2023.2301294.
  • Idumah, C. I.; Iwuchukwu, F. U.; Okoye, I.; Ogbu, J. E. Flame Retardant Mechanisms of Metal Organic Frameworks (MOFs) Polymeric Nanoarchitectures. Polym. Plast. Technol. Eng. 2024, 63(2), 161–187. DOI: 10.1080/25740881.2023.2280600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.