182
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Development, fabrication, characterization, features and multifarious applications of cryogel polymeric nanoarchitectures: a review

, ORCID Icon, , , , & show all
Pages 990-1010 | Received 20 Oct 2023, Accepted 23 Jan 2024, Published online: 03 Feb 2024

References

  • Xu, J.; Wang, F.; Zhan, J.; Li, Y.; Wang, T.; Ma, R.; Tian, Y. Construction of TiO2/Starch Nanocomposite Cryogel for Ethylene Removal and Banana Preservation. Carbohydr. Polym. 2023, 312, 120825. DOI: 10.1016/j.carbpol.2023.120825.
  • Choosang, J.; Khumngern, S.; Nontipichet, N.; Thavarungkul, P.; Kanatharana, P.; Numnuam, A. 3D porous CS-AuNPs-PEDOT-PB nanocomposite cryogel for highly sensitive label-free electrochemical immunosensor for carcinoembryonic antigen determination. Microchem. J. 2023, 187, 108435. DOI: 10.1016/j.microc.2023.108435.
  • Hellebois, T.; Addiego, F.; Gaiani, C.; Shaplov, A. S.; Soukoulis, C. Unravelling the Functionality of Anionic and Non-Ionic Plant Seed Gums on Milk Protein Cryogels Conveying Lacticaseibacillus rhamnosus GG. Carbohydr. Polym. 2024, 323, 121376. DOI: 10.1016/j.carbpol.2023.121376.
  • Şarkaya, K.; Akıncıoğlu, G.; Akıncıoğlu, S. Investigation of Tribological Properties of HEMA-Based Cryogels as Potential Articular Cartilage Biomaterials. Polym. Plast. Technol. Eng. 2022, 61(11), 11, 1174–1190. DOI: 10.1080/25740881.2022.2039190.
  • Gürel, C. M.; Şarkaya, K. Polimerik Linoleik Asit Içeren HEMA Bazlı Amfifilik Yarı IPN Kriyojellerin Hazırlanması, Karakterizasyonu ve Şişme Davranışının Araştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi. 2022, 10(1), 154–169. DOI: 10.29130/dubited.970641.
  • Lazzari, L. K.; Perondi, D.; Zattera, A. J.; Campomanes Santana, R. M. CO2 Adsorption by Cryogels Produced from Poultry Litter Wastes. Polímeros. 2022, 32(1). DOI: 10.1590/0104-1428.210075.
  • Çekiç, D.; Yılmaz, Ş. N.; Bölgen, N.; Ünal, S.; Duce, M. N.; Bayrak, G.; Ünal, Ş.; Türkegün, M.; Sarı, A.; Demir, Y. Impact of Injectable Chitosan Cryogel Microspherescaffolds on Differentiation and Proliferation of Adiposederived Mesenchymal Stem Cells into Fat Cells. J. Biomater. Appl. 2022, 36(8), 1335–1345. DOI: 10.1177/08853282211048284.
  • Bakhshpour, M.; Idil, N.; Perçin, I.; Denizli, A. Biomedical Applications of Polymeric Cryogels. Applied Sciences. 2019, 9(3), 553. DOI: 10.3390/app9030553.
  • Zou, F.; Li, H.; Dong, Y.; Tewari, G. C.; Vapaavuori, J. Optically Transparent Pectin/Poly (Methyl Methacrylate) Composite with Thermal Insulation and UV Blocking Properties Based on Anisotropic Pectin Cryogel. Chem. Eng. J. 2022, 439, 135738. DOI: 10.1016/j.cej.2022.135738.
  • Wang, F.; Ma, R.; Tian, Y. Superhydrophobic Starch-Based Nanocomposite Cryogel for Oil Removal Underwater and Magnetically Guided Oil Slick Cleanup. Carbohydr. Polym. 2022, 287, 119297. DOI: 10.1016/j.carbpol.2022.119297.
  • Nazir, G.; Rehman, A.; Park, S. J. Self-Activated, Urea Modified Microporous Carbon Cryogels for High-Performance CO2 Capture and Separation. Carbon. 2022, 192, 14–29. DOI: 10.1016/j.carbon.2022.02.040.
  • Chen, J.; Liao, C.; Guo, X. X.; Hou, S. C.; He, W. D. PAAO Cryogels from Amidoximated P (Acrylic Acid-Co-Acrylonitrile) for the Adsorption of Lead Ion. Eur. Polym. J. 2022, 171, 111192. DOI: 10.1016/j.eurpolymj.2022.111192.
  • Lou, X.; Jiang, Y.; Zhao, F.; Zhang, Y.; Qu, X.; Liu, T.; Zhang, W.; Zhu, L.; Yun, J. Preparation and Characterization of Semi-Hydrophobic Cryogels for Culture of Lactobacillus Strains and Bioconversion Towards Phenyllactic Acid Bioproduction. Biochem. Eng. J. 2022, 179, 108312. DOI: 10.1016/j.bej.2021.108312.
  • Rezaeeyazdi, M.; Colombani, T.; Eggermont, L. J.; Bencherif, S. A. Engineering Hyaluronic Acid-Based Cryogels for CD44-Mediated Breast Tumor Reconstruction. Mate. Today Bio. 2022, 13, 100207. DOI: 10.1016/j.mtbio.2022.100207.
  • Chartier, C.; Buwalda, S.; Van Den Berghe, H.; Nottelet, B.; Budtova, T. Tuning the Properties of Porous Chitosan: Aerogels and Cryogels. Int. J. Biol. Macromol. 2022, 202, 215–223. DOI: 10.1016/j.ijbiomac.2022.01.042.
  • Meneses, I. P.; Novaes, S. D.; Dezotti, R. S.; Oliveira, P. V.; Petri, D. F. S. CTAB-Modified Carboxymethyl Cellulose/Bagasse Cryogels for the Efficient Removal of Bisphenol A, Methylene Blue and Cr (VI) Ions: Batch and Column Adsorption Studies. J. Hazard. Mater. 2022, 421, 126804. DOI: 10.1016/j.jhazmat.2021.126804.
  • Zhou, Y.; Luo, L.; Yan, W.; Li, Z.; Fan, M.; Du, G.; Zhao, W. Controlled Preparation of Nitrogen-Doped Hierarchical Carbon Cryogels Derived from Phenolic-Based Resin and Their CO2 Adsorption Properties. Energy. 2022, 246, 123367. DOI: 10.1016/j.energy.2022.123367.
  • Wang, F.; Ma, R.; Zhan, J.; Shi, W.; Zhu, Y.; Tian, Y. Superhydrophobic/Superoleophilic Starch-Based Cryogels Coated by Silylated Porous Starch/Fe3O4 Hybrid Micro/Nanoparticles for Removing Discrete Oil Patches from Water. Sep. Purif. Techn. 2022, 291, 120872. DOI: 10.1016/j.seppur.2022.120872.
  • Rosciardi, V.; Chelazzi, D.; Baglioni, P. “Green” Biocomposite Poly (Vinyl Alcohol)/Starch Cryogels as New Advanced Tools for the Cleaning of Artifacts. J. Coll. Interf. Sci. 2022, 613, 697–708. DOI: 10.1016/j.jcis.2021.12.145.
  • Ulusoy, M.; Aslıyüce, S.; Keskin, N.; Denizli, A. Beauvericin Purification from Fungal Strain Using Molecularly Imprinted Cryogels. Process Biochem. 2022, 113, 185–193. DOI: 10.1016/j.procbio.2021.12.031.
  • Matović, B.; Gorshkova, Y. E.; Kottsov, S. Y.; Kopitsa, G. P.; Butulija, S.; Arsić, T. M.; Cvijović-Alagić, I. Carbon Cryogel Preparation and Characterization. Diamond Relat. Mater. 2022, 121, 108727. DOI: 10.1016/j.diamond.2021.108727.
  • Teng, M.; Li, Z.; Wu, X.; Zhang, Z.; Lu, Z.; Wu, K.; Guo, J. Development of Tannin-Bridged Cerium Oxide Microcubes-Chitosan Cryogel as a Multifunctional Wound Dressing. Colloids And Surfaces B: Biointerfaces. 2022, 214, 112479. DOI: 10.1016/j.colsurfb.2022.112479.
  • Motaghi, H.; Arabkhani, P.; Parvinnia, M.; Javadian, H.; Asfaram, A. Synthesis of a Highly Porous Three-Dimensional PVA/GO/ZIF-67 Cryogel for the Simultaneous Treatment of Water Contaminated with Cadmium(Ii) and Lead(Ii) Heavy Metal Ions. New. J. Chem. 2022, 46(9), 4449–4461. DOI: 10.1039/D1NJ05418J.
  • Bakay, M. S.; Şarkaya, K.; Çadırcı, M. Electrical properties of CsPbX3 (X= Cl, Br) perovskite quantum dot/poly (HEMA) cryogel nanocomposites. Mater. Chem. Phys. 2022, 277, 125479. DOI: 10.1016/j.matchemphys.2021.125479.
  • Demirci, S.; Sahiner, N. Thermo‐responsive macroporous p (NIPAM) cryogel affords enhanced thermal stability and activity for ɑ‐glucosidase enzyme by entrapping in situ. Can. J. Chem. Eng. 2022.
  • Lou, X.; Hou, D.; Chen, Z.; Ma, Y.; Zhou, X.; Guo, D.; Yun, J. Cryogel‐Based Co‐Culture of Lactobacillus Paracasei and Lactobacillus Buchneri Towards Phenyllactic Acid Bioproduction: Fundamental Hydrodynamics and Biotransformation Characteristics. J. Chem. Technol. Biotechnol. 2022.
  • Taweekarn, T.; Wongniramaikul, W.; Choodum, A. Removal and Recovery of Phosphate Using a Novel Calcium Silicate Hydrate Composite Starch Cryogel. J. Environ. Manage. 2022, 301, 113923. DOI: 10.1016/j.jenvman.2021.113923.
  • Wang, Z.; Liao, Y.; Liu, J.; Huang, X. On-Site Separation and Enrichment of Heavy Metal Ions in Environmental Waters with Multichannel In-Tip Microextraction Device Based on Chitosan Cryogel. Microchem. J. 2022, 175, 107107. DOI: 10.1016/j.microc.2021.107107.
  • Falakaflaki, M.; Varshosaz, J.; Mirian, M. Local Delivery of Usnic Acid Loaded Rhamnolipid Vesicles by Gelatin/Tragacanth Gum/Montmorillonite/Vanillin Cryogel Scaffold for Expression of Osteogenic Biomarkers and Antimicrobial Activity. J. Drug Delivery Sci. Technol. 2022, 69, 103147. DOI: 10.1016/j.jddst.2022.103147.
  • Yuan, X.; Yuan, Z.; Wang, Y.; Wan, Z.; Wang, X.; Yu, S.; Zhao, Y. Vascularized Pulp Regeneration via Injecting Simvastatin Functionalized GelMA Cryogel Microspheres Loaded with Stem Cells from Human Exfoliated Deciduous Teeth. Mate. Today Bio. 2022, 13, 100209. DOI: 10.1016/j.mtbio.2022.100209.
  • Khongkla, S.; Phonchai, A.; Nurerk, P.; Bunkoed, O. A Hierarchical Composite ZnO@ Carbon Foam/PVA Cryogel Sorbent for the Extraction and Enrichment of Parabens and Synthetic Phenolic Antioxidant in Fruit Juice. Microchem. J. 2022, 173, 107013. DOI: 10.1016/j.microc.2021.107013.
  • Newland, B.; Long, K. R. Cryogel Scaffolds: Soft and Easy to Use Tools for Neural Tissue Culture. Neural. Regen. Res. 2022, 17(9), 1981. DOI: 10.4103/1673-5374.335156.
  • Boccia, A.; Scavia, A.; Conzatti, S. L. Biobased Cryogels from Enzymatically Oxidized Starch: Functionalized Materials as Carriers of Active Molecules. Molecules. 2020, 25(11), 2557. DOI: 10.3390/molecules25112557.
  • Savina, I.; Ingavle, G.; Cundy, A.; Mikhalovsky, S. A Simple Method for the Production of Large Volume 3D Macroporous Hydrogels for Advanced Biotechnological, Medical and Environmental Applications. Sci. Rep. 2016, 6(1), 21154. DOI: 10.1038/srep21154.
  • Ayaz, F.; Demir, D.; Bölgen, N. Differential Anti-Inflammatory Properties of Chitosan-Based Cryogel Scaffolds Depending on Chitosan/Gelatin Ratio. Artif. Cells Nanomed. Biotechnol. 2021, 49(1), 682–690. DOI: 10.1080/21691401.2021.2012184.
  • Li, S.; Yang, X.; He, Y.; Wang, Y.; Liao, D.; Chen, Y.; Zhou, L. Hierarchical Porous Aero-Cryogels for Wind Energy Enhanced Solar Vapor Generation. Cellulose. 2022, 29(2), 953–966. DOI: 10.1007/s10570-021-04335-2.
  • Chen, T.-C.; Wong, C.-W.; Hsu, S.-H. Three-Dimensional Printing of Chitosan Cryogel as Injectable and Shape Recoverable Scaffolds. Carbohydr. Polym. 2022, 285, 119228. DOI: 10.1016/j.carbpol.2022.119228.
  • Zhu, H.; Luo, H.; Lin, M.; Li, Y.; Chen, A.; He, H.; Sheng, F.; Wu, J. Methacrylated Gelatin Shape-Memorable Cryogel Subcutaneously Delivers EPCs and aFGF for Improved Pressure Ulcer Repair in Diabetic Rat Model. Int. J. Biol. Macromol. 2022, 199, 69–76. DOI: 10.1016/j.ijbiomac.2021.12.138.
  • Guo, Y.; Wu, M.; Li, R.; Cai, Z.; Zhang, H. Thermostable Physically Crosslinked Cryogel from Carboxymethylated Konjac Glucomannan Fabricated by Freeze-Thawing. Food Hydrocolloids. 2022, 122, 107103. DOI: 10.1016/j.foodhyd.2021.107103.
  • Wang, C.; Liang, Y.; Huang, Y.; Li, M.; Guo, B. Porous Photothermal Antibacterial Antioxidant Dual–Crosslinked Cryogel Based on Hyaluronic Acid/Polydopamine for Non-Compressible Hemostasis and Infectious Wound Repair. J. Mater. Sci. Technol. 2022, 121, 207–219. DOI: 10.1016/j.jmst.2021.12.054.
  • Zhao, X.; Zhang, Z.; Luo, J.; Wu, Z.; Yang, Z.; Zhou, S.; Tu, Y.; Huang, Y.; Han, Y.; Guo, B. Biomimetic, highly elastic conductive and hemostatic gelatin/rGO-based nanocomposite cryogel to improve 3D myogenic differentiation and guide in vivo skeletal muscle regeneration. Appl. Mater. Today. 2022, 26, 101365. DOI: 10.1016/j.apmt.2022.101365.
  • Huang, Y.; Bai, L.; Yang, Y.; Yin, Z.; Guo, B. Biodegradable Gelatin/Silver Nanoparticle Composite Cryogel with Excellent Antibacterial and Antibiofilm Activity and Hemostasis for Pseudomonas aeruginosa-Infected Burn Wound Healing. J. Coll. Interf. Sci. 2022, 608, 2278–2289. DOI: 10.1016/j.jcis.2021.10.131.
  • Liu, Z. Z.; Xu, N. Y.; Wang, M. L.; Tang, R. Z.; Liu, X. Q. Physical Confinement in Alginate Cryogels Determines Macrophage Polarization to a M2 Phenotype by Regulating a STAT-Related mRNA Transcription Pathway. Biomater. Sci. 2022, 10(9), 2315–2327. DOI: 10.1039/D1BM01719E.
  • Najibi, A. J.; Shih, T. Y.; Mooney, D. J. Cryogel Vaccines Effectively Induce Immune Responses Independent of Proximity to the Draining Lymph Nodes. Biomaterials. 2022, 281, 121329. DOI: 10.1016/j.biomaterials.2021.121329.
  • Sultankulov, B.; Berillo, D.; Kauanova, S.; Mikhalovsky, S.; Mikhalovska, L.; Saparov, A. Composite Cryogel with Polyelectrolyte Complexes for Growth Factor Delivery. Pharmaceutics. 2019, 11(12), 650. DOI: 10.3390/pharmaceutics11120650.
  • Tyshkunova, I. V.; Poshina, D. N.; Skorik, Y. A. Cellulose Cryogels as Promising Materials for Biomedical Applications. IJMS. 2022, 23(4), 2037. DOI: 10.3390/ijms23042037.
  • Huang, Y.; Zhao, X.; Wang, C.; Chen, J.; Liang, Y.; Li, Z.; Han, Y.; Guo, B. High-Strength Anti-Bacterial Composite Cryogel for Lethal Noncompressible Hemorrhage Hemostasis: Synergistic Physical Hemostasis and Chemical Hemostasis. Chem. Eng. J. 2022, 427, 131977. DOI: 10.1016/j.cej.2021.131977.
  • Xu, G.; Xu, N.; Ren, T.; Chen, C.; Li, J.; Ding, L.; Yu, Y. Corrigendum to “Multifunctional Chitosan/Silver/Tannic Acid Cryogels for Hemostasis and Wound healing” [Int. J. Biol. Macromol. 208 (2022) 760–771]. Int. J. Biol. Macromol. 2022, 219, 1372–1373. DOI: 10.1016/j.ijbiomac.2022.08.074.
  • Wang, F.; Ma, R.; Zhan, J.; Tian, Y. Superhydrophobic modular cryogel with variable magnetic-actuated motion direction for discrete small-scale oil spill cleanup. J. Hazard. Mater. 2022, 430, 128448. DOI: 10.1016/j.jhazmat.2022.128448.
  • Şarkaya, K.; Akıncıoğlu, G.; Akıncıoğlu, S. Investigation of Tribological Properties of HEMA-Based Cryogels as Potential Articular Cartilage Biomaterials. Polym. Plast. Technol. Eng. 2022, 61(11), 1–17. DOI: 10.1080/25740881.2022.2039190.
  • Zhang, W.; Zhao, F.; Li, Y.; Lou, X.; Dai, C.; Lv, W.; Yun, J. Suspension and Transformation Performance of Poly (2-Hydroxyethyl Methacrylate)-Based Anion Exchange Cryogel Beads with Immobilized Lactobacillus Paracasei Cells as Biocatalysts Towards Biosynthesis of Phenyllactic Acid in Stirred Tank Bioreactors. Chem. Eng. Res. Des. 2022, 181, 120–131. DOI: 10.1016/j.cherd.2021.12.010.
  • Zenger, O.; Peşint, G. B. Preparation of Molecularly Imprinted Bilayer Cryogel Columns for Selective Protein Depletion. Process Biochem. 2022, 117, 90–100. DOI: 10.1016/j.procbio.2022.03.018.
  • Prokić, D.; Vukčević, M.; Mitrović, A.; Maletić, M.; Kalijadis, A.; Janković-Častvan, I.; Đurkić, T. Adsorption of Estrone, 17β-Estradiol, and 17α-Ethinylestradiol from Water Onto Modified Multi-Walled Carbon Nanotubes, Carbon Cryogel, and Carbonized Hydrothermal Carbon. Environ. Sci. Pollut. Res. 2022, 29(3), 4431–4445. DOI: 10.1007/s11356-021-15970-4.
  • Dumitru, M. V.; Sandu, T.; Neblea, I. E.; Iovu, H.; Chiriac, A. L.; Radu, I. C.; Iordache, T. V. Hybrid Cryogels with Advanced Adsorbent Properties for Penicillin. Chem. Proc. 2022, 7(1), 61.
  • Sillapawisut, S.; Bunkoed, O.; Llompart, M.; Nurerk, P. In-Syringe Solid-Phase Extraction of Polycyclic Aromatic Hydrocarbons Using an Iron–Carboxylate Metal–Organic Framework and Hypercrosslinked Polymer Composite Gelatin Cryogel–Modified Cellulose Acetate Adsorbent. Microchim. Acta. 2022, 189(4), 1–10. DOI: 10.1007/s00604-022-05276-8.
  • Laishevkina, S.; Skurkis, Y.; Shevchenko, N. Preparation and Properties of Cryogels Based on Poly (Sulfopropyl Methacrylate) or Poly (Sulfobetaine Methacrylate) with Controlled Swelling. J. Sol-Gel Sci. Technol. 2022, 102(2), 1–14. DOI: 10.1007/s10971-022-05770-8.
  • Demir, D.; Özdemir, S.; Gonca, S.; Bölgen, N. Novel Styrax Liquidus Loaded Chitosan/Polyvinyl Alcohol Cryogels with Antioxidant and Antimicrobial Properties. J. Appl. Polym. Sci. 2022, 139(17), 52033. DOI: 10.1002/app.52033.
  • Zhu, Y.; Liu, H.; Qin, S.; Yang, C.; Lv, Q.; Wang, Z.; Wang, L. Antibacterial Sericin Cryogels Promote Hemostasis by Facilitating the Activation of Coagulation Pathway and Platelets. Adv. Healthcare Mate. 2022, 11(11). DOI: 10.1002/adhm.202102717.
  • Gao, C.; Wang, Y.; Shi, J.; Wang, Y.; Huang, X.; Chen, X.; Chen, Z.; Xie, Y.; Yang, Y. Superamphiphilic Chitosan Cryogels for Continuous Flow Separation of Oil-In-Water Emulsions. ACS Omega. 2022, 7(7), 5937–5945. DOI: 10.1021/acsomega.1c06178.
  • Nikhil, A.; Kumar, A. Evaluating Potential of Tissue‐Engineered Cryogels and Chondrocyte Derived Exosomes in Articular Cartilage Repair. Biotech. & Bioeng. 2022, 119(2), 605–625. DOI: 10.1002/bit.27982.
  • Shakya, A. K. Functionalized Cryogel Monoliths for Fast and Selective Separation of Nucleic Acids Directly from Crude Lysate. Biomed. Chromatogr. 2022, 36(4), e5333. DOI: 10.1002/bmc.5333.
  • Coimbra, J. C.; Martins, M. A.; Minim, L. A. A Simplified CFD Model to Describe Fluid Dynamics, Mass Transport and Breakthrough Curves Performance in Cryogel Supports for Chromatographic Separation. Chem. Eng. Res. Des. 2022, 179, 56–65. DOI: 10.1016/j.cherd.2021.12.044.
  • Williams, S. L.; Eccleston, M. E.; Slater, N. K. H. Affinity Capture of a Biotinylated Retrovirus on Macroporous Monolithic Adsorbents: Towards a Rapid Single-Step Purification Process. Biotechnol. Bioeng. 2005, 89(7), 783–787. DOI: 10.1002/bit.20382.
  • Arvidsson, P.; Plieva, F. M.; Savina, I. N.; Lozinsky, V. I.; Fexby, S.; Bülow, L.; Yu Galaev, I.; Mattiasson, B. Chromatography of Microbial Cells Using Continuous Supermacroporous Affinity and Ion-Exchange Columns. J. Chromatography. A. 2002, 977(1), 27–38. DOI: 10.1016/S0021-9673(02)01114-7.
  • Shi, M.; Jiang, L.; Yu, C.; Dong, X.; Yu, Q.; Yao, M.; Li, J. A Robust Polyacrylic Acid/Chitosan Cryogel for Rapid Hemostasis. Sci. China Technol. Sci. 2022, 1–14.
  • Mishra, R.; Goel, S. K.; Gupta, K. C.; Kumar, A. Biocomposite Cryogels as Tissue Engineered Biomaterials for Regeneration of Critical-Sized Cranial Bone Defects. Tissue. Eng. Part A. 2013, 20, 751–762. DOI: 10.1089/ten.TEA.2013.0072.
  • Ciptawati, E.; Takase, H.; Watanabe, N. M.; Okamoto, Y.; Nur, H.; Umakoshi, H. Preparation and Characterization of Biodegradable Sponge-Like Cryogel Particles of Chitosan via the Inverse Leidenfrost (iLF) Effect. ACS Omega. 2024, 9(2), 2383–2390. DOI: 10.1021/acsomega.3c06639.
  • Abou Taleb, M. F.; Farouk, A. Potential Application of Integrated Carboxymethyl Cellulose and Sodium Alginate Cryogels Loaded with Algal Biomass for Disinfection of Contaminated Water. J. Environ. Chem. Eng. 2024, 12(1), 111860. DOI: 10.1016/j.jece.2023.111860.
  • Yang, K.; Wang, X.; Lynch, I.; Guo, Z.; Zhang, P.; Wu, L. Green Construction of MBI Corrosion-Resistant Interfaces Modified NZVI@ MOFs-Regulated 3D PAN Cryogel Film to Enhance Cr (VI) Removal. Sep. Purif. Techn. 2024, 333, 125902. DOI: 10.1016/j.seppur.2023.125902.
  • Ting, L. Y.; Li, B. H.; Huang, Q. C.; Chen, A. R.; Sun, Y. E.; Chang, C. L.; Chou, H. H. 3D-Printable and Robust All-In-One Polymer-Entangled Photocatalytic Microreactors for Visible-Light-Driven Hydrogen Evolution. ACS Appl. Energy Mater. 2024, 7(2), 657–664. DOI: 10.1021/acsaem.3c02677.
  • Haleem, A.; Wu, F.; Ullah, M.; Saeed, T.; Li, H.; Pan, J. Chitosan Functionalization with Vinyl Monomers via Ultraviolet Illumination Under Cryogenic Conditions for Efficient Palladium Recovery from Waste Electronic Materials. Sep. Purif. Techn. 2024, 329, 125213. DOI: 10.1016/j.seppur.2023.125213.
  • Nurerk, P.; Bunkoed, O.; Sapphanachai, J. A Hierarchically Porous PEDOT Embedded Cryogel for In-Syringe Solid Phase Extraction of Parabens in Beverages. J. Food Compost. Anal. 2024, 126, 105878. DOI: 10.1016/j.jfca.2023.105878.
  • Idumah, C. ‘Recent Advancements in Polymer MXenes Nanoarchitectures and Applications’ in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encycl. Pol. Pol. Mat. Pol. Technol. 2024. [email protected].
  • Idumah, C.; Nwuzor, I.; Ezeani, E.; Nwogu, N.; Ugwu, S.; Okpechi, V.; Onyeoka, H.; Ibenta, M.; Odera, S.; Hassan, A. ‘Advancements in Biomolecules Immobilization on Natural Fiber Polymeric Nanobiocomposites for Biomedical Applications’ in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encycl. Pol. Pol. Mat. Pol. Technol. 2024. [email protected].
  • Idumah, C.; Ezika, A.; Ezeani, E.; Obele, C. ‘Natural Plant Fiber Polymer Biocomposites and Its Applications’ in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encyclopedia Of Polym., Polym. Mater., And Polymer Tech. 2024. [email protected].
  • Idumah, N. I.; Ezika, A.; Nwogu, N.; Ugwu, S.; Okpechi, U.; Oyeoka, H.; Ibenta, M.; Odera, S.; Ukeme, T. ‘Poly (Lactic) Acid Hybrid Bionanocomposites and Applications’ in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encyclopedia Of Polym., Polym. Mater., And Polymer Tech. 2024. [email protected].
  • Idumah, C. ‘Recent Advancements in Flame Retardancy of Polymer Nanocomposites’ in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encycl. Pol. Pol. Mat. Pol. Technol. 2024. [email protected].
  • Idumah, C. Bioactive Glass Polymer Nanocomposite Architectures for Biomedical Applications’ in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge.Encyclopedia of Polymers. Poly. Mat. Polymer Technol. 2024. [email protected].
  • Idumah, C. Recent Advancements in Polymer Aerogel Nanocomposite Architectures and Applications. In Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, USA: Routledge, 2024. [email protected].
  • Idumah, C. Recent Advancements in Polymer MXenes Nanoarchitectures and Applications in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encycl. Pol. Pol. Mat. Pol. Technol. 2024. [email protected].
  • Idumah, C. Current Trends in Natural Fibers Polymer Biocomposites, Hybrid Nano- Biocomposites and Applications in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge.Encyclopedia of Polymers. Poly. Mat. Polymer Technol. 2024. [email protected].
  • Idumah, C. Recent Advancements in Polymeric Magnetic Nanocomposites and Applications in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encycl. Pol. Pol. Mat. Pol. Technol. 2024. [email protected].
  • Idumah, C. Recently Emerging Trends in Additive Manufacturing of PLA Nanocomposites Applications in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology, Routledge. Encycl. Pol. Pol. Mat. Pol. Technol. 2024. [email protected].
  • Idumah, C. Recently Emerging Trends in Additive Manufacturing of PLA Nano- Composites Applications in Routledge Resources Online: Polymers, Polymeric Materials, and Polymer Technology. Routledge, 2024. [email protected].
  • Idumah, C. I. Recent Advancements in Fire Retardant Mechanisms of Carbon Nanotubes, Graphene, and Fullerene Polymeric Nanoarchitectures. J. Anal. Appl. Pyrolysis. 2023, 174, 106113. DOI: https://doi.org/10.1016/j.jaap.2023.106113.
  • Idumah, C. I. Emerging Advances in Thermal Conductivity of Polymeric Nanoarchitectures; Polymer-Plastics Technology and Materials, 2023. doi: 10.1080/25740881.2023.2240404.
  • Idumah, C. I. Molybdenum Disulfide Polymeric Nanoarchitecturesand Applications: A Review; 2023. Idumah CI. (2023): Influence of interfacial engineering onproperties of polymeric nanoarchitectures, Polymer-Plastics Technology and Materials, DOI:10.1080/25740881.2023.2240393. doi: 10.1002/pen.26421.
  • Idumah, C. I. Molybdenum Disulfide Polymeric Nanoarchitectures and Applications: A Re-View. 2023. DOI: 10.1002/pen.26421.
  • Idumah, C. I. Influence of Interfacial Engineering on Properties of Polymeric Nanoarchitectures. Polym. Plast. Technol. Eng. 2023, 62(14), 1844–1877. DOI: 10.1080/25740881.2023.2240393.
  • Idumah, C. I. Phosphorene Polymeric Nanocomposites for Electrochemical Energy Storage Applications. J. Energy Storage. 2023, 69, 107940. DOI: 10.1016/j.est.2023.107940.
  • Idumah, C. I.; Odera, R. S.; Ezeani, E. O.; Low, J. H.; Tanjung, F. A.; Damiri, F.; Wong, S. L. Construction, characterization, properties and multifunctional applications of stimuli-responsive shape memory polymeric nanoarchitectures: a review. Polym. Plast. Technol. Eng. 2023, 62(10), 1247–1272. DOI: 10.1080/25740881.2023.2204936.
  • Idumah, C. I. Design, Fabrication, Characterization and Properties of Metallic and Conductive Smart Polymeric Textiles for Multifunctional Applications. Nano-Struct. Nano-Object. 2023, 35, 100982. DOI: 10.1016/j.nanoso.2023.100982.
  • Idumah, C. I. Thermal Expansivity of Polymer Nanocomposites and Applications. Polym. Plast. Technol. Eng. 2023, 62(9), 1178–1203. DOI: 10.1080/25740881.2023.2204952.
  • Idumah, C. I. Borophene Polymeric Nanoarchitecture and Applications: A Review. Polym. Plast. Technol. Eng. 2023, 62(12), 1560–1575. DOI: 10.1080/25740881.2023.2222798.
  • Idumah, C. I.; Obumneme, E. E. Novel Trends in Phosphorene and Phosphorene@ Polymeric Nanoarchitectures and Applications. Emergent Mater. 2023, 6(3), 1–22. DOI: 10.1007/s42247-023-00507-x.
  • Idumah, C. I. Numerical Modelling of Effects of Biphasic Layers of Corrosion Products to the Degradation of Magnesium Metal in vitro. J. Porous Mater. 2017, 11(1), 1–19. DOI: 10.3390/ma11010001.
  • Idumah, C. I. Design, development, and drug delivery applications of graphene polymeri nanocomposites and bionanocomposites. Emer. Mat. 2023, 1–31.
  • Ng, Q. Y.; Low, J. H.; Pang, M. M.; Idumah, C. I. Properties Enhancement of Waterborne Polyurethane Bio-Composite Films with 3-Aminopropyltriethoxy Silane Functionalized Lignin. J Polym. Environ. 2023, 31(2), 688–697. DOI: 10.1007/s10924-022-02595-y.
  • Idumah, C. I. Recently Emerging Trends in Flame Retardancy of Phosphorene Polymeric Nanocomposites and Applications. J. Anal. Appl. Pyrolysis. 2023, 169, 105855. DOI: 10.1016/j.jaap.2022.105855.
  • Idumah, C. I. Recent Advancements in Electromagnetic Interference Shielding of Polymer and MXene Nanocomposites. Polym. Plast. Technol. Eng. 2023, 62(1), 19–53. DOI: 10.1080/25740881.2022.2089581.
  • Idumah, C. I.; Ezeani, O. E.; Okonkwo, U. C.; Nwuzor, I. C.; Odera, S. R. Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters. J. Clust. Sci. 2023, 34(1), 45–76. DOI: 10.1007/s10876-022-02243-4.
  • Idumah, C. I. Phosphorene Polymeric Nanocomposites for Biomedical Applications: A Review. Int. J. Polym. Mater. Polym. Biomater. 2022, 1-18(9), 2022.
  • Idumah, C. I. Emerging Advancements in Xerogel Polymeric Bionanoarchitectures and Applications; USA: JCIS Open, 2022; p. 100073.
  • Idumah, C. I. Novel Advancements in Xerogel Polymeric Nanoarchitectures and Multifunctional Applications. J. Porous Mater. 2023, 30(5), 1–19. DOI: 10.1007/s10934-023-01446-y.
  • Idumah, C. I. Design, development, and drug delivery applications of graphene polymeric nanocomposites and bionanocomposites. Emergent Mater. 2023, 6(3), 1–31. DOI: 10.1007/s42247-023-00465-4.
  • Ng, Q.; Low, J. H.; Pang, M. M.; Idumah, C. I. Properties Enhancement of Waterborne Polyurethane Bio-Composite Films with 3-Aminopropyltriethoxy Silane Functionalized Lignin. J Polym. Environ. 2023, 31(2), 688–697. DOI: 10.1007/s10924-022-02595-y.
  • Idumah, C. I. Recent Advancements in Electromagnetic Interference Shielding of Polymer and MXene Nanocomposites. Polym. Plast. Technol. Eng. 2023, 62(1), 19–53 14. DOI: 10.1080/25740881.2022.2089581.
  • Idumah, C. I.; Ezeani, O.; Okonkwo, U. C.; Nwuzor, I. C.; Odera, S. R. Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters. J. Clust. Sci. 2023, 34(1), 45–76. DOI: 10.1007/s10876-022-02243-4.
  • Idumah, C. I. Phosphorene Polymeric Nanocomposites for Biomedical Applications: A Review. Int. J. Polym. Mater. Polym. Biomater. 2022, 73(4), 292–309. DOI: 10.1080/00914037.2022.2158333.
  • Idumah, C. I. Emerging Advancements in Xerogel Polymeric Bionanoarchitectures and Applications. JCIS Open. 2023, 9, 100073. DOI: 10.1016/j.jciso.2022.100073.
  • Idumah, C. I.; Low, J. H.; Emmanuel, E. O. Recently Emerging Trends in Xerogel Polymeric Nanoarchitectures and Multifunctional Applications. Polym. Bull. 2022, 1–31.
  • Idumah, C. I. Emerging Advancements in Flame Retardancy of Polypropylene Nanocomposites. J. Thermoplast. Compos. Mater. 2022, 35(12), 2665–2704. DOI: 10.1177/0892705720930782.
  • Idumah, C. I. Recent Advances on Graphene Polymeric Bionanoarchitectures for Biomedicals. JCIS Open. 2022, 9, 100070. DOI: 10.1016/j.jciso.2022.100070.
  • Idumah, C. I. A review on polyaniline and graphene nanocomposites for supercapacitors. Polym. Plast. Technol. Eng. 2022, 61(17), 1871–1907. DOI: 10.1080/25740881.2022.2086810.
  • Idumah, C. I.; Ezika, A. C. Recent Advancements in Hybridized Polymer Nano-Biocomposites for Tissue Engineering. Int. J. Polym. Mater. Polym. Biomater. 2022, 71(16), 1262–1276. DOI: 10.1080/00914037.2021.1960344.
  • Idumah, C. I. Recently Emerging Advancements in Polymeric Nanogel Nanoarchitectures for Drug Delivery Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 73(1), 1–13. DOI: 10.1080/00914037.2022.2120875.
  • Idumah, C. I. Recently Emerging Advancements in Thermal Conductivity and Flame Retardancy of MXene Polymeric Nanoarchitectures. Polym. Plast. Technol. Eng. 2022, 62(4), 1–37. DOI: 10.1080/25740881.2022.2121220.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, S. R.; Timothy, U. J.; Ngenegbo, U.; Tanjung, F. A. Recent advances in polymeric hydrogel nanoarchitectures for drug delivery applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 73(1), 1–32. DOI: 10.1080/00914037.2022.2120875.
  • Idumah, C. I.; Ezika, A. C.; Enwerem, U. E. A Review on Biomolecular Immobilization of Polymeric Textile Biocomposites, Bionanocomposites, and Nano-Biocomposites. J. Text. Inst. 2022, 113(9), 2016–2032. DOI: 10.1080/00405000.2021.1957277.
  • Idumah, C. I. MXene Polymeric Nanoarchitectures Mechanical, Deformation, and Failure Mechanism: A Review. Polym. Plast. Technol. Eng. 2022, 1–24.
  • Idumah, C. I. On MXene Conducting Polymer Nanocomposites Micro-Supercapacitors and Applications. Preprint Research Square. 2022.
  • Idumah, C. I. Influence of Morphology and Architecture on Properties and Applications of MXene Polymeric Nanocomposites. J. Thermoplast. Compos. Mater. 2022, 36(10), 4124–4161. DOI: 10.1177/08927057221122096.
  • Idumah, C. I. Characterization and Fabrication of Xerogel Polymeric Nanocomposites and Multifunctional Applications. 2022.
  • Okonkwo, U. C.; Idumah, C. I.; Okafor, C. E.; Ohagwu, C. C.; Aronu, M. E. Development, Characterization, and Properties of Polymeric Nanoarchitectures for Radiation Attenuation. J. Inorg. Organomet. Polym. 2022, 32(11), 1–21. DOI: 10.1007/s10904-022-02420-y.
  • Idumah, C. I. Influence of Surfaces and Interfaces on MXene and MXene Hybrid Polymeric Nanoarchitectures, Properties, and Applications. J. Mater. Sci. 2022, 57(31), 14579–14619. DOI: 10.1007/s10853-022-07526-9.
  • Idumah, C. I. Recently Emerging Advancements in Polymeric Cryogel Nanostructures and Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 72(16), 1–21. DOI: 10.1080/00914037.2022.2097678.
  • Idumah, C. I. Emerging Advancements in MXene Polysaccharide Bionanoarchitectures and Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 72(17), 1–22. DOI: 10.1080/00914037.2022.2098297.
  • Idumah, C. I. Recently Emerging Trends in Magnetic Polymer Hydrogel Nanoarchitectures. Polym. Plast. Technol. Eng. 2022, 61(10), 1039–1070. DOI: 10.1080/25740881.2022.2033769.
  • Idumah, C. I. Emerging Trends in Poly (Lactic-Co-Glycolic) Acid Bionanoarchitectures and Applications Cleaner Materials. Cleaner Mater. 2022, 5, 100102–100114. DOI: 10.1016/j.clema.2022.100102.
  • Idumah, C. I. Recent trends in MXene polymeric hydrogel bionanoarchitectures and applications. Cleaner Mater. 2022, 5, 100103. DOI: 10.1016/j.clema.2022.100103.
  • Okonkwo, U. C.; Ohagwu, C.; Aronu, M. E.; Okafor, C. E.; CI, I. Ionizing Radiation Protection and the Linear No-Threshold Controversy: Extent of Support or Counter to the Prevailing Paradigm. J. Environ. Radioact. 2022, 253, 106984. DOI: 10.1016/j.jenvrad.2022.106984.
  • Ezika, A. C.; Sadiku, E. R.; Idumah, C. I.; Ray, S. S.; Adekoya, G. J.; Odera, R. S. Recently Emerging Trends in MXene Hybrid Conductive Polymer Energy Storage Nanoarchitectures. Polym. Plastics Technol. Mater. 2022, 61(8), 861–887. DOI: 10.1080/25740881.2022.2029888.
  • Idumah, C. I. Recent Advancements in Conducting Polymer Bionanocomposites and Hydrogels for Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 71(7), 513–530. DOI: 10.1080/00914037.2020.1857384.
  • Idumah, C. I.; Okonkwo, U. C.; Obele, C. M. Recently Emerging Advancements in Montmorillonite Polymeric Nanoarchitectures and Applications. Cleaner Mater. 2022, 4, 100071. DOI: 10.1016/j.clema.2022.100071.
  • Tanjung, F. A.; Kuswardani, R. A.; Idumah, C. I.; Siregar, J. P.; Karim, A. Characterization of Mechanical and Thermal Properties of Esterified Lignin Modified Polypropylene Composites Filled with Chitosan Fibers. Polym. Polym. Composites. 2022, 30, 09673911221082482. DOI: 10.1177/09673911221082482.
  • Ezika, A. C.; Sadiku, E. R.; Idumah, C. I.; Ray, S. S.; Hamam, Y. On Energy Storage Capacity of Conductive MXene Hybrid Nanoarchitectures. J. Energy Storage. 2022, 45, 103686. DOI: 10.1016/j.est.2021.103686.
  • Idumah, C. I.; Nwabanne, J. T.; Tanjung, F. A. Novel trends in poly (lactic) acid hybrid bionanocomposites. Cleaner Mater. 2021, 2, 100022. DOI: 10.1016/j.clema.2021.100022.
  • Idumah, C. I. Influence of Nanotechnology in Polymeric Textiles, Applications, and Fight Against COVID-19. J. Text. Inst. 2021, 112(12), 2056–2076 59. DOI: 10.1080/00405000.2020.1858600.
  • Idumah, C. I.; Ezeani, E. O.; Ezika, A. C.; Timothy, U. J. Recent Advancements in Flame Retardancy of MXene Polymer Nanoarchitectures. Saf. Extreme Environ. 2021, 3(3), 253–273. DOI: 10.1007/s42797-021-00046-w.
  • Idumah, C. I. Novel trends in polymer aerogel nanocomposites. Polym. Plast. Technol. Eng. 2021, 60(14), 1519–1531. DOI: 10.1080/25740881.2020.1869780.
  • Idumah, C. I.; Nwuzor, I.; Odera, S. R. Recent Advancements in Self-Healing Polymeric Hydrogels, Shape Memory, and Stretchable Materials. Int. J. Polym. Mater. Polym. Biomater. 2021, 70(13), 941–966. DOI: 10.1080/00914037.2020.1767615.
  • Idumah, C. I.; Ezika, A. C.; Okpechi, V. U. Emerging Trends in Polymer Aerogel Nanoarchitectures, Surfaces, Interfaces and Applications. Surf. Interfaces. 2021, 25, 101258. DOI: 10.1016/j.surfin.2021.101258.
  • Idumah, C. I. Progress in Polymer Nanocomposites for Bone Regeneration and Engineering. Polym. Polym. Composites. 2021, 29(5), 509–527. DOI: 10.1177/0967391120913658.
  • Idumah, C. I. Novel Trends in Self-Healable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2021, 34(6), 834–858. DOI: 10.1177/0892705719847247.
  • Idumah, C. I. Novel Trends in Magnetic Polymeric Nanoarchitectures. Polym. Plast. Technol. Eng. 2021, 60(8), 830–848. DOI: 10.1080/25740881.2020.1869780.
  • Idumah, C. I.; Ezeani, E. O.; Nwuzor, I. C. A Review: Advancements in Conductive Polymers Nanocomposites. Polym. Plast. Technol. Eng. 2021, 60(7), 756–783. DOI: 10.1080/25740881.2020.1850783.
  • Idumah, C. I. Recent Advancements in Self-Healing Polymers, Polymer Blends, and Nanocomposites. Polym. Polym. Composites. 2021, 29(4), 246–258. DOI: 10.1177/0967391120910882.
  • Nwuzor, I. C.; Idumah, C. I.; Nwanonenyi, S. C.; Ezeani, O. E. Emerging Trends in Self-Polishing Anti-Fouling Coatings for Marine Environment. Saf. Extreme Environ. 2021, 3(1), 9–25. DOI: 10.1007/s42797-021-00031-3.
  • Idumah, C. I. Novel trends in conductive polymeric nanocomposites, and bionanocomposites. Synth. Met. 2021, 273, 116674. DOI: 10.1016/j.synthmet.2020.116674.
  • Idumah, C. I.; Obele, C. M. Understanding Interfacial Influence on Properties of Polymer Nanocomposites. Surf. Interfaces. 2021, 22, 100879. DOI: 10.1016/j.surfin.2020.100879.
  • Idumah, C. I. Novel Advancements in Green and Sustainable Polymeric Nanocomposites Coatings. Curr. Res. Green Sustainable Chem. 2021, 4, 100173. DOI: 10.1016/j.crgsc.2021.100173.
  • Idumah, C. I.; Nwuzor, I. C.; RS, O. Current Research in Green and Sustainable Chemistry. 2021.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, R. S. Recent Advances in Polymer Hydrogel Nanoarchitectures and Applications. Curr. Res. Green Sustainable Chem. 2021, 4, 100143. DOI: 10.1016/j.crgsc.2021.100143.
  • Idumah, C. I.; Obele, C. M.; Enwerem, U. E. On Interfacial and Surface Behavior of Polymeric MXenes Nanoarchitectures and Applications. Curr. Res. Green Sustainable Chem. 2021, 4, 100104–100110. DOI: 10.1016/j.crgsc.2021.100104.
  • Idumah, C. I. Recent Advancements in Thermolysis of Plastic Solid Wastes to Liquid Fuel. J. Therm. Anal. Calorim. 2021, 147(5), 1–14. DOI: 10.1007/s10973-021-10776-5.
  • Idumah, C. I.; Obele, C. M.; Ezeani, E. O.; Hassan, A. Recently Emerging Nanotechnological Advancements in Polymer Nanocomposite Coatings for Anti-Corrosion, Anti-Fouling and Self-Healing. Surf. Interfaces. 2020, 21, 100734. DOI: 10.1016/j.surfin.2020.100734.
  • Idumah, C. I.; Obele, C. M.; Ezeani, E. O. Understanding interfacial dispersions in ecobenign polymer nano-biocomposites. J. Polym. Plast. Technol. Mater. 2020, 60(3), 233–252. DOI: 10.1080/25740881.2020.1811312.
  • Idumah, S. O. Recent Advancement in Self-Healing Graphene Polymer Nanocomposites, Shape Memory, and Coating Materials. Polym. Plast. Technol. Eng. 2020, 59(11), 1167–1190. DOI: 10.1080/25740881.2020.1725816.
  • Idumah, C. I.; Hassan, A.; Ogbu, J. E.; Ndem, J. U.; Oti, W.; Obiana, V. Electrical, Thermal and Flammability Properties of Conductive Filler Kenaf–Reinforced Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2020, 33(4), 516–540. DOI: 10.1177/0892705718807957.
  • Idumah, C. I.; Zurina, M.; Ogbu, J.; Ndem, J. U.; Igba, E. C. A Review on Innovations in Polymeric Nanocomposite Packaging Materials and Electrical Sensors for Food and Agriculture. Compos. Interfaces. 2020, 27(1), 1–72. DOI: 10.1080/09276440.2019.1600972.
  • Idumah, C. I.; Nwuzor, I. C. Novel trends in plastic waste management. SN Appl. Sci. 2019, 1(11), 1–14. DOI: 10.1007/s42452-019-1468-2.
  • Idumah, C. I.; Ogbu, J. E.; Ndem, J. U.; Obiana, V. Influence of Chemical Modification of Kenaf Fiber on XGNP-PP Nano-Biocomposites. SN Appl. Sci. 2019, 1(10), 1–11 54. DOI: 10.1007/s42452-019-1319-1.
  • Idumah, C. I.; Hassan, A.; Ogbu, J.; Ndem, J. U.; Nwuzor, I. C. Nwuzor ICRecently Emerging Advancements in Halloysite Nanotubes Polymer Nanocomposites. Compos. Interfaces. 2019, 26(9), 751–824. DOI: 10.1080/09276440.2018.1534475.
  • Idumah, C. I.; Hassan, A.; Ihuoma, D. E. Recently Emerging Trends in Polymer Nanocomposites Packaging Materials. Polym. Plast. Technol. Eng. 2019, 58(10), 1054–1109. DOI: 10.1080/03602559.2018.1542718.
  • Idumah, C. I.; Zurina, M.; Hassan, A.; Orhayani, O.; Shuhadah, I. Recently Emerging Trends in Bone Replacement Polymer Nanocomposites. Nano. Poly. Comp. Biomed. Appl. 2019, 139–166.
  • Akubue, B. N.; Idumah, C. I.; David, E. Challenges of Teaching and Learning Clothing and Textiles for Entrepreneurship: Case Study of Ebonyi State University, Abakaliki. JHER. 2018, 25(2), 11.
  • Idumah, C. I.; Hassan, A.; Bourbigot, S. Synergistic Effect of Exfoliated Graphene Nanoplatelets and Non-Halogen Flame Retardants on Flame Retardancy and Thermal Properties of Kenaf Flour-PP Nanocomposites. J. Therm. Anal. Calorim. 2018, 134(3), 1681–1703. DOI: 10.1007/s10973-018-7833-3.
  • Idumah, A. H. Hibiscus Cannabinus Fiber/PP Based Nano-Biocomposites Reinforced with Graphene Nanoplatelets. J. Nat. Fibers. 2017, 14(5), 691–706. DOI: 10.1080/15440478.2016.1277817.
  • Idumah, C. I.; Hassan, A.; Bourbigot, S. Influence of Exfoliated Graphene Nanoplatelets on Flame Retardancy of Kenaf Flour Polypropylene Hybrid Nanocomposites. J. Anal. Appl. Pyrolysis. 2017, 123, 65–72. DOI: 10.1016/j.jaap.2017.01.006.
  • Idumah, C. I.; Hassan, A. Effect of Exfoliated Graphite Nanoplatelets on Thermal and Heat Deflection Properties of Kenaf Polypropylene Hybrid Nanocomposites. J. Polymer Eng. 2016, 36(9), 877–889. DOI: 10.1515/polyeng-2015-0445.
  • Idumah, C. I.; Hassan, A. Recently Emerging Trends in Thermal Conductivity of Polymer Nanocomposites. Rev. Chem. Eng. 2016, 32(4), 413–457. DOI: 10.1515/revce-2016-0004.
  • Idumah, C.I.; Hassan, A. Emerging Trends in Eco-Compliant, Synergistic, and Hybrid Assembling of Multifunctional Polymeric Bionanocomposites. Rev. Chem. Eng. 2016, 32(3), 305–361.
  • Idumah, C. I.; Hassan, A. Emerging Trends in Graphene Carbon Based Polymer Nanocomposites and Applications. Rev. Chem. Eng. 2016, 32(2), 223–264. DOI: 10.1515/revce-2015-0038.
  • Idumah, C.; Hassan, A. Characterization and Preparation of Conductive Exfoliated Graphene Nanoplatelets Kenaf Fibre Hybrid Polypropylene Composites. Synth. Met. 2016, 212, 91–104. DOI: 10.1016/j.synthmet.2015.12.011.
  • Idumah, C. I.; Hassan, A. Emerging Trends in Flame Retardancy of Biofibers, Biopolymers, Biocomposites, and Bionanocomposites. Rev. Chem. Eng. 2016, 2(1), 115–148. DOI: 10.1515/revce-2015-0017.
  • Idumah, C. I.; Hassan, A.; Affam, A. C. A Review of Recent Developments in Flammability of Polymer Nanocomposites. Rev. Chem. Eng. 2015, 31(2), 149–177. DOI: 10.1515/revce-2014-0038.
  • Idumah, C. I. Comparative Evaluation of the Effects of Time of Heat Setting and Wet Processing on Shearing Properties of Knitted Ingeo™ Poly (Lactic Acid) (PLA) and Polyethyleneterepthalate. Am. J. Eng. Mater. Technol. 2014, 2(1), 1–6.
  • Idumah, C. I.; Nwachukwu, A. Comparative Analysis of the Effect of Heatsetting and Wet Processes on the Tensile Properties of Poly Lactic Acid (PLA) and Poly Ethylene Terephthalate (PET) Knitted Fabrics. Int. J. Mater. Prod. Technol. 2013, 1(4), 45–64.
  • Idumah, C. I.; Nwachukwu, A. N. Effects of Time of Heatsetting on the Tensile Properties of ingeo™ Poly (Lactic Acid)(pla) Fabric. J. Homepage. 2013, 4(5), 797–806.
  • Idumah, C. I. Effects of Time of Heat Setting and Wet Processes on Tensile Properties of Griege Knitted Ingeo™ Poly Lactic Acid (PLA) Fabric. J. Text. Sci. Eng. 2013, 3, 137. DOI: 10.4172/2165-8064.1000137.
  • Idumah, C. I. Comparative Analysis of the Effects of Time of Heat Setting and Wet Processing on Tensile Properties of Treated and Untreated Knitted PLA Fabric. American J. Mater. Sci. 2013, 1(3), 40–45.
  • Idumah, C. I. A Study of the Effects of Time of Heat Setting and Wet Processes on Shearing (Gf/Cm) Properties of Treated and Untreated Griege Knitted Ingeo™ Poly (Lactic Acid) (Pla) and …. J. Text. Sci. Eng. 2013, 4, 148. DOI: 10.4172/2165-8064.1000148.
  • Idumah, C. I.; Nwachukwu, A. N. Effects of Time of Heat Setting and Wet Processes on Tensile Properties of Griege Knitted Ingeo™ Poly Lactic Acid (PLA) Fabric. Int. J. Energy Environ. 2013, 4(3), 797–806. DOI: 10.4172/2165-8064.1000137.
  • Idumah, C. I.; Ogbu, J. E. Flame Retardant Mechanisms of Montmorillonites, Layered Double Hydroxides and Molybdenum Disulfide Polymeric Nanoarchitectures for Safety in Extreme Environments; USA: Polymer-Plastics Technology and Materials, 2024.
  • Idumah, C. I.; Iwuchukwu, F. U.; Okoye, I.; Ogbu, J. E. Flame Retardant Mechanisms of Metal Organic Frameworks (MOFs) Polymeric Nanoarchitectures. Polym. Plast. Technol. Eng. 2024, 63(2), 161–187. DOI: 10.1080/25740881.2023.2280600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.