227
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Review on synthesis and characterization of metal nanoparticles doped carbon nanofillers based nanohybrids reinforced polyaniline nanocomposites

, , , , &
Pages 1011-1035 | Received 03 Oct 2023, Accepted 01 Feb 2024, Published online: 14 Feb 2024

References

  • Shubhadarshinee, L.; Jali, B. R.; Barick, A. K.; Mohapatra, P. Preparation and Characterisation of Silver Nanoparticles/Graphene Oxide Hybrid Nanofiller Reinforced-Polyaniline. Plast., Rubber Compos. 2022, 51(2), 72–84. DOI: 10.1080/14658011.2021.1939587.
  • Karak, N. Fundamentals of Nanomaterials and Polymer Nanocomposites. In Nanomaterials and Polymer Nanocomposites; Elsevier, 2019; pp. 1–45. DOI: 10.1016/B978-0-12-814615-6.00001-1.
  • Zhang, Z.; Du, J.; Li, J.; Huang, X.; Kang, T.; Zhang, C.; Wang, S.; Ajao, O. O.; Wang, W. J.; Liu, P. Polymer Nanocomposites with Aligned Two-Dimensional Materials. Prog. Polym. Sci. 2021, 114, 101360. DOI: 10.1016/j.progpolymsci.2021.101360.
  • Jancar, J.; Douglas, J. F.; Starr, F. W.; Kumar, S. K.; Cassagnau, P.; Lesser, A. J.; Sternstein, S. S.; Buehler, M. J. Current Issues in Research on Structure–Property Relationships in Polymer Nanocomposites. Polymer. 2010, 51(15), 3321–3343. DOI: 10.1016/j.polymer.2010.04.074.
  • Hu, K.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. Graphene-Polymer Nanocomposites for Structural and Functional Applications. Prog. Polym. Sci. 2014, 39(11), 1934–1972. DOI: 10.1016/j.progpolymsci.2014.03.001.
  • Idumah, C. I.; Obele, C. M. Understanding Interfacial Influence on Properties of Polymer Nanocomposites. Surf. Interfaces. 2021, 22, 100879. DOI: 10.1016/j.surfin.2020.100879.
  • Al Rashid, A.; Khan, S. A.; Al-Ghamdi, S. G.; Koç, M. Additive Manufacturing of Polymer Nanocomposites: Needs and Challenges in Materials, Processes, and Applications. J. Mater. Res. Technol. 2021, 14, 910–941. DOI: 10.1016/j.jmrt.2021.07.016.
  • Kumar, S.; Nehra, M.; Dilbaghi, N.; Tankeshwar, K.; Kim, K. H. Recent Advances and Remaining Challenges for Polymeric Nanocomposites in Healthcare Applications. Prog. Polym. Sci. 2018, 80, 1–38. DOI: 10.1016/j.progpolymsci.2018.03.001.
  • Ashraf, M. A.; Peng, W.; Zare, Y.; Rhee, K. Y. Effects of Size and Aggregation/Agglomeration of Nanoparticle on the Interfacial/Interphase Properties and Tensile Strength of Polymer Nanocomposites. Nanoscale Res. Lett. 2018, 13(1), 1–7. DOI: 10.1186/s11671-018-2624-0.
  • Kumar, A.; Kumar, N. Advances in Transparent Polymer Nanocomposites and Their Applications: A Comprehensive Review. Polym. Plast. Technol. Eng. 2022, 61(9), 937–974. DOI: 10.1080/25740881.2022.2029892.
  • Lu, X.; Zhang, W.; Wang, C.; Wen, T. C.; Wei, Y. One-Dimensional Conducting Polymer Nanocomposites: Synthesis, Properties and Applications. Prog. Polym. Sci. 2011, 36(5), 671–712. DOI: 10.1016/j.progpolymsci.2010.07.010.
  • Naveen, M. H.; Gurudatt, N. G.; Shim, Y. B. Applications of Conducting Polymer Composites to Electrochemical Sensors: A Review. Appl. Mater. Today. 2017, 9, 419–433. DOI: 10.1016/j.apmt.2017.09.001.
  • Xia, L.; Wei, Z.; Wan, M. Conducting Polymer Nanostructures and Their Application in BioSensors. J. Coll. Interf. Sci. 2010, 341(1), 1–11. DOI: 10.1016/j.jcis.2009.09.029.
  • Shi, Y.; Peng, L.; Yu, G. Nanostructured Conducting Polymer Hydrogels for Energy Storage Applications. Nanoscale. 2015, 7(30), 12796–12806. DOI: 10.1039/C5NR03403E.
  • Clarke, T. C.; Geiss, R. H.; Kwak, J. F.; Street, G. B. Highly Conducting Transition Metal Derivatives of Polyacetylene. J. Chem. Soc., Chem. Commun. 1978, 12(12), 489–490. DOI: 10.1039/c39780000489.
  • Su, W. P.; Schrieffer, J. R.; Heeger, A. J. Solitons in Polyacetylene. Phys. Rev. Lett. 1979, 42(25), 1698. DOI: 10.1103/PhysRevLett.42.1698.
  • Aydemir, N.; Malmström, J.; Travas-Sejdic, J. Conducting Polymer Based Electrochemical BioSensors. Phys. Chem. Chem. Phys. 2016, 18(12), 8264–8277. DOI: 10.1039/C5CP06830D.
  • Meer, S.; Kausar, A.; Iqbal, T. Trends in Conducting Polymer and Hybrids of Conducting Polymer/Carbon Nanotube: A Review. Polym.-Plast. Technol. Eng. 2016, 55(13), 1416–1440. DOI: 10.1080/03602559.2016.1163601.
  • Siwal, S. S.; Zhang, Q.; Devi, N.; Thakur, V. K. Carbon-Based Polymer Nanocomposite for High-Performance Energy Storage Applications. Polymers. 2020, 12(3), 505. DOI: 10.3390/polym12030505.
  • Chiang, C. K.; Fincher, C. R., Jr; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Electrical Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1977, 39(17), 1098. DOI: 10.1103/PhysRevLett.39.1098.
  • Kumar, D.; Sharma, R. C. Advances in Conductive Polymers. Eur. Polym. J. 1998, 34(8), 1053–1060. DOI: 10.1016/S0014-3057(97)00204-8.
  • Sen, T.; Mishra, S.; Shimpi, N. G. Synthesis and Sensing Applications of Polyaniline Nanocomposites: A Review. Rsc. Adv. 2016, 6(48), 42196–42222. DOI: 10.1039/C6RA03049A.
  • Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research Progress on Conducting Polymer Based Supercapacitor Electrode Materials. Nano. Energy. 2017, 36, 268–285. DOI: 10.1016/j.nanoen.2017.04.040.
  • Kumar, A.; Kumar, V.; Awasthi, K. Polyaniline–Carbon Nanotube Composites: Preparation Methods, Properties, and Applications. Polym.-Plast. Technol. Eng. 2018, 57(2), 70–97. DOI: 10.1080/03602559.2017.1300817.
  • Liao, G.; Li, Q.; Xu, Z. The Chemical Modification of Polyaniline with Enhanced Properties: A Review. Prog. Org. Coat. 2019, 126, 35–43. DOI: 10.1016/j.porgcoat.2018.10.018.
  • Maity, N.; Dawn, A. Conducting Polymer Grafting: Recent and Key Developments. Polymers. 2020, 12(3), 709. DOI: 10.3390/polym12030709.
  • Bavatharani, C.; Muthusankar, E.; Wabaidur, S. M.; Alothman, Z. A.; Alsheetan, K. M.; Mana AL-Anazy, M.; Ragupathy, D. Electrospinning Technique for Production of Polyaniline Nanocomposites/Nanofibres for Multi-Functional Applications: A Review. Synth. Met. 2021, 271, 116609. DOI: 10.1016/j.synthmet.2020.116609.
  • Idumah, C. I. Recent Advancements in Conducting Polymer Bio Nanocomposites and Hydrogels for Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 71(7), 513–530. DOI: 10.1080/00914037.2020.1857384.
  • Pan, L.; Qiu, H.; Dou, C.; Li, Y.; Pu, L.; Xu, J.; Shi, Y. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage. Int. J. Mol. Sci. 2010, 11(7), 2636–2657. DOI: 10.3390/ijms11072636.
  • Mitchell, E.; Candler, J.; De Souza, F.; Gupta, R. K.; Gupta, B. K.; Dong, L. F. High Performance Supercapacitor Based on Multilayer of Polyaniline and Graphene Oxide. Synth. Met. 2015, 199, 214–218. DOI: 10.1016/j.synthmet.2014.11.028.
  • Hsueh, C.; Brajter-Toth, A. Electrochemical Preparation and Analytical Applications of Ultrathin Overoxidized Polypyrrole Films. Anal. Chem. 1994, 66(15), 2458–2464. DOI: 10.1021/ac00087a009.
  • Bora, C. Graphene Graphene Oxide based Polymer Nanocomposites and their Applications. PhD Thesis, Tezpur University, Assam, India, 2015. http://hdl.handle.net/10603/96737.
  • Green, A. G.; Woodhead, A. E. CXVII.—Aniline-black and Allied Compounds. Part II. J Chem Soc Trans. 1912, 101, 1117–1123. DOI: 10.1039/CT9120101117.
  • Genies, E. M.; Boyle, A.; Lapkowski, M.; Tsintavis, C. Polyaniline: A historical Survey. Synth. Met. 1990, 36(2), 139–182. DOI: 10.1016/0379-6779(90)90050-U.
  • Feast, W. J.; Tsibouklis, J.; Pouwer, K. L.; Groenendaal, L.; Meijer, E. W. Synthesis, Processing and Material Properties of Conjugated Polymers. Polymer. 1996, 37(22), 5017–5047. DOI: 10.1016/0032-3861(96)00439-9.
  • Nalwa, H. S., ed. Advanced Functional Molecules and Polymers: Electronic and Photonic Properties; CRC Press: Taylor and Francis, Florida, USA, 2001.
  • Letheby, H. XXIX.—On the Production of a Blue Substance by the Electrolysis of Sulphate of Aniline. J. Chem. Soc. 1862, 15, 161–163. DOI: 10.1039/JS8621500161.
  • Holze, R.; Stejskal, J. Recent Trends and Progress in Research into Structure and Properties of Polyaniline and Polypyrrole—Topical Issue. Chem. Pap. 2013, 67(8), 769–770. DOI: 10.2478/s11696-013-0331-y.
  • Joseph, N.; Varghese, J.; Sebastian, M. T. Self Assembled Polyaniline Nanofibers with Enhanced Electromagnetic Shielding Properties. Rsc. Adv. 2015, 5(26), 20459–20466. DOI: 10.1039/C5RA02113H.
  • Bhowmik, K. L.; Deb, K.; Bera, A.; Nath, R. K.; Saha, B. Charge Transport Through Polyaniline Incorporated Electrically Conducting Functional Paper. J. Phys. Chem. C. 2016, 120(11), 5855–5860. DOI: 10.1021/acs.jpcc.5b08650.
  • Mahmood, J.; Lee, E. K.; Jung, M.; Shin, D.; Choi, H. J.; Seo, J. M.; Jung, S. M.; Kim, D.; Li, F.; Lah, M. S., et al. Two-Dimensional Polyaniline (C3N) from Carbonized Organic Single Crystals in Solid State. Proc. National Academy Sci. 2016, 113(27), 7414–7419. DOI: 10.1073/pnas.1605318113.
  • Mazzeu, M. A. C.; Faria, L. K.; Cardoso, A. D. M.; Gama, A. M.; Baldan, M. R.; Gonçalves, E. S. Structural and Morphological Characteristics of Polyaniline Synthesized in Pilot Scale. J.Aerosp. Technol. Manag. 2017, 9(1), 39–47. DOI: 10.5028/jatm.v9i1.726.
  • Li, X.; Yu, L.; Yu, L.; Dong, Y.; Gao, Q.; Yang, Q.; Yang, W.; Zhu, Y.; Fu, Y. Chiral Polyaniline with Superhelical Structures for Enhancement in Microwave Absorption. Chem. Eng. J. 2018, 352, 745–755. DOI: 10.1016/j.cej.2018.07.096.
  • Wang, S.; Rogachev, А. А.; Yarmolenko, M. А.; Rogachev, А. V.; Xiaohong, J.; Gaur, M. S.; Luchnikov, P. A.; Galtseva, O. V.; Chizhik, S. A. Structure and Properties of Polyaniline Nanocomposite Coatings Containing Gold Nanoparticle Formed by Low-Energy Electron Beam Deposition. Appl. Surf. Sci. 2018, 428, 1070–1078. DOI: 10.1016/j.apsusc.2017.09.225.
  • Banerjee, J.; Dutta, K.; Kader, M. A.; Nayak, S. K. An Overview on the Recent Developments in Polyaniline‐Based Supercapacitors. Polym. Adv. Techs. 2019, 30(8), 1902–1921. DOI: 10.1002/pat.4624.
  • Liu, P.; Yan, J.; Guang, Z.; Huang, Y.; Li, X.; Huang, W. Recent Advancements of Polyaniline-Based Nanocomposites for Supercapacitors. J. Power Sources. 2019, 424, 108–130. DOI: 10.1016/j.jpowsour.2019.03.094.
  • Zare, E. N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J. Med. Chem. 2019, 63(1), 1–22. DOI: 10.1021/acs.jmedchem.9b00803.
  • Bhadra, J.; Alkareem, A.; Al-Thani, N. A Review of Advances in the Preparation and Application of Polyaniline Based Thermoset Blends and Composites. J. Polym. Res. 2020, 27(5), 1–20. DOI: 10.1007/s10965-020-02052-1.
  • Singh, P.; Shukla, S. K. Advances in Polyaniline-Based Nanocomposites. J. Mater. Sci. 2020, 55(4), 1331–1365. DOI: 10.1007/s10853-019-04141-z.
  • Bogdanovic, U.; Pašti, I.; Ciric-Marjanovic, G.; Mitric, M.; Ahrenkiel, S. P.; Vodnik, V. Interfacial Synthesis of Gold–Polyaniline Nanocomposite and Its Electrocatalytic Application. ACS Appl. Mater. Interfaces. 2015, 7(51), 28393–28403. DOI: 10.1021/acsami.5b09145.
  • Bhandari, S. Polyaniline: Structure and Properties Relationship. In Polyaniline Blends, Composites, and Nanocomposites; Elsevier, 2018; pp. 23–60. DOI: 10.1016/B978-0-12-809551-5.00002-3.
  • Iqbal, A.; Saeed, A.; Ul-Hamid, A. A Review Featuring the Fundamentals and Advancements of Polymer/CNT Nanocomposite Application in Aerospace Industry. Polym. Bull. 2021, 78(1), 539–557. DOI: 10.1007/s00289-019-03096-0.
  • Li, Y.; Huang, X.; Zeng, L.; Li, R.; Tian, H.; Fu, X.; Wang, Y.; Zhong, W. H. A Review of the Electrical and Mechanical Properties of Carbon Nanofiller-Reinforced Polymer Composites. J. Mater. Sci. 2019, 54(2), 1036–1076. DOI: 10.1007/s10853-018-3006-9.
  • Sarifuddin, N.; Ismail, H. Hybridization of Commercial Fillers with Kenaf Core Fibers on the Physical and Mechanical Properties of Low Density Polyethylene/Thermoplastic Sago Starch Composites. In Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites: Development, Characterization and Applications; Sapuan, S. M., Ismail, H., Zainudin E. S., Eds.; Woodhead Publishing: Amsterdam, Netherlands, 2018; pp. 265–281. DOI: 10.1016/B978-0-08-102160-6.00014-7.
  • Singh, R.; Singh, R. K. A Review on Nano Materials of Carbon. IOSR J. Appl. Phys. 2017, 9, 42–57. DOI: 10.9790/4861-0906034257.
  • Al Sheheri, S. Z.; Al-Amshany, Z. M.; Al Sulami, Q. A.; Tashkandi, N. Y.; Hussein, M. A.; El-Shishtawy, R. M. The Preparation of Carbon Nanofillers and Their Role on the Performance of Variable Polymer Nanocomposites. Des. Monomers Polym. 2019, 22(1), 8–53. DOI: 10.1080/15685551.2019.1565664.
  • Shubhadarshinee, L.; Mohapatra, P.; Jali, B. R.; Barick, A. K.; Mohapatra, P. Synthesis and Characterization of a Novel Silver Nanoparticle Decorated Functionalized Single-Walled Carbon Nanotubes Nanohybrids Embedded Polyaniline Ternary Nanocomposites: Thermal, Dielectric, and Sensing Properties. Polym. Plast. Technol. Eng. 2023, 62(2), 197–217. DOI: 10.1080/25740881.2022.2101118.
  • Kong, H.; Jang, J. Antibacterial Properties of Novel Poly (Methyl Methacrylate) Nanofiber Containing Silver Nanoparticle. Langmuir. 2008, 24(5), 2051–2056. DOI: 10.1021/la703085e.
  • Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S. R.; Khan, M. I.; Parishcha, R.; Ajaykumar, P. V.; Alam, M.; Kumar, R., et al. Fungus-Mediated Synthesis of Silver Nanoparticle and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Lett. 2001, 1(10), 515–519. DOI: 10.1021/nl0155274.
  • Li, W. R.; Xie, X. B.; Shi, Q. S.; Zeng, H. Y.; Ou-Yang, Y. S.; Chen, Y. B. Antibacterial Activity and Mechanism of Silver Nanoparticle on Escherichia coli. Appl. Microbiol. Biotechnol. 2010, 85(4), 1115–1122. DOI: 10.1007/s00253-009-2159-5.
  • Gurunathan, S.; Park, J. H.; Han, J. W.; Kim, J. H. Comparative Assessment of the Apoptotic Potential of Silver Nanoparticle Synthesized by Bacillus Tequilensis and Calocybe Indica in MDA-MB-231 Human Breast Cancer Cells: Targeting p53 for Anticancer Therapy. Int. J. Nanomed. 2015, 4203–4223. DOI: 10.2147/IJN.S83953.
  • Lee, S. Y.; Yamada, M.; Miyake, M. Synthesis of Carbon Nanotubes Over Gold Nanoparticle Supported Catalysts. Carbon. 2005, 43(13), 2654–2663. DOI: 10.1016/j.carbon.2005.05.045.
  • Zhang, Y.; Xu, C.; Li, B.; Li, Y. In situ Growth of Positively-Charged Gold Nanoparticle on Single-Walled Carbon Nanotubes as a Highly Active Peroxidase Mimetic and Its Application in Biosensing. Biosens. Bioelectron. 2013, 43, 205–210. DOI: 10.1016/j.bios.2012.12.016.
  • Eksin, E.; Bolat, G.; Kuralay, F.; Erdem, A.; Abaci, S. Preparation of Gold Nanoparticle/single-Walled Carbon Nanotubes/Polyaniline Composite-Coated Electrode Developed for DNA Detection. Polym. Bull. 2015, 72(12), 3135–3146. DOI: 10.1007/s00289-015-1457-6.
  • Boehm, H. P.; Clauss, A.; Fischer, G. O.; Hofmann, U. Das adsorptionsverhalten sehr dünner kohlenstoff‐folien. Zeitschrift für anorganische und allgemeine Chemie. 1962, 316(3‐4), 119–127. DOI: 10.1002/zaac.19623160303.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D. E.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004, 306(5696), 666–669. DOI: 10.1126/science.1102896.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nature Mater. 2007, 6(3), 183–191. DOI: 10.1038/nmat1849.
  • Bhattacharya, M. Polymer Nanocomposites—A Comparison Between Carbon Nanotubes, Graphene, and Clay as Nanofillers. Materials. 2016, 9(4), 262. DOI: 10.3390/ma9040262.
  • Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett. 2008, 100(1), 016602. DOI: 10.1103/PhysRevLett.100.016602.
  • Zhang, Y.; Zhang, Q.; Hou, D.; Zhang, J. Tuning Interfacial Structure and Mechanical Properties of Graphene Oxide Sheets/Polymer Nanocomposites by Controlling Functional Groups of Polymer. Appl. Surf. Sci. 2020, 504, 144152. DOI: 10.1016/j.apsusc.2019.144152.
  • Brodie, B. C. XIII. On the Atomic Weight of Graphite. Phil. Trans. R. Soc. London. 1859, 149, 249–259. DOI: 10.1098/rstl.1859.0013.
  • Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Berichte der deutschen chemischen Gesellschaft. 1898, 31(2), 1481–1487. DOI: 10.1002/cber.18980310237.
  • Hummers, W. S., Jr; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80(6), 1339–1339. DOI: 10.1021/ja01539a017.
  • ACS Material. Graphene Oxide; ACS Material, LLC: California, USA, 2017. https://www.acsmaterial.com/blog-detail/graphene-oxide.html.
  • Mittal, G.; Dhand, V.; Rhee, K. Y.; Park, S. J.; Lee, W. R. A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. DOI: 10.1016/j.jiec.2014.03.022.
  • Chen, J.; Liu, B.; Gao, X.; Xu, D. A Review of the Interfacial Characteristics of Polymer Nanocomposites Containing Carbon Nanotubes. Rsc. Adv. 2018, 8(49), 28048–28085. DOI: 10.1039/C8RA04205E.
  • Rudakiya, D.; Patel, Y.; Chhaya, U.; Gupte, A. Carbon Nanotubes in Agriculture: Production, Potential, and Prospects. In Nanotechnology for Agriculture: Advances for Sustainable Agriculture; Panpatte, D. G., Jhala, Y. K., Eds.; Springer: Singapore, 2019; pp. 121–130. DOI: 10.1007/978-981-32-9370-0_8.
  • Ma, P. C.; Siddiqui, N. A.; Marom, G.; Kim, J. K. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. Part A Appl. Sci. Manuf. 2010, 41(10), 1345–1367. DOI: 10.1016/j.compositesa.2010.07.003.
  • Chen, J.; Yan, L.; Song, W.; Xu, D. Interfacial Characteristics of Carbon Nanotube-Polymer Composites: A Review. Compos. Part A Appl. Sci. Manuf. 2018, 114, 149–169. DOI: 10.1016/j.compositesa.2018.08.021.
  • Kanda, M.; Puggal, S.; Dhall, N.; Sharma, A. Recent Developments in the Fabrication, Characterization, and Properties Enhancement of Polymer Nanocomposites: A Critical Review. Mater. Today Proc. 2018, 5(14), 28243–28252. DOI: 10.1016/j.matpr.2018.10.069.
  • Ribeiro, B.; Botelho, E. C.; Costa, M. L.; Bandeira, C. F. Carbon Nanotube Buckypaper Reinforced Polymer Composites: A Review. Polímeros. 2017, 27(3), 247–255. DOI: 10.1590/0104-1428.03916.
  • Kalamkarov, A. L.; Georgiades, A. V.; Rokkam, S. K.; Veedu, V. P.; Ghasemi-Nejhad, M. N. Analytical and Numerical Techniques to Predict Carbon Nanotubes Properties. Int. J. Solids Struct. 2006, 43(22–23), 6832–6854. DOI: 10.1016/j.ijsolstr.2006.02.009.
  • Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A. Unusual Properties and Structure of Carbon Nanotubes. Annu. Rev. Mater. 2004, 34(1), 247–278. DOI: 10.1146/annurev.matsci.34.040203.114607.
  • Ajayan, P. M. Nanotubes from Carbon. Chem. Rev. 1999, 99(7), 1787–1799. DOI: 10.1021/cr970102g.
  • Namura, M.; Sato, Y.; Sashida, N.; Ogino, S. I.; Motomiya, K.; Jeyadevan, B.; Tohji, K. Characterization of Silver Nanoparticle‐Decorated Single‐Walled Carbon Nanotube Films. Fullerenes Nanotubes And Carbon Nanostruct. 2009, 17(6), 587–599. DOI: 10.1080/15363830903044021.
  • Ma, P. C.; Tang, B. Z.; Kim, J. K. Effect of CNT Decoration with Silver Nanoparticle on Electrical Conductivity of CNT-Polymer Composites. Carbon. 2008, 46(11), 1497–1505. DOI: 10.1016/j.carbon.2008.06.048.
  • Choi, S. K.; Chun, K. Y.; Lee, S. B. Selective Decoration of Silver Nanoparticle on the Defect Sites of Single-Walled Carbon Nanotubes. Diamond Relat. Mater. 2009, 18(4), 637–641. DOI: 10.1016/j.diamond.2008.11.006.
  • Zhao, G.; Gao, Z.; Li, H.; Liu, S.; Chen, L.; Zhang, R.; Guo, H. Controlled Assembly of Ag Nanoparticle on the Surface of Phosphate Pillar [6] Arene Functionalized Single-Walled Carbon Nanotube for Enhanced Catalysis and Sensing Performance. Electrochim. Acta. 2019, 318, 711–719. DOI: 10.1016/j.electacta.2019.06.135.
  • Jiang, H. J.; Zhao, Y.; Yang, H.; Akins, D. L. Synthesis and Electrochemical Properties of Single-Walled Carbon Nanotube–Gold Nanoparticle Composites. Mater. Chem. Phys. 2009, 114(2–3), 879–883. DOI: 10.1016/j.matchemphys.2008.10.075.
  • Borzooeian, Z.; Taslim, M. E.; Rezvani, S.; Borzooeian, G. A High Precision Length-Based Carbon Nanotube Ladder. Rsc. Adv. 2018, 8(63), 36049–36055. DOI: 10.1039/C8RA05482G.
  • Wang, Z.; Li, M.; Zhang, Y.; Yuan, J.; Shen, Y.; Niu, L.; Ivaska, A. Thionine-Interlinked Multi-Walled Carbon Nanotube/Gold Nanoparticle Composites. Carbon. 2007, 45(10), 2111–2115. DOI: 10.1016/j.carbon.2007.05.018.
  • Duc Chinh, V.; Speranza, G.; Migliaresi, C.; Van Chuc, N.; Minh Tan, V.; Phuong, N. T. Synthesis of Gold Nanoparticle Decorated with Multiwalled Carbon Nanotubes (Au-MWCNTs) via Cysteaminium Chloride Functionalization. Sci. Rep. 2019, 9(1), 5667. DOI: 10.1038/s41598-019-42055-7.
  • Chen, Y.; Li, Y.; Yip, M.; Tai, N. Electromagnetic Interference Shielding Efficiency of Polyaniline Composites Filled with Graphene Decorated with Metallic Nanoparticle. Compos. Sci. Technol. 2013, 80, 80–86. DOI: 10.1016/j.compscitech.2013.02.024.
  • Kalambate, P. K.; Dar, R. A.; Karna, S. P.; Srivastava, A. K. High Performance Supercapacitor based on Graphene-Silver Nanoparticle-Polypyrrole Nanocomposite coated on Glassy Carbon Electrode. J. Power Sources. 2015, 276, 262–270. DOI: 10.1016/j.jpowsour.2014.11.130.
  • Dhibar, S.; Das, C. K. Electrochemical Performances of Silver Nanoparticle Decorated Polyaniline/Graphene Nanocomposite in Different Electrolytes. J. Alloys Compound. 2015, 653, 486–497. DOI: 10.1016/j.jallcom.2015.08.158.
  • Kumar, V.; Gupta, R. K.; Gundampati, R. K.; Singh, D. K.; Mohan, S.; Hasan, S. H.; Malviya, M. Enhanced Electron Transfer Mediated Detection of Hydrogen PerOxide Using a Silver Nanoparticle–Reduced Graphene Oxide–Polyaniline Fabricated Electrochemical Sensor. Rsc. Adv. 2018, 8(2), 619–631. DOI: 10.1039/C7RA11466D.
  • Khan, A.; Jain, R. K.; Banerjee, P.; Asiri, A. M. Soft Actuator Based on Kraton with GO/Ag/Pani Composite Electrodes for Robotic Applications. Mater. Res. Express. 2017, 4(11), 115701. DOI: 10.1088/2053-1591/aa9394.
  • Sahu, G.; Das, M.; Yadav, M.; Sahoo, B. P.; Tripathy, J. Dielectric Relaxation Behavior of Silver Nanoparticle and Graphene Oxide Embedded Poly (Vinyl Alcohol) Nanocomposite Film: An Effect of Ionic Liquid and Temperature. Polymers. 2020, 12(2), 374. DOI: 10.3390/polym12020374.
  • Pattananuwat, P.; Thammasaroj, P.; Nuanwat, W.; Qin, J.; Potiyaraj, P. One-Pot Method to Synthesis Polyaniline Wrapped Graphene Aerogel/Silver Nanoparticle Composites for Solid-State Supercapacitor Devices. Mater. Lett. 2018, 217, 104–108. DOI: 10.1016/j.matlet.2018.01.058.
  • Moharana, S.; Mahaling, R. N. Silver (Ag)-Graphene Oxide (GO)-Poly (Vinylidene Fluoride-Co-Hexafluoropropylene)(PVDF-HFP) Nanostructured Composites with HighDielectric Constant and Low Dielectric Loss. Chem. Phys. Lett. 2017, 680, 31–36. DOI: 10.1016/j.cplett.2017.05.018.
  • Palsaniya, S.; Nemade, H. B.; Dasmahapatra, A. K. Graphene Based PANI/MnO2 Nanocomposites with Enhanced Dielectric Properties for HighEnergy Density Materials. Carbon. 2019, 150, 179–190. DOI: 10.1016/j.carbon.2019.05.006.
  • Shokry, A.; El Tahan, A.; Ibrahim, H.; Soliman, M.; Ebrahim, S. The Development of a Ternary Nanocomposite for the Removal of Cr (Vi) Ions from Aqueous Solutions. Rsc. Adv. 2019, 9(67), 39187–39200. DOI: 10.1039/C9RA08298K.
  • Shokry, A.; Khalil, M. M. A.; Ibrahim, H.; Soliman, M.; Ebrahim, S. Highly Luminescent Ternary Nanocomposite of Polyaniline, Silver Nanoparticle and Graphene Oxide Quantum Dots. Sci. Rep. 2019, 9(1), 16984. DOI: 10.1038/s41598-019-53584-6.
  • Shokry, A.; Khalil, M.; Ibrahim, H.; Soliman, M.; Ebrahim, S. Acute Toxicity Assessment of Polyaniline/Ag Nanoparticle/Graphene Oxide Quantum Dots on Cypridopsis Vidua and Artemia Salina. Sci. Rep. 2021, 11(1), 5336. DOI: 10.1038/s41598-021-84903-5.
  • Ebrahim, S.; Shokry, A.; Khalil, M. M. A.; Ibrahim, H.; Soliman, M. Polyaniline/Ag Nanoparticle/Graphene Oxide Nanocomposite Fluorescent Sensor for Recognition of Chromium (VI) Ions. Sci. Rep. 2020, 10(1), 13617. DOI: 10.1038/s41598-020-70678-8.
  • Reddy, K. R.; Sin, B. C.; Ryu, K. S.; Kim, J. C.; Chung, H.; Lee, Y. Conducting Polymer Functionalized Multi-Walled Carbon Nanotubes with Noble Metal Nanoparticle: Synthesis, Morphological Characteristics and Electrical Properties. Synth. Met. 2009, 159(7–8), 595–603. DOI: 10.1016/j.synthmet.2008.11.030.
  • Li, J.; Liu, L.; Zhang, D.; Yang, D.; Guo, J.; Wei, J. Fabrication of Polyaniline/Silver Nanoparticle/multi-walled Carbon Nanotubes composites for flexible Microelectronic circuits. Synth. Met. 2014, 192, 15–22. DOI: 10.1016/j.synthmet.2014.02.026.
  • Deshmukh, S. P.; Dhodamani, A. G.; Patil, S. M.; Mullani, S. B.; More, K. V.; Delekar, S. D. Interfacially Interactive Ternary Silver-Supported Polyaniline/Multiwalled Carbon Nanotube Nanocomposites for Catalytic and Antibacterial Activity. ACS Omega. 2019, 5(1), 219–227. DOI: 10.1021/acsomega.9b02526.
  • Agrawalla, R. K.; Paul, S.; Sahoo, P. K.; Chakraborty, A. K.; Mitra, A. K. A Facile Synthesis of a Novel Three‐Phase Nanocomposite: Single‐Wall Carbon Nanotube/Silver Nanohybrid Fibers Embedded in Sulfonated Polyaniline. J. Appl. Polym. Sci. 2015, 132(12). DOI: 10.1002/app.41692.
  • Dhibar, S.; Bhattacharya, P.; Hatui, G.; Sahoo, S.; Das, C. K. Transition Metal-Doped Polyaniline/single-Walled Carbon Nanotubes Nanocomposites: Efficient Electrode Material for High Performance Supercapacitors. ACS Sustain. Chem. Eng. 2014, 2(5), 1114–1127. DOI: 10.1021/sc5000072.
  • Nguyen, V. H.; Shim, J. J. Facile Synthesis and Characterization of Carbon Nanotubes/Silver Nanohybrids Coated with Polyaniline. Synth. Met. 2011, 161(19–20), 2078–2082. DOI: 10.1016/j.synthmet.2011.07.017.
  • Grinou, A.; Bak, H.; Yun, Y. S.; Jin, H. J. Polyaniline/Silver Nanoparticle-doped Multiwalled Carbon Nanotube Composites. J. Dispersion Sci. Technol. 2012, 33(5), 750–755. DOI: 10.1080/01932691.2011.567862.
  • Dhibar, S.; Das, C. K. Silver Nanoparticle Decorated Polyaniline/Multiwalled Carbon Nanotubes Nanocomposite for High-Performance Supercapacitor Electrode. Ind. Eng. Chem. Res. 2014, 53(9), 3495–3508. DOI: 10.1021/ie402161e.
  • Kim, K. S.; Park, S. J. Influence of Silver-Decorated Multi-walled Carbon Nanotubes on Electrochemical performance of Polyaniline-based electrodes. J. Solid State Chem. 2011, 184(10), 2724–2730. DOI: 10.1016/j.jssc.2011.08.010.
  • Kim, K. S.; Park, S. J. Bridge effect of Silver Nanoparticle on Electrochemical performance of Graphite Nanofiber/Polyaniline for Supercapacitor. Synth. Met. 2012, 162(23), 2107–2111. DOI: 10.1016/j.synthmet.2012.09.021.
  • Tang, L.; Duan, F.; Chen, M. Silver Nanoparticle Decorated Polyaniline/Multiwalled Super-Short Carbon Nanotube Nanocomposites for Supercapacitor Applications. Rsc. Adv. 2016, 6(69), 65012–65019. DOI: 10.1039/C6RA12442A.
  • Narang, J.; Chauhan, N.; Jain, P.; Pundir, C. S. Silver Nanoparticle/Multiwalled Carbon Nanotube/Polyaniline Film for Amperometric Glutathione bioSensor. Int. J. Biol. Macromol. 2012, 50(3), 672–678. DOI: 10.1016/j.ijbiomac.2012.01.023.
  • Rawal, R.; Chawla, S.; Pundir, C. S. Polyphenol BioSensor Based on Laccase Immobilized Onto Silver Nanoparticle/Multiwalled Carbon Nanotube/Polyaniline Gold Electrode. Anal. Biochem. 2011, 419(2), 196–204. DOI: 10.1016/j.ab.2011.07.028.
  • Shi, S. L.; Zhang, L. Z.; Li, J. S. Electrical and Dielectric Properties of Multiwall Carbon Nanotube/Polyaniline Composites. J. Polym. Res. 2009, 16(4), 395–399. DOI: 10.1007/s10965-008-9241-z.
  • Yu, Y.; Che, B.; Si, Z.; Li, L.; Chen, W.; Xue, G. Carbon Nanotube/Polyaniline Core-Shell Nanowires Prepared by in situ Inverse Microemulsion. Synth. Met. 2005, 150(3), 271–277. DOI: 10.1016/j.synthmet.2005.02.011.
  • Shao, Y.; Dong, Y.; Bin, L.; Fan, L.; Wang, L.; Yuan, X.; Li, D.; Liu, X.; Zhao, S. Application of Gold Nanoparticle/polyaniline-Multi-Walled Carbon Nanotubes Modified Screen-Printed Carbon Electrode for Electrochemical Sensing of Zinc, Lead, and Copper. Microchem. J. 2021, 170, 106726. DOI: 10.1016/j.microc.2021.106726.
  • Guo, L.; Peng, Z. One-Pot Synthesis of Carbon Nanotube-Polyaniline-Gold Nanoparticle and Carbon Nanotube-Gold Nanoparticle Composites by Using Aromatic Amine Chemistry. Langmuir. 2008, 24(16), 8971–8975. DOI: 10.1021/la8010458.
  • Chang, Q.; Zhao, K.; Chen, X.; Li, M.; Liu, J. Preparation of Gold/Polyaniline/Multiwall Carbon Nanotube Nanocomposites and Application in Ammonia Gas Detection. J. Mater. Sci. 2008, 43(17), 5861–5866. DOI: 10.1007/s10853-008-2827-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.