196
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive review on transdermal patches as an efficient approach for the delivery of drug

, , , &
Pages 1045-1069 | Received 08 Nov 2023, Accepted 06 Feb 2024, Published online: 20 Feb 2024

References

  • Zhang, L.; Mao, S. J. A. J. O. P. S. Application of Quality by Design in the Current Drug Development. 2017, 12(1), 1–8. DOI: 10.1016/j.ajps.2016.07.006.
  • Ita, K. J. J. O. D. D. S.; Technology. Transdermal drug delivery: progress and challenges. 2014, 24(3), 245–250. DOI: 10.1016/S1773-2247(14)50041-X.
  • Tsai, M.-J.; Lu, I.-J.; Fu, Y.-S.; Fang, Y.-P.; Huang, Y.-B.; Wu, P.-C. J.-C.; Biointerfaces, S. B. Nanocarriers Enhance the Transdermal Bioavailability of Resveratrol: In-Vitro and in-Vivo Study. 2016, 148, 650–656. DOI: 10.1016/j.colsurfb.2016.09.045.
  • Simon, A.; Amaro, M. I.; Healy, A. M.; Cabral, L. M.; de Sousa, V. P. J. I. J. O. P. Comparative Evaluation of Rivastigmine Permeation from a Transdermal System in the Franz Cell Using Synthetic Membranes and Pig Ear Skin with in Vivo-In Vitro Correlation. Int. J. Pharmaceutics. 2016, 512(1), 234–241. DOI: 10.1016/j.ijpharm.2016.08.052.
  • Gannu, R.; Vamshi Vishnu, Y.; Kishan, V.; Madhusudan Rao, Y. J. C. D. D. Development of nitrendipine transdermal patches: in vitro and ex vivo characterization. 2007, 4(1), 69–76. DOI: 10.2174/156720107779314767.
  • Pastore, M. N.; Kalia, Y. N.; Horstmann, M.; Roberts, M. S. J. B. J. O. P., Transder Patches: History, Develop And Pharmac. 2015, 172(9), 2179–2209. DOI: 10.1111/bph.13059
  • Brown, M. B.; Martin, G. P.; Jones, S. A.; Akomeah, F. K. J. D. D. Dermal and Transdermal Drug Delivery Systems: Current and Future Prospects. Drug Delivery. 2006, 13(3), 175–187. DOI: 10.1080/10717540500455975.
  • Zaid Alkilani, A.; McCrudden, M. T.; Donnelly, R. F. J. P. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics. 2015, 7(4), 438–470. DOI: 10.3390/pharmaceutics7040438.
  • Murphy, M.; Carmichael, A. J. J. A. J. O. C. D. Transdermal Drug Delivery Systems and Skin Sensitivity Reactions: Incidence and Management. American J Clini Dermato. 2000, 1(6), 361–368. DOI: 10.2165/00128071-200001060-00004.
  • Karande, P.; Mitragotri, S. J.-B. E.-B. A.-B. Enhancement of Transdermal Drug Delivery via Synergistic Action of Chemicals. Biochim et Biophysica Acta (BBA) - Biomembranes. 2009, 1788(11), 2362–2373. DOI: 10.1016/j.bbamem.2009.08.015.
  • Suksaeree, J.; Monton, C.; Madaka, F.; Chusut, T.; Saingam, W.; Pichayakorn, W.; Boonme, P. J. A. P. Formulation, Physicochemical Characterization, and in vitro Study of Chitosan/HPMC Blends-Based Herbal Blended Patches. 2015. 2015, 16(1), 171–181. DOI: 10.1208/s12249-014-0216-6.
  • Imani, M.; Lahooti-Fard, F.; Taghizadeh, S. M.; Takrousta, M. J. A. P. Effect of Adhesive Layer Thickness and Drug Loading on Estradiol Crystallization in a Transdermal Drug Delivery System. AAPS PharmScitech. 2010, 11(3), 1268–1275. DOI: 10.1208/s12249-010-9494-9.
  • Dhiman, S.; Singh, T. G.; Rehni, A. K. J. I. J. P. P. S. Transdermal Patches: A Recent Approach to New Drug Delivery System. Int J Pharm Pharm Sci. 2011, 3(5), 26–34.
  • Rani, S.; Syan, N. J. D. P. S. Transdermal Patches a Successful Tool in Transdermal Drug Delivery System: An Overview. Der Pharmacia Sinica. 2011, 11(2), 11–24. DOI: 10.1007/s13346-021-01033-1.
  • Berner, B.; John, V. A. J. C. P. Pharmacokinetic Characterisation of Transdermal Delivery Systems. 1994. 1994, 26(2), 121–134. DOI: 10.2165/00003088-199426020-00005.
  • Mutalik, S.; Udupa, N. J. C.; Pharmacology, E.; Physiology, PHARMACOLOGICAL EVALUATION of MEMBRANE‐MODERATED TRANSDERMAL SYSTEM of GLIPIZIDE. 2006, 33(1‐2), 17–26. DOI: 10.1111/j.1440-1681.2006.04318.x.
  • Stevenson, C. L.; Santini, J. T., Jr; Langer, R. J. A. D. D. R. Reservoir-Based Drug Delivery Systems Utilizing Microtechnology. Advanced Drug Delivery Reviews. 2012, 64(14), 1590–1602. DOI: 10.1016/j.addr.2012.02.005.
  • Hughes, P. J.; Freeman, M. K.; Wensel, T. M. J. J. N. E. P. Appropriate use of transdermal drug delivery systems. J Nursing Educat And Pract. 2013, 3(10), 129–38. DOI: 10.5430/jnep.v3n10p129.
  • Al Hanbali, O. A.; Khan, H. M. S.; Sarfraz, M.; Arafat, M.; Ijaz, S.; Hameed, A. J. A. P. Transdermal Patches: Design and Current Approaches to Painless Drug Delivery. 2019, 69(2), 197–215. DOI: 10.2478/acph-2019-0016.
  • Cherukuri, S.; Batchu, U. R.; Mandava, K.; Cherukuri, V.; Ganapuram, K. R. J. I. J. O. P. I. Formulation and Evaluation of Transdermal Drug Delivery of Topiramate. 2017, 7(1), 10. DOI: 10.4103/jphi.JPHI_35_16.
  • Invernale, M. A.; Tang, B. C.; York, R. L.; Le, L.; Hou, D. Y.; Anderson, D. G. J. A. H. M. Microneedle Electrodes Toward an Amperometric Glucose‐Sensing Smart Patch. Adv. Healthcare Mater. 2014, 3(3), 338–342. DOI: 10.1002/adhm.201300142.
  • Veiseh, O.; Langer, R. J. N. A smart insulin patch. Nature. 2015, 524(7563), 39–40. DOI: 10.1038/524039a.
  • Iversen, M.; Monisha, M.; Agarwala, S. J. I. J. O. B. Flexible, Wearable and Fully-Printed Smart Patch for pH and Hydration Sensing in Wounds. 2022, 8(1), 447. DOI: 10.18063/ijb.v8i1.447.
  • Liu, H.; Li, Z.; Che, S.; Feng, Y.; Guan, L.; Yang, X.; Zhao, Y.; Wang, J.; Zvyagin, A. V.; Yang, B. J. J. O. M. C. B. A Smart Hydrogel Patch with High Transparency, Adhesiveness and Hemostasis for All-Round Treatment and Glucose Monitoring of Diabetic Foot Ulcers. J. Mater Chem. B. 2022, 10(30), 5804–5817. DOI: 10.1039/D2TB01048H.
  • Gilpin, V.; Surandhiran, D.; Scott, C.; Devine, A.; Cundell, J. H.; Gill, C. I.; Pourshahidi, L. K.; Davis, J. J. M. Lasered Graphene Microheaters Modified with Phase-Change Composites: New Approach to Smart Patch Drug Delivery. Micromachines. 2022, 13(7), 1132. DOI: 10.3390/mi13071132.
  • Rodgers, A. M.; McCrudden, M. T.; Courtenay, A. J.; Kearney, M.-C.; Edwards, K. L.; Ingram, R. J.; Bengoechea, J.; Donnelly, R. F. J. A. A.; Chemotherapy. Control of Klebsiella pneumoniae Infection in Mice by Using Dissolving Microarray Patches Containing Gentamicin. 2019, 63(5), e02612–18. DOI: 10.1128/AAC.02612-18.
  • Lee, I. C.; Lin, W. M.; Shu, J. C.; Tsai, S. W.; Chen, C. H.; Tsai, M. T. J. J. O. B. M. R. P. A. Formulation of Two‐Layer Dissolving Polymeric Microneedle Patches for Insulin Transdermal Delivery in Diabetic Mice. J. Biomed. Mater. Res. A. 2017, 105(1), 84–93. DOI: 10.1002/jbm.a.35869.
  • Kim, H.; Seong, K.-Y.; Lee, J. H.; Park, W.; Yang, S. Y.; Hahn, S. K. J. A. B. S.; Engineering. Biodegradable microneedle patch delivering antigenic peptide–hyaluronate conjugate for cancer immunotherapy. 2019, 5(10), 5150–5158. DOI: 10.1021/acsbiomaterials.9b00961.
  • Li, Y.; Liu, F.; Su, C.; Yu, B.; Liu, D.; Chen, H.-J.; Lin, D.-A.; Yang, C.; Zhou, L.; Wu, Q. J. A. A. M. Interfaces, Biodegradable Therapeutic Microneedle Patch for Rapid Antihypertensive Treatment. 2019, 11(34), 30575–30584. DOI: 10.1021/acsami.9b09697.
  • Adli, S. A.; Ali, F.; Azmi, A. S.; Anuar, H.; Nasir, N. A. M.; Hasham, R.; Idris, M. K. H. J. P. Development of Biodegradable Cosmetic Patch Using a Polylactic Acid/phycocyanin–Alginate Composite. 2020, 12(8), 1669. DOI: 10.3390/polym12081669.
  • Economidou, S. N.; Pissinato Pere, C. P.; Okereke, M.; Douroumis, D. J. M. Optimisation of Design and Manufacturing Parameters of 3D Printed Solid Microneedles for Improved Strength, Sharpness, and Drug Delivery. Micromachines. 2021, 12(2), 117. DOI: 10.3390/mi12020117.
  • Jang, M.; Bae, S.; Jung, Y.; Kim, J.; Kim, J.; Park, S.; Suh, J.; Yi, S.; Ahn, S.; Lim, J. J. B. M. Enhanced Wound Healing Using a 3D Printed VEGF-Mimicking Peptide Incorporated Hydrogel Patch in a Pig Model. 2021, 16(4), 045013. DOI: 10.1088/1748-605X/abf1a8.
  • Caudill, C.; Perry, J. L.; Iliadis, K.; Tessema, A. T.; Lee, B. J.; Mecham, B. S.; Tian, S.; DeSimone, J. M. J. P. O. T. N. A. O. S. Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity. 2021, 118(39), e2102595118. DOI: 10.1073/pnas.2102595118.
  • Yadav, V.; Sharma, P. K.; Murty, U. S.; Mohan, N. H.; Thomas, R.; Dwivedy, S. K.; Banerjee, S. J. 3D Printed Hollow Microneedles Array Using Stereolithography for Efficient Transdermal Delivery of Rifampicin. I. J. O. P. 2021, 605, 120815. DOI: 10.1016/j.ijpharm.2021.120815.
  • Maurizii, G.; Moroni, S.; Khorshid, S.; Aluigi, A.; Tiboni, M.; Casettari, L. J. I. J. O. P. 3D-Printed EVA-Based Patches Manufactured by Direct Powder Extrusion for Personalized Transdermal Therapies. 2023, 635, 122720. DOI: 10.1016/j.ijpharm.2023.122720.
  • Lim, S. H.; Kathuria, H.; Amir, M. H. B.; Zhang, X.; Duong, H. T.; Ho, P. C.-L.; Kang, L. J. J. O. C. R. High Resolution Photopolymer for 3D Printing of Personalised Microneedle for Transdermal Delivery of Anti-Wrinkle Small Peptide. 2021, 329, 907–918. DOI: 10.1016/j.jconrel.2020.10.021.
  • Zhang, S.; Liu, C.; Song, Y.; Ruan, J.; Quan, P.; Fang, L. J. J. O. C. R. High Drug-Loading and Controlled-Release Hydroxyphenyl-Polyacrylate Adhesive for Transdermal Patch. J. Controlled Release. 2023, 353, 475–489. DOI: 10.1016/j.jconrel.2022.11.058.
  • Yang, D.; Liu, C.; Piao, H.; Quan, P.; Fang, L. J. M. P. Enhanced Drug Loading in the Drug-In-Adhesive Transdermal Patch Utilizing a Drug–Ionic Liquid Strategy: Insight into the Role of Ionic Hydrogen Bonding. Mol. Pharmaceutics. 2021, 18(3), 1157–1166. DOI: 10.1021/acs.molpharmaceut.0c01054.
  • Yang, D.; Liu, C.; Quan, P.; Fang, L. J. I. J. O. P. Molecular Mechanism of High Capacity-High Release Transdermal Drug Delivery Patch with Carboxyl Acrylate Polymer: Roles of Ion-Ion Repulsion and Hydrogen Bond. Int. J. Pharmaceutics. 2020, 585, 119376. DOI: 10.1016/j.ijpharm.2020.119376.
  • Zimmer, Ł.; Kasperek, R.; Poleszak, E. J. P. W. M. Modern Polymers in Matrix Tablets Technology. Polimery w medycynie. 2014, 44(3), 189–196.
  • Frampton, J. E. J. C. D. Rotigotine Transdermal Patch: A Review in Parkinson’s Disease. CNS Drugs. 2019, 33(7), 707–718. DOI: 10.1007/s40263-019-00646-y.
  • Wolff, H.-M. J. P. S.; Today, T. Optimal Process Design for the Manufacture of Transdermal Drug Delivery Systems. 2000, 3(5), 173–181. DOI: 10.1016/S1461-5347(00)00251-0.
  • Bromberg, L. J. J. O. A. P. S. Crosslinked Poly (Ethylene Glycol) Networks as Reservoirs for Protein Delivery. 1996, 59(3), 459–466. DOI: 10.1002/(SICI)1097-4628(19960118)59:3<459:AID-APP10>3.0.CO;2-P.
  • Ananda, P. W. R.; Elim, D.; Zaman, H. S.; Muslimin, W.; Tunggeng, M. G. R.; Permana, A. D. J. I. J. O. P. Combination of Transdermal Patches and Solid Microneedles for Improved Transdermal Delivery of Primaquine. 2021, 609, 121204. DOI: 10.1016/j.ijpharm.2021.121204.
  • Costa, P.; Ferreira, D. C.; Morgado, R.; Sousa Lobo, J. J. D. D.; Pharmacy, I. Design and Evaluation of a Lorazepam Transdermal Delivery System. 1997, 23(10), 939–944. DOI: 10.3109/03639049709149144.
  • Minghetti, P.; Cilurzo, F.; Montanari, L. J. D. D.; Pharmacy, I. Evaluation of Adhesive Properties of Patches Based on Acrylic Matrices. 1999, 25(1), 1–6. DOI: 10.1081/DDC-100102135.
  • Rao, P. R.; Diwan, P. V. J. D. D.; Pharmacy, I. Formulation and in vitro Evaluation of Polymeric Films of Diltiazem Hydrochloride and Indomethacin for Transdermal Administration. 1998, 24(4), 327–336. DOI: 10.3109/03639049809085627.
  • Guyot, M.; Fawaz, F. J. I. J. O. P. Design and in vitro Evaluation of Adhesive Matrix for Transdermal Delivery of Propranolol. Int. J. Pharmaceutics. 2000, 204(1–2), 171–182. DOI: 10.1016/S0378-5173(00)00494-4.
  • Baek, S.-S.; Hwang, S.-H. J. I. J. O. A.; Adhesives. Eco-Friendly UV-Curable Pressure Sensitive Adhesives Containing Acryloyl Derivatives of Monosaccharides and Their Adhesive Performances. 2016. 2016, 70, 110–116. DOI: 10.1016/j.ijadhadh.2016.06.002.
  • Banerjee, S.; Chattopadhyay, P.; Ghosh, A.; Datta, P.; Veer, V. J. I. J. O. A.; Adhesives. Aspect of adhesives in transdermal drug delivery systems. 2014. 2014, 50, 70–84. DOI: 10.1016/j.ijadhadh.2014.01.001.
  • Fang, C.; Jing, Y.; Zong, Y.; Lin, Z. J. I. J. O. A. Adhesives, Effect of N, N-Dimethylacrylamide (DMA) on the Comprehensive Properties of Acrylic Latex Pressure Sensitive Adhesives. 2016. 2016, 71, 105–111. DOI: 10.1016/j.ijadhadh.2016.09.003.
  • Kadajji, V. G.; Betageri, G. V. J. P. Water Soluble Polymers for Pharmaceutical Applications. Polymers. 2011, 3(4), 1972–2009. DOI: 10.3390/polym3041972.
  • Lin, S. B. J. I. J. O. A. Adhesives, New Silicone Pressure-Sensitive Adhesive Technology. 1994, 14(3), 185–191. DOI: 10.1016/0143-7496(94)90029-9.
  • Rastogi, V.; Yadav, P. J. A. J. O. P. Transdermal drug delivery system: An overview. Asian JPharmace. 2012, 6(3), 3. DOI: 10.4103/0973-8398.104828.
  • Chauhan, M. K.; Sharma, P. K. J. C.; Lipids, P. O. Optimization and Characterization of Rivastigmine Nanolipid Carrier Loaded Transdermal Patches for the Treatment of Dementia. 2019, 224, 104794. DOI: 10.1016/j.chemphyslip.2019.104794.
  • Quan, P.; Jiao, B.; Shang, R.; Liu, C.; Fang, L. J. J. O. E. Alternative Therapy of Rheumatoid Arthritis with a Novel Transdermal Patch Containing Siegesbeckiae Herba Extract. J. Ethnopharmacol. 2021, 265, 113294. DOI: 10.1016/j.jep.2020.113294.
  • Stannett, V.; Koros, W.; Paul, D.; Lonsdale, H.; Baker, R. J. C. Recent Advances in Membrane Science and Technology. Chemsitry. 1979, 2(4), 69–121.
  • Sutinen, R.; Paronen, P.; Urtti, A. J. E. J. O. P. S. Water-Activated, pH-Controlled Patch in Transdermal Administration of Timolol: I. Preclinical Tests. 2000, 11(1), 19–24. DOI: 10.1016/S0928-0987(00)00082-8.
  • Maillard-Salin, D.; Bécourt, P.; Couarraze, G. J. I. J. O. P. Physical Evaluation of a New Patch Made of a Progestomimetic in a Silicone Matrix. 2000, 199(1), 29–38. DOI: 10.1016/S0378-5173(00)00357-4.
  • Maillard-Salin, D.; Bécourt, P.; Couarraze, G. J. I. J. O. P., a Study of the Adhesive–Skin Interface: Correlation Between Adhesion and Passage of a Drug. Int. J. Pharmaceutics. 2000, 200(1), 121–126. DOI: 10.1016/S0378-5173(00)00369-0.
  • Kusamori, K.; Katsumi, H.; Abe, M.; Ueda, A.; Sakai, R.; Hayashi, R.; Hirai, Y.; Quan, Y. S.; Kamiyama, F.; Sakane, T. J. J. O. B., et al. Development of a Novel Transdermal Patch of Alendronate, a Nitrogen‐Containing Bisphosphonate, for the Treatment of Osteoporosis. 2010, 25(12), 2582–2591. DOI: 10.1002/jbmr.147.
  • Flo, A.; Cambras, T.; Díez-Noguera, A.; Calpena, A. J. E. J. O. P. S. Melatonin Pharmacokinetics After Transdermal Administration Changes According to the Time of the Day. 2017. 2017, 96, 164–170. DOI: 10.1016/j.ejps.2016.09.020.
  • Som, I.; Bhatia, K.; Yasir, M. J. J. O. P.; Sciences, B. Status of surfactants as penetration enhancers in transdermal drug delivery. 2012, 4(1), 2. DOI: 10.4103/0975-7406.92724.
  • Chen, Y.; Quan, P.; Liu, X.; Wang, M.; Fang, L. J. A. J. O. P. S. Novel Chemical Permeation Enhancers for Transdermal Drug Delivery. Asian J. Pharm. Sci. 2014, 9(2), 51–64. DOI: 10.1016/j.ajps.2014.01.001.
  • Pham, Q. D.; Björklund, S.; Engblom, J.; Topgaard, D.; Sparr, E. J. J. O. C. R. Chemical Penetration Enhancers in Stratum Corneum—Relation Between Molecular Effects and Barrier Function. J. Controlled Release. 2016, 232, 175–187. DOI: 10.1016/j.jconrel.2016.04.030.
  • El Maghraby, G.; Williams, A. C.; Barry, B. J. I. J. O. P. Interactions of Surfactants (Edge Activators) and Skin Penetration Enhancers with Liposomes. 2004, 276(1–2), 143–161. DOI: 10.1016/j.ijpharm.2004.02.024.
  • Daeihamed, M.; Dadashzadeh, S.; Haeri, A.; Faghih Akhlaghi, M. J. C. D. D. Potential of Liposomes for Enhancement of Oral Drug Absorption. 2017, 14(2), 289–303. DOI: 10.2174/1567201813666160115125756.
  • Thacharodi, D.; Rao, K. P. J. B. Development and in vitro Evaluation of Chitosan-Based Transdermal Drug Delivery Systems for the Controlled Delivery of Propranolol Hydrochloride. Biomaterials. 1995, 16(2), 145–148. DOI: 10.1016/0142-9612(95)98278-M.
  • Monton, C.; Sampaopan, Y.; Pichayakorn, W.; Panrat, K.; Suksaeree, J. J. J. O. D. D. S.; Technology. Herbal Transdermal Patches Made from Optimized Polyvinyl Alcohol Blended Film: Herbal Extraction Process, Film Properties, and in vitro Study. 2022, 69, 103170. DOI: 10.1016/j.jddst.2022.103170.
  • Alexander, A.; Dwivedi, S.; Giri, T. K.; Saraf, S.; Saraf, S.; Tripathi, D. K. J. J. O. C. R. Approaches for Breaking the Barriers of Drug Permeation Through Transdermal Drug Delivery. 2012, 164(1), 26–40. DOI: 10.1016/j.jconrel.2012.09.017.
  • Schuster Bruce, C.; Brhlikova, P.; Heath, J.; McGettigan, P. J. P. M.; Kesselheim, A. S. The Use of Validated and Nonvalidated Surrogate Endpoints in Two European Medicines Agency Expedited Approval Pathways: A Cross-Sectional Study of Products Authorised 2011–2018. PLoS Med. 2019, 16(9), e1002873. DOI: 10.1371/journal.pmed.1002873.
  • Arunprasert, K.; Pornpitchanarong, C.; Piemvuthi, C.; Siraprapapornsakul, S.; Sripeangchan, S.; Lertsrimongkol, O.; Opanasopit, P.; Patrojanasophon, P. J. E. J. O. P. S. Nanostructured Lipid Carrier-Embedded Polyacrylic Acid Transdermal Patches for Improved Transdermal Delivery of Capsaicin. European J Pharmaceu Sci. 2022, 173, 106169. DOI: 10.1016/j.ejps.2022.106169.
  • Lim, H.; Hoag, S. W. J. A. P. Plasticizer Effects on Physical–Mechanical Properties of Solvent Cast Soluplus® Films. AAPS PharmScitech. 2013, 14(3), 903–910. DOI: 10.1208/s12249-013-9971-z.
  • Arafat, M.; Ahmed, Z.; Arafat, O. J. I. J. P. P. S. Comparison Between Generic Drugs and Brand Name Drugs from Bioequivalence and Thermoequivalence Prospective. Int. J. Pharm. Pharm. Sci. 2017, 9(6), 1–4. DOI: 10.22159/ijpps.2017v9i6.18735.
  • Garala, K. C.; Shinde, A. J.; Shah, P. H. J. I. J. P. P. S. Formulation and in-Vitro Characterization of Monolithic Matrix Transdermal Systems Using HPMC/Eudragit S 100 Polymer Blends. Int J Pharm Pharm Sci. 2009, 1(1), 108–120.
  • Prosser, J. M.; Jones, B. E.; Nelson, L. J. J. O. M. T. Complications of Oral Exposure to Fentanyl Transdermal Delivery System Patches. 2010, 6(4), 443–447. DOI: 10.1007/s13181-010-0092-8.
  • Bharkatiya, M.; Nema, R.; Bhatnagar, M. J. I. J. O. P. S.; Research, D. Designing and Characterization of Drug Free Patches for Transdermal Application. Int J Pharm Sci Drug Res. 2010, 2(1), 35–39.
  • Maftoonazad, N.; Ramaswamy, H. S.; Marcotte, M. J. J. O. F. P. E. Evaluation of Factors Affecting Barrier, Mechanical and Optical Properties of Pectin‐Based Films Using Response Surface Methodology. 2007, 30(5), 539–563. DOI: 10.1111/j.1745-4530.2007.00123.x.
  • Singh, J.; Tripathi, K.; Sakya, T. J. D. D.; Pharmacy, I. Effect of Penetration Enhancers on the in vitro Transport of Ephedrine Through Rat Skin and Human Epidermis from Matrix Based Transdermal Formulations. 1993, 19(13), 1623–1628. DOI: 10.3109/03639049309069331.
  • Singh, A.; Bali, A. J. J. O. A. S.; Technology. Formulation and Characterization of Transdermal Patches for Controlled Delivery of Duloxetine Hydrochloride. 2016, 7(1), 1–13. DOI: 10.1186/s40543-016-0105-6.
  • Wiechers, J. J. A. P. N. Use of chemical penetration enhancers in transdermal drug delivery–possibilities and difficulties. Acta pharmaceutica Nordica. 1992, 4(2), 123.
  • Wokovich, A. M.; Prodduturi, S.; Doub, W. H.; Hussain, A. S.; Buhse, L. F. J. E. J. O. P.; Biopharmaceutics. Transdermal Drug Delivery System (TDDS) Adhesion as a Critical Safety, Efficacy and Quality Attribute. 2006, 64(1), 1–8. DOI: 10.1016/j.ejpb.2006.03.009.
  • Steven-Fountain, A.; Atkins, A.; Jeronimidis, G.; Vincent, J.; Farrar, D.; Chivers, R. J. I. J. O. A. Adhesives, the Effect of Flexible Substrates on Pressure-Sensitive Adhesive Performance. 2002, 22(6), 423–430. DOI: 10.1016/S0143-7496(02)00018-0.
  • Lobo, S.; Sachdeva, S.; Goswami, T. J. T. D. Role of pressure-sensitive adhesives in transdermal drug delivery systems. Therapeutic Delivery. 2016, 7(1), 33–48. DOI: 10.4155/tde.15.87.
  • Thakur, G.; Singh, A.; Singh, I. J. I. J. O. P. I. Formulation and Evaluation of Transdermal Composite Films of Chitosan-Montmorillonite for the Delivery of Curcumin. 2016, 6(1), 23. DOI: 10.4103/2230-973X.176468.
  • Cilurzo, F.; Musazzi, U. M.; Franzé, S.; Fedele, G.; Minghetti, P. J. E. J. O. P. S. Design of in vitro Skin Permeation Studies According to the EMA Guideline on Quality of Transdermal Patches. 2018. 2018, 125, 86–92. DOI: 10.1016/j.ejps.2018.09.014.
  • Kamal, T.; Sarfraz, M.; Arafat, M.; Mikov, M. J. P. J. O. P. S. Cross-Linked Guar Gum and Sodium Borate Based Microspheres as Colon-Targeted Anticancer Drug Delivery Systems for 5-Fluorouracil. Pakistan J Pharm Sci. 2017, 2(4), 30.
  • Al Hanbali, O. A.; Hamed, R.; Arafat, M.; Bakkour, Y.; Al-Matubsi, H.; Mansour, R.; Al-Bataineh, Y.; Aldhoun, M.; Sarfraz, M.; Dardas, A. K. Y. J. P. J. O. P. S. Formulation and Evaluation of Diclofenac Controlled Release Matrix Tablets Made of HPMC and Poloxamer 188 Polymer: An Assessment on Mechanism of Drug Release. Pakistan J Pharm Sci. 5(3) 2018, 31.
  • Kasciuškevičiūtė, S.; Gumbrevičius, G.; Vendzelytė, A.; Ščiupokas, A.; Petrikonis, K.; Kaduševičius, E. J. M. Impact of the World Health Organization Pain Treatment Guidelines and the European Medicines Agency Safety Recommendations on Nonsteroidal Anti-Inflammatory Drug Use in Lithuania: An Observational Study. Medicina. 2018, 54(2), 30. DOI: 10.3390/medicina54020030.
  • Zanela da Silva Marques, T.; Santos-Oliveira, R.; Betzler de Oliveira de Siqueira, L.; Cardoso, V. D. S.; de Freitas, Z. M. F.; Barros, R. D. C. D. S. A.; Villa, A. L. V.; Monteiro, M. S. D. S. D. B.; Dos Santos, E. P.; Ricci-Junior, E. J. I. J. O. Development and Characterization of a Nanoemulsion Containing Propranolol for Topical Delivery. 2018, 2018, 2827–2837. n. DOI: 10.2147/IJN.S164404.
  • Cerqueira-Coutinho, C.; De Campo, V.; Rossi, A.; Veiga, V.; Holandino, C.; Freitas, Z.; Ricci-Junior, E.; Mansur, C.; Santos, E.; Santos-Oliveira, R. J. N. Comparing in vivo Biodistribution with Radiolabeling and Franz Cell Permeation Assay to Validate the Efficacy of Both Methodologies in the Evaluation of Nanoemulsions: A Safety Approach. 2015, 27(1), 015101. DOI: 10.1088/0957-4484/27/1/015101.
  • Wang, J.; Wei, Y.; Fei, Y.-R.; Fang, L.; Zheng, H.-S.; Mu, C.-F.; Li, F.-Z.; Zhang, Y.-S. J. I. J. O. P. Preparation of Mixed Monoterpenes Edge Activated PEGylated Transfersomes to Improve the in vivo Transdermal Delivery Efficiency of Sinomenine Hydrochloride. Int. J. Pharmaceutics. 2017, 533(1), 266–274. DOI: 10.1016/j.ijpharm.2017.09.059.
  • Abdul Razzaq, A.; Riaz, T.; Zaman, M.; Waqar, M. A.; Ashfaq, A. Recent Advancements and Various Potential Applications of Transdermal Patches. Int. J. Polym. Mater. Polym. Biomater. 2024, 2024, 1–12. DOI: 10.1080/00914037.2023.2299784.
  • Choi, I.-J.; Cha, H.-R.; Hwang, S. J.; Baek, S.-K.; Lee, J. M.; Choi, S.-O. J. P. Live Vaccinia Virus-Coated Microneedle Array Patches for Smallpox Vaccination and Stockpiling. Pharmaceutics. 2021, 13(2), 209. DOI: 10.3390/pharmaceutics13020209.
  • Sullivan, S. P.; Koutsonanos, D. G.; Del Pilar Martin, M.; Lee, J. W.; Zarnitsyn, V.; Choi, S.-O.; Murthy, N.; Compans, R. W.; Skountzou, I.; Prausnitz, M. R. J. N. M. Dissolving Polymer Microneedle Patches for Influenza Vaccination. Nat. Med. 2010, 16(8), 915–920. DOI: 10.1038/nm.2182.
  • Gehl, J. J. A. P. S. Electroporation: Theory and Methods, Perspectives for Drug Delivery, Gene Therapy and Research. Acta Physiolo Scandina. 2003, 177(4), 437–447. DOI: 10.1046/j.1365-201X.2003.01093.x.
  • Xu, Q.; Li, X.; Zhang, P.; Wang, Y. J. J. O. M. C. B. Rapidly Dissolving Microneedle Patch for Synergistic Gene and Photothermal Therapy of Subcutaneous Tumor. J. Mater Chem. B. 2020, 8(19), 4331–4339. DOI: 10.1039/D0TB00105H.
  • Islam, M. R.; Uddin, S.; Chowdhury, M. R.; Wakabayashi, R.; Moniruzzaman, M.; Goto, M. J. A. A. M. Interfaces, Insulin Transdermal Delivery System for Diabetes Treatment Using a Biocompatible Ionic Liquid-Based Microemulsion. ACS Appl. Mater. Interfaces. 2021, 13(36), 42461–42472. DOI: 10.1021/acsami.1c11533.
  • Maciel, V. B.; Yoshida, C. M.; Pereira, S. M.; Goycoolea, F. M.; Franco, T. T. J. M. Electrostatic Self-Assembled Chitosan-Pectin Nano-And Microparticles for Insulin Delivery. 2017, 22(10), 1707. DOI: 10.3390/molecules22101707.
  • Waqar, M. A.; Zaman, M.; Hameed, H.; Jamshaid, M.; Irfan, A.; Shazly, G. A.; Paiva-Santos, A. C.; Bin Jardan, Y. A. Formulation, Characterization, and Evaluation of β-Cyclodextrin Functionalized Hypericin Loaded Nanocarriers. ACS Omega. 2023, 8(41), 38191–38203. DOI: 10.1021/acsomega.3c04444.
  • Seong, K.-Y.; Seo, M.-S.; Hwang, D. Y.; O’Cearbhaill, E. D.; Sreenan, S.; Karp, J. M.; Yang, S. Y. J. J. O. C. R. A Self-Adherent, Bullet-Shaped Microneedle Patch for Controlled Transdermal Delivery of Insulin. J. Controlled Release. 2017, 265, 48–56. DOI: 10.1016/j.jconrel.2017.03.041.
  • Ogawa, R.; Stachnik, J. M.; Echizen, H. J. C. P. Clinical Pharmacokinetics of Drugs in Patients with Heart Failure: An Update (Part 2, Drugs Administered Orally). 2014. 2014, 53(12), 1083–1114. DOI: 10.1007/s40262-014-0189-3.
  • Mangoni, A. A.; Jarmuzewska, E. A. J. B. J. O. C. P. The Influence of Heart Failure on the Pharmacokinetics of Cardiovascular and Non‐Cardiovascular Drugs: A Critical Appraisal of the Evidence. Br. J. Clin. Pharmacol. 2019, 85(1), 20–36. DOI: 10.1111/bcp.13760.
  • Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M.; Ali, A. J. C. D. D. Interactions between novel terpenes and main components of rat and human skin: mechanistic view for transdermal delivery of propranolol hydrochloride. 2011, 8(2), 213–224. DOI: 10.2174/156720111794479907.
  • Corbo, M.; Liu, J.-C.; Chien, Y. W. J. J. O. P. S. Bioavailability of Propranolol Following Oral and Transdermal Administration in Rabbits. 1990, 79(7), 584–587. DOI: 10.1002/jps.2600790707.
  • Matsuoka, H.; Kuwajima, I.; Shimada, K.; Mitamura, H.; Saruta, T. J. T. J. O. C. H. Comparison of Efficacy and Safety Between Bisoprolol Transdermal Patch (TY‐0201) and Bisoprolol Fumarate Oral Formulation in Japanese Patients with Grade I or II Essential Hypertension: Randomized, Double‐Blind, Placebo‐Controlled Study. 2013, 15(11), 806–814. DOI: 10.1111/jch.12208.
  • Hara, T.; Yagi, S.; Akaike, M.; Sata, M. J. I. J. O. C. Transdermal Patch of Bisoprolol for the Treatment of Hypertension Complicated with Aortic Dissection. Int. J. Cardiol. 2015, 198, 220–221. DOI: 10.1016/j.ijcard.2015.06.112.
  • Kiuchi, S.; Hisatake, S.; Kabuki, T.; Oka, T.; Dobashi, S.; Fujii, T.; Sano, T.; Ikeda, T. J. C.; Hypertension, E. Bisoprolol Transdermal Patch Improves Orthostatic Hypotension in Patients with Chronic Heart Failure and Hypertension. 2020, 42(6), 539–544. DOI: 10.1080/10641963.2020.1723616.
  • Shinohara, M.; Fujino, T.; Koike, H.; Kitahara, K.; Kinoshita, T.; Yuzawa, H.; Suzuki, T.; Fukunaga, S.; Kobayashi, K.; Aoki. Assessment of a Novel Transdermal Selective β1-Blocker, the Bisoprolol Patch, for Treating Frequent Premature Ventricular Contractions in Patients without Structural Heart Disease. J. J. J. O. C. 2017, 70(3), 212–219. DOI: 10.1016/j.jjcc.2017.01.008.
  • Yasui, T.; Oka, T.; Shioyama, W.; Oboshi, M.; Fujita, M. J. S. O. M. Bisoprolol Transdermal Patch Treatment for Patients with Atrial Fibrillation After Noncardiac Surgery: A Single-Center Retrospective Study of 61 Patients. SAGE Open Medicine. 2020, 8, 2050312120907817. DOI: 10.1177/2050312120907817.
  • Takahashi, Y.; Sonoo, T.; Nakano, H.; Naraba, H.; Hashimoto, H.; Nakamura, K. J. M. The Influence of Edema on the Bisoprolol Blood Concentration After Bisoprolol Dermal Patch Application: A Case-Control Study. Medicine. 2021, 100(38), 38. DOI: 10.1097/MD.0000000000027354.
  • Grimm, R. H. J. A. H. J., Jr. Antihypertensive Therapy: Taking Lipids into Consideration. Am. Heart J. 1991, 122(3), 910–918. DOI: 10.1016/0002-8703(91)90811-U.
  • Groom, M. J.; Cortese, S. J. N.-D. I. T. B. N. O. A.-D. H.-D. Current Pharmacological Treatments for ADHD. New Discoveries in the Behavioral Neuroscience of Attention-Deficit Hyperactivity Disorder. 2022. 2022, 19–50.
  • Gossop, M. J. D.; Dependence, A. Clonidine and the Treatment of the Opiate Withdrawal Syndrome. 1988, 21(3), 253–259. DOI: 10.1016/0376-8716(88)90078-6.
  • Popli, S.; Stroka, G.; Daugirdas, J.; Norusis, M.; Hano, J.; Gandhi, V. J. C. T. Transdermal Clonidine for Hypertensive Patients. Clinical Therapeutics. 1983, 5(6), 624–628.
  • Fujimura, A.; Ebihara, A.; Ohashi, K. I.; Shiga, T.; Kumagai, Y.; Nakashima, H.; Kotegawa, T. J. T. J. O. C. P. Comparison of the Pharmacokinetics, Pharmacodynamics, and Safety of Oral (Catapres) and Transdermal (M‐5041T) Clonidine in Healthy Subjects. The J Clinical Pharmaco. 1994, 34(3), 260–265. DOI: 10.1002/j.1552-4604.1994.tb03996.x.
  • Thakur, R.; Anwer, M. K.; Shams, M. S.; Ali, A.; Khar, R. K.; Shakeel, F.; Taha, E. I. J. J. O. D. T. Proniosomal transdermal therapeutic system of losartan potassium: development and pharmacokinetic evaluation. Jof Drug Targeting. 2009, 17(6), 442–449. DOI: 10.1080/10611860902963039.
  • Tariq, F.; Zaman, M.; Waqar, M. A.; Saeed, M. A.; Sarfraz, R. M. Design, Optimization & Characterization of Niosomal & Polymeric Nanoparticles. Int. J. Polym. Mater. Polym. Biomater. 2023, 2023, 1–14. DOI: 10.1080/00914037.2023.2277235.
  • Marsh, N.; Marsh, A. J. C.; Pharmacology, E.; Physiology. A Short History of Nitroglycerine and Nitric Oxide in Pharmacology and Physiology. 2000, 27(4), 313–319. DOI: 10.1046/j.1440-1681.2000.03240.x.
  • Nicholls, M. J. E. H. J. Nitric oxide discovery Nobel Prize winners: Robert F. Furchgott Louis. J. Ignarro, And Ferid Murad Shared The Noble Prize In 1998 For Their Discoveries Concerning Nitric Oxide As a Signalling Molecule In The Cardiovascular System. 2019, 40(22), 1747–1749. DOI: 10.1093/eurheartj/ehz361.
  • Noonan, P. K.; Gonzalez, M. A.; Ruggirello, D.; Tomlinson, J.; Babcock‐Atkinson, E.; Ray, M.; Golub, A.; Cohen, A. Relative Bioavailability of a New Transdermal Nitroglycerin Delivery System. J. J. O. P. S. 1986, 75(7), 688–691. DOI: 10.1002/jps.2600750715.
  • Balfour, J. A.; Heel, R. C. J. D. Transdermal Estradiol: A Review of Its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Efficacy in the Treatment of Menopausal Complaints. 1990. 1990, 40(4), 561–582. DOI: 10.2165/00003495-199040040-00006.
  • Müller, P.; Botta, L.; Ezzet, F. J. E. J. O. C. P. Bioavailability of Estradiol from a New Matrix and a Conventional Reservoir-Type Transdermal Therapeutic System. Eur. J. Clin. Pharmacol. 1996, 51(3–4), 327–330. DOI: 10.1007/s002280050206.
  • Reginster, J.-Y.; Albert, A.; Deroisy, R.; Colette, J.; Vrijens, B.; Blacker, C.; Brion, N.; Caulin, F.; Mayolle, C.; Regnard, A. J. M. Plasma Estradiol Concentrations and Pharmacokinetics Following Transdermal Application of Menorest® 50 or Systen®(Evorel®) 50. Maturitas. 1997, 27(2), 179–186. DOI: 10.1016/S0378-5122(97)00027-3.
  • Andersson, T. L.; Stehle, B.; Davidsson, B.; Höglund, P. J. M. Bioavailability of Estradiol from Two Matrix Transdermal Delivery Systems: Menorest® and Climara®. 2000, 34(1), 57–64. DOI: 10.1016/S0378-5122(99)00088-2.
  • Zhang, H.; Cui, D.; Wang, B.; Han, Y.-H.; Balimane, P.; Yang, Z.; Sinz, M.; Rodrigues, A. D. J. C. P. Pharmacokinetic Drug Interactions Involving 17α-Ethinylestradiol: A New Look at an Old Drug. 2007, 46(2), 133–157. DOI: 10.2165/00003088-200746020-00003.
  • Abrams, L. S.; Skee, D. M.; Natarajan, J.; Wong, F. A.; Anderson, G. D. J. B. J. O. C. P. Pharmacokinetics of a Contraceptive Patch (Evra™/Ortho Evra™) Containing Norelgestromin and Ethinyloestradiol at Four Application Sites. Br. J. Clin. Pharmacol. 2002, 53(2), 141–146. DOI: 10.1046/j.0306-5251.2001.01532.x.
  • Dittrich, R.; Parker, L.; Rosen, J. B.; Shangold, G.; Creasy, G. W.; Fisher, A. C.; Obstetrics, O. E. E. S. G. J. A. J. O. Gynecology, Transdermal Contraception: Evaluation of Three Transdermal Norelgestromin/Ethinyl Estradiol Doses in a Randomized, Multicenter, Dose-Response Study. 2002, 186(1), 15–20. DOI: 10.1067/mob.2002.118844.
  • Bhasin, S.; Brito, J. P.; Cunningham, G. R.; Hayes, F. J.; Hodis, H. N.; Matsumoto, A. M.; Snyder, P. J.; Swerdloff, R. S.; Wu, F. C.; Yialamas, M. A. J. T. J. O. C. E., et al. Testosterone Therapy in Men with Hypogonadism: An Endocrine Society Clinical Practice Guideline. 2018, 103(5), 1715–1744. DOI: 10.1210/jc.2018-00229.
  • Dobs, A. S.; Meikle, A. W.; Arver, S.; Sanders, S. W.; Caramelli, K. E.; Mazer, N. A. J. T. J. O. C. E.; Metabolism. Pharmacokinetics, Efficacy, and Safety of a Permeation-Enhanced Testosterone Transdermal System in Comparison with Bi-Weekly Injections of Testosterone Enanthate for the Treatment of Hypogonadal Men. 1999, 84(10), 3469–3478. DOI: 10.1210/jcem.84.10.6078.
  • Raynaud, J.-P.; Aumonier, C.; Gualano, V.; Betea, D.; Beckers, A. J. T. J. O. S. B.; Biology, M. Pharmacokinetic Study of a New Testosterone-In-Adhesive Matrix Patch Applied Every 2 Days to Hypogonadal Men. 2008, 109(1–2), 177–184. DOI: 10.1016/j.jsbmb.2008.02.004.
  • Priano, L.; Gasco, M. R.; Mauro, A. J. D. Aging,transdermal Treatment Options for Neurological Disorders: Impact on the Elderly. 2006, 23(5), 357–375. DOI: 10.2165/00002512-200623050-00001.
  • Santos, D. M. A. D. MDMA e a neurotoxicidade: uma revisão sistemática. 2023.
  • Kimko, H. C.; Cross, J. T.; Abernethy, D. R. J. C. P. Pharmacokinetics and Clinical Effectiveness of Methylphenidate. Clin. Pharmacokinet. 1999, 37(6), 457–470. DOI: 10.2165/00003088-199937060-00002.
  • Elshoff, J.-P.; Braun, M.; Andreas, J.-O.; Middle, M.; Cawello, W. J. C. T. Steady-state plasma concentration profile of transdermal rotigotine: an integrated analysis of three, open-label, randomized, phase I multiple dose studies. Clinical Therapeu. 2012, 34(4), 966–978. DOI: 10.1016/j.clinthera.2012.02.008.
  • Elshoff, J.-P.; Cawello, W.; Andreas, J.-O.; Mathy, F.-X.; Braun, M. J. D. An Update on Pharmacological, Pharmacokinetic Properties and Drug–Drug Interactions of Rotigotine Transdermal System in Parkinson’s Disease and Restless Legs Syndrome. Drugs. 2015, 75(5), 487–501. DOI: 10.1007/s40265-015-0377-y.
  • Chrisp, P.; Mammen, G. J.; Sorkin, E. M. J. D.; Aging. Selegiline: A Review of Its Pharmacology, Symptomatic Benefits and Protective Potential in Parkinson’s Disease. 1991. 1991, 1(3), 228–248. DOI: 10.2165/00002512-199101030-00006.
  • Barrett, J. S.; Hochadel, T. J.; Morales, R. J.; Rohatagi, S.; DeWitt, K. E.; Watson, S. K.; DiSanto, A. R. J. A. J. T., Pharmacokinetics and Safety of a Selegiline Transdermal System Relative to Single-Dose Oral Administration in the Elderly. Am J Ther. 1996, 3(10), 688–698. o. DOI: 10.1097/00045391-199610000-00004.
  • Frampton, J. E.; Plosker, G. L. J. D. Selegiline Transdermal System in the Treatment of Major Depressive Disorder. 2007. 2007, 67(2), 257–265. DOI: 10.2165/00003495-200767020-00006.
  • Suzuki, K.; Castelli, M.; Komaroff, M.; Starling, B.; Terahara, T.; Citrome, L. J. J. O. C. P. Pharmacokinetic Profile of the Asenapine Transdermal System (HP-3070). J Clinical Psychopharmaco. 2021, 41(3), 286. DOI: 10.1097/JCP.0000000000001383.
  • Rogers, S.; Friedhoff, L. J. B. J. O. C. P. Pharmacokinetic and pharmacodynamic profile of donepezil HCl following single oral doses. 1998, 46(Suppl 1), 1. DOI: 10.1046/j.1365-2125.1998.0460s1001.x.
  • Kurz, A.; Farlow, M.; Lefevre, G. J. I. J. O. C. P. Pharmacokinetics of a Novel Transdermal Rivastigmine Patch for the Treatment of Alzheimer’s Disease: A Review. Internat J Of Clinical Pract. 2009, 63(5), 799–805. DOI: 10.1111/j.1742-1241.2009.02052.x.
  • Bickel, U.; Thomsen, T.; Weber, W.; Fischer, J. P.; Bachus, R.; Nitz, M.; Kewitz, H. J. C. P.; Therapeutics. Pharmacokinetics of Galanthamine in Humans and Corresponding Cholinesterase Inhibition. 1991, 50(4), 420–428. DOI: 10.1038/clpt.1991.159.
  • Ameen, D.; Michniak-Kohn, B. J. E. J. O. P.; Biopharmaceutics. Development and in vitro Evaluation of Pressure Sensitive Adhesive Patch for the Transdermal Delivery of Galantamine: Effect of Penetration Enhancers and Crystallization Inhibition. 2019, 139, 262–271. DOI: 10.1016/j.ejpb.2019.04.008.
  • Nasrollahzadeh, M.; Ganji, F.; Taghizadeh, S. M.; Vasheghani-Farahani, E.; Mohiti-Asli, M. J. J. O. B.; Bioengineering. Drug in Adhesive Transdermal Patch Containing Antibiotic-Loaded Solid Lipid Nanoparticles. 2022, 134(5), 471–476. DOI: 10.1016/j.jbiosc.2022.08.003.
  • Munir, M.; Zaman, M.; Waqar, M. A.; Khan, M. A.; Alvi, M. N. Solid Lipid Nanoparticles: A Versatile Approach for Controlled Release and Targeted Drug Delivery. J. Liposome Res. 2023, 2023, 1–14. DOI: 10.1080/08982104.2023.2268711.
  • Altun, E.; Yuca, E.; Ekren, N.; Kalaskar, D. M.; Ficai, D.; Dolete, G.; Ficai, A.; Gunduz, O. J. P. Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery. Pharmaceutics. 2021, 13(5), 613. DOI: 10.3390/pharmaceutics13050613.
  • Zhao, L.; Vora, L. K.; Kelly, S. A.; Li, L.; Larrañeta, E.; McCarthy, H. O.; Donnelly, R. F. J. J. O. C. R. Hydrogel-forming microarray patch mediated transdermal delivery of tetracycline hydrochloride. J. Controlled Release. 2023, 356, 196–204. DOI: 10.1016/j.jconrel.2023.02.031.
  • Ramadon, D.; Permana, A. D.; Courtenay, A. J.; McCrudden, M. T.; Tekko, I. A.; McAlister, E.; Anjani, Q. K.; Utomo, E.; McCarthy, H. O.; Donnelly, R. F. J. M. P. Development, Evaluation, and Pharmacokinetic Assessment of Polymeric Microarray Patches for Transdermal Delivery of Vancomycin Hydrochloride. 2020, 17(9), 3353–3368. DOI: 10.1021/acs.molpharmaceut.0c00431.
  • Bird, D.; Ravindra, N. M. Transdermal Drug Delivery and Patches—An Overview. Medical Devices & Sensors. 2020, 3(6), e10069. DOI: 10.1002/mds3.10069.
  • Mathews, L.; Roy, A. Management of Pain Using Transdermal Patches-A Review. MANAGEMENT. 2016, 9(6), 32. DOI: 10.22159/ajpcr.2016.v9i6.13775.
  • Ananda, P. W. R.; Elim, D.; Zaman, H. S.; Muslimin, W.; Tunggeng, M. G. R.; Permana, A. D. Combination of Transdermal Patches and Solid Microneedles for Improved Transdermal Delivery of Primaquine. Int. J. Pharmaceutics. 2021, 609, 121204. DOI: 10.1016/j.ijpharm.2021.121204.
  • Zech, J.; Dzikowski, R.; Simantov, K.; Golenser, J.; Mäder, K. Transdermal Delivery of Artemisinins for Treatment of Pre-Clinical Cerebral Malaria. Internat J For Parasito: Drugs And Drug Resista. 2021, 16, 148–154. DOI: 10.1016/j.ijpddr.2021.05.008.
  • Volpe-Zanutto, F.; Fonseca-Santos, B.; McKenna, P. E.; Paredes, A. J.; Dávila, J. L.; McCrudden, M. T.; Tangerina, M. M. P.; Figueiredo, M. C.; Vilegas, W.; Brisibe, A. Novel Transdermal Bioadhesive Surfactant-Based System for Release and Solubility Improvement of Antimalarial Drugs Artemether-Lumefantrine. Biomed. Mater. 2021, 16(6), 065015. DOI: 10.1088/1748-605X/ac2885.
  • Wong, W. F.; Ang, K. P.; Sethi, G.; Looi, C. Y. Recent Advancement of Medical Patch for Transdermal Drug Delivery. Medicina. 2023, 59(4), 778. DOI: 10.3390/medicina59040778.
  • Chung, S. J.; Asgharnejad, M.; Bauer, L.; Ramirez, F.; Jeon, B. Evaluation of Rotigotine Transdermal Patch for the Treatment of Depressive Symptoms in Patients with Parkinson’s Disease. Expert Opin. Pharmacother. 2016, 17(11), 1453–1461. DOI: 10.1080/14656566.2016.1202917.
  • Amanatkar, H. R.; Grossberg, G. T. Transdermal Rivastigmine in the Treatment of Alzheimer’s Disease: Current and Future Directions. Expert Rev. Neurother. 2014, 14(10), 1119–1125. DOI: 10.1586/14737175.2014.955852.
  • Findling, R. L.; Dinh, S. Transdermal Therapy for Attention-Deficit Hyperactivity Disorder with the Methylphenidate Patch (MTS). CNS Drugs. 2014, 28(3), 217–228. DOI: 10.1007/s40263-014-0141-y.
  • Rizk, M. S.; Merey, H. A.; Tawakkol, S. M.; Sweilam, M. N. Development and Validation of a Stability-Indicating Micellar Liquid Chromatographic Method for the Determination of Timolol Maleate in the Presence of Its Degradation Products. J. Chromatogr. Sci. 2015, 53(4), 503–510. DOI: 10.1093/chromsci/bmu075.
  • Jain, S.; Joshi, S. C. Development of Transdermal Matrix System of Captopril Based on Cellulose Derivative. Pharmacolgyonline. 2007, 1, 379–390.
  • Dubey, R. K.; Dewangan, H. K. Rational Design and Characterization of Transdermal Patch of Irbesartan for Hypertension. Indian J Pharmaceu Educat And Res. 2020, 54(3s), S464–S677. DOI: 10.5530/ijper.54.3s.145.
  • Kiuchi, S.; Hisatake, S.; Kabuki, T.; Oka, T.; Dobashi, S.; Fujii, T.; Sano, T.; Ikeda, T. Bisoprolol Transdermal Patch Improves Orthostatic Hypotension in Patients with Chronic Heart Failure and Hypertension. Clinical And Experimen Hyperten. 2020, 42(6), 539–544. DOI: 10.1080/10641963.2020.1723616.
  • Jiang, D.; Tan, H.; Zhang, R.; Wang, K.; Zhang, Y.; Tan, X.; Zheng, W. Borneol-Mediated Vardenafil Hydrochloride Patch for Pediatric Pulmonary Arterial Hypertension: Preparation, Characterization and in vivo Study. Int. J. Pharmaceutics. 2020, 591, 119864. DOI: 10.1016/j.ijpharm.2020.119864.
  • Golubovic-Liakopoulos, N.; Simon, S. R.; Shah, B. Nanotechnology Use with Cosmeceuticals. Nanotechno Use With Cosmeceuti, Semin In Cutaneous Medicine And Surgery, WB Saunders. 2011, 30(3), 176–180. DOI: 10.1016/j.sder.2011.06.003.
  • Singhavi, D. J.; Khan, S. Application of Nanotechnology in Transdermal Drug Delivery. Nanobiotechno In Diagnosis, Drug Delivery, And Treatme. 2020. 2020, 113–128.
  • Baveloni, F. G.; Riccio, B. V.; Di Filippo, L. D.; Fernandes, M. A.; Meneguin, A. B.; Chorilli, M. Nanotechnology-Based Drug Delivery Systems as Potential for Skin Application: A Review. Curr. Med. Chem. 2021, 28(16), 3216–3248. DOI: 10.2174/0929867327666200831125656.
  • Ali, H. S.; Hanafy, A. F. Glibenclamide nanocrystals in a biodegradable chitosan patch for transdermal delivery: engineering, formulation, and evaluation. J. Pharm. Sci. 2017, 106(1), 402–410. DOI: 10.1016/j.xphs.2016.10.010.
  • Jijie, R.; Barras, A.; Boukherroub, R.; Szunerits, S. Nanomaterials for Transdermal Drug Delivery: Beyond the State of the Art of Liposomal Structures. J. Mater Chem. B. 2017, 5(44), 8653–8675. DOI: 10.1039/C7TB02529G.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.