85
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation on improved stability and electrochemical activity of mixed metal sulfides-based nanocomposites for energy storage applications

ORCID Icon
Pages 1106-1128 | Received 02 Jan 2024, Accepted 27 Feb 2024, Published online: 05 Mar 2024

References

  • Sarno, M.; Galvagno, S.; Piscitelli, R.; Portofino, S.; Ciambelli, P. Supercapacitor Electrodes Made of Exhausted Activated Carbon-Derived SiC Nanoparticles Coated by Graphene, Ind. Eng. Chem. Res. 2016, 55(20), 6025–6035. DOI: 10.1021/acs.iecr.6b00737.
  • González, A.; Goikolea, E.; Andoni Barrena, J.; Mysyk, R. Review on Supercapacitors: Technologies and Materials. Renewable Sustainable Energy Rev. 2016, 58, 1189–1206. DOI: 10.1016/j.rser.2015.12.249.
  • Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources. 2011, 196(1), 1–12. DOI: 10.1016/j.jpowsour.2010.06.084.
  • Rostami, M. S.; Khodaei, M. M. Recent Advances of Chitosan-Based Nanocomposites for Supercapacitor Applications: Key Challenges and Future Research Directions. J. Energy Storage. 2023, 72, 108344. DOI: 10.1016/j.est.2023.108344.
  • Chang, Y. L.; Tsai, M. D.; Shen, C. H.; Huang, C. W.; Wang, Y. C.; Kung, C. W. Cerium-Based Metal–Organic Framework-Conducting Polymer Nanocomposites for Supercapacitors. Mater. Today Sustain. 2023, 23, 100449. DOI: 10.1016/j.mtsust.2023.100449.
  • Li, L.; Meng, J.; Zhang, M.; Liu, T.; Zhang, C. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors. Chem. Commun. 2022, 58(2), 185–207. DOI: 10.1039/D1CC05526G.
  • Idumah, C. I.; Ezeani, E. O.; Nwuzor, I. C. A Review: Advancements in Conductive Polymers Nanocomposites. Polym. Plast. Technol. Eng. 2021, 60(7), 756–783. DOI: 10.1080/25740881.2020.1850783.
  • Kshetri, T.; Tran, D. T.; Le, H. T.; Nguyen, D. C.; Van Hoa, H.; Kim, N. H.; Lee, J. H. Recent Advances in MXene-Based Nanocomposites for Electrochemical Energy Storage Applications. Prog. Mater. Sci. 2021, 117, 100733. DOI: 10.1016/j.pmatsci.2020.100733.
  • Anwar, N.; Shakoor, A.; Ali, G.; Ahmad, H.; Niaz, N. A.; Mahmood, A.; Mahmood, A. Synthesis and Electrochemical Characterization of Polyaniline Doped Cadmium Oxide (PANI-Cdo) Nanocomposites for Supercapacitor Applications. J. Energy Storage. 2022, 55, 105446. DOI: 10.1016/j.est.2022.105446.
  • Liu, P.; Yan, J.; Guang, Z.; Huang, Y.; Li, X.; Huang, W. Recent Advancements of Polyaniline-Based Nanocomposites for Supercapacitors. J. Power Sources. 2019, 424, 108–130. DOI: 10.1016/j.jpowsour.2019.03.094.
  • Patil, P. H.; Kulkarni, V. V.; Dongale, T. D.; Jadhav, S. A. α-Manganese Dioxide (α-MnO2) Coated with Polyaniline (PANI) and Reduced Graphene Oxide (rGo)-Based Nanocomposite for Supercapacitor Application. J. Compos. Sci. 2023, 7(4), 167. DOI: 10.3390/jcs7040167.
  • Munawar, T.; Sardar, S.; Nadeem, M. S.; Mukhtar, F.; Manzoor, S.; Ashiq, M. N.; Khan, S. A.; Koc, M.; Iqbal, F. Rational Design and Electrochemical Validation of Reduced Graphene Oxide (rGO) Supported CeO2-Nd2O3/rGO Ternary Nanocomposite as an Efficient Material for Supercapacitor Electrodes. J. Appl. Electrochem. 2023, 53(9), 1–16. DOI: 10.1007/s10800-023-01885-0.
  • Xavier, J. R.; J, R. B. Evaluation of Reduced Graphene oxide/WO3/WS2 Hybrids for High Performance Supercapacitor Electrode. J. Alloys Compound. 2023, 947, 169483. DOI: 10.1016/j.jallcom.2023.169483.
  • Wiston, B. R.; Tewatia, S.; Ashok, M. Insights into coprecipitated cerium oxide/hydroxide–nickel hydroxide composite for high efficacy supercapacitors. Mater. Today Sustain. 2023, 21, 100291. DOI: 10.1016/j.mtsust.2022.100291.
  • Chandraraj, S. S.; Xavier, J. R. Facile Synthesis of Graphene Based Mixed Metal Sulphide Nanocomposite for Energy Storage Applications. Surf. Interfaces. 2023, 36, 102515. DOI: 10.1016/j.surfin.2022.102515.
  • Ding, W.; Wang, X.; Yang, C.; Wang, P.; Tian, W.; Zhao, K.; Zhang, K. Interfacial Photo-Reduction of Graphene Oxide on Defective WO3− X for Multifunctional Applications in Sensor, Catalyst and Supercapacitor. Appl. Surf. Sci. 2022, 606, 154877. DOI: 10.1016/j.apsusc.2022.154877.
  • Xavier, J. R. Graphene Oxide/Metal Sulfide and Oxide Nanocomposite Electrodes for High Electrochemical Performance Supercapacitor Applications. J Mater Eng Perform. 2023, 33(4), 1–14. DOI: 10.1007/s11665-023-08120-z.
  • Zhu, H.; Zhang, J. Self-assembled Co-Al LDH and TiO2 nanocomposites as a novel electrode for supercapacitors. Inorg. Chem. Commun. 2022, 145, 110027. DOI: 10.1016/j.inoche.2022.110027.
  • Tu, D.; Yang, W.; Yan, J.; Yang, Y.; Xu, J.; Chua, D. H. Highly Densed BCN Nanofiber Core with MoS2 Shell for Enhanced Hydrogen Evolution Reaction and Supercapacitance Applications. Appl. Surf. Sci. 2023, 615, 156400. DOI: 10.1016/j.apsusc.2023.156400.
  • Polo Fonseca, C.; Benedetti, J. E.; Neves, S. Poly (3-Methyl Thiophene)/PVDF Composite as an Electrode for Supercapacitors. J. Power Sources. 2006, 158, 789–794. DOI: 10.1016/j.jpowsour.2005.08.050.
  • Subramani, S.; Rajiv, S. Fabrication of Poly(3-Methylthiophene)/Poly(ethylene Oxide)/Ruthenium Oxide Composite Electrospun Nanofibers for Supercapacitor Application. J. Mater. Sci.: Mater. Electron. 2022, 33(12), 9558–9569. DOI: 10.1007/s10854-021-07549-z.
  • Dhibar, S.; Bhattacharya, P.; Ghosh, D.; Hatui, G.; Kumar Das, C. Graphene–Single-walled Carbon Nanotubes–Poly(3-methylthiophene) Ternary Nanocomposite for Supercapacitor Electrode Materials, Ind. Eng. Chem. Res. 2014, 53(33), 13030–13045. DOI: 10.1021/ie501407k.
  • Karthikeyan, G.; Sahoo, S.; Nayak, G. C.; Das, G. K. Investigations on Doping of Poly(3-Methyl-Thiophene) Composites for Supercapacitor Applications. Macromol. Res. 2012, 20(4), 351–357. DOI: 10.1007/s13233-012-0020-7.
  • Zhang, L.; Song, X.; Tan, L.; Ma, H.; Guo, D.; Pang, H.; Wang, X. Fabrication of Double-Shell Hollow NiO@ NC Nanotubes for a High-Performance Supercapacitor. New J. Chem. 2019, 43(34), 13457–13462. DOI: 10.1039/C9NJ02626F.
  • Vinodhini, S. P.; Xavier, J. R. Synthesis and Characterization of Reduced Graphene Oxide Wrapped MoO3/TiS2 Nanocomposite for High Performance Energy Storage Applications. Mater. Sci. Eng. 2023, 291, 116375. DOI: 10.1016/j.mseb.2023.116375.
  • Setayeshmehr, M.; Haghighi, M.; Mirabbaszadeh, K. A review of tin disulfide (SnS2) composite electrode materials for supercapacitors. Energy Storage. 2022, 4(4), e295. DOI: 10.1002/est2.295.
  • Aydın, H.; Kurtan, U.; Demir, M.; Karakuş, S. Synthesis and Application of a Self-Standing Zirconia-Based Carbon Nanofiber in a Supercapacitor. Energy Fuels. 2022, 36(4), 4, 2212–2219. DOI: 10.1021/acs.energyfuels.1c04208.
  • Mudila, H.; Rana, S.; Zaidi, M. G. H. Electrochemical performance of zirconia/graphene oxide nanocomposites cathode designed for high power density supercapacitor. J. Anal. Sci. Technol. 2016, 7(3). DOI: 10.1186/s40543-016-0084-7.
  • Wang, H.; Wang, J.; Liang, M.; He, Z.; Li, K.; Song, W.; Tian, S.; Duan, W.; Zhao, Y.; Miao, Z. Novel Dealloying-Fabricated NiS/NiO Nanoparticles with Superior Cycling Stability for Supercapacitors. ACS Omega. 2021, 6(28), 17999–18007. DOI: 10.1021/acsomega.1c01717.
  • Huang, Y.; Shi, T.; Jiang, S.; Cheng, S.; Tao, X.; Zhong, Y.; Liao, G.; Tang, Z. Enhanced Cycling Stability of NiCo2S4@ NiO Core-Shell Nanowire Arrays for All-Solid-State Asymmetric Supercapacitors. Sci. Rep. 2016, 6(1), 38620. DOI: 10.1038/srep38620.
  • Mounya, Z.; Hafida, B.; Mohamed, K.; Magbool, A.; Alhailiy Ali, B.; Abdelghani, B.; Youssef, B. Synthesis, Characterization, and Enhanced Electrochemical Behavior of Polypyrrole Doped ZrO2–ZnO Electrode Materials for Supercapacitor Applications. Front. Energy Res. 2023, 11, 2023. DOI: 10.3389/fenrg.2023.1244699.
  • Barazandeh, M.; Kazemi, S. H. High-Performance Freestanding Supercapacitor Electrode Based on Polypyrrole Coated Nickel Cobalt Sulfide Nanostructures. Sci. Rep. 2022, 12(1), 4628. DOI: 10.1038/s41598-022-08691-2.
  • Qi, M.; Zhu, W.; Lu, Z.; Zhang, H.; Ling, Y.; Ou, X. Synthesis of Nickel Sulfide–Graphene Oxide Composite Microflower Structures to Enhance Supercapacitor Performance. J. Mater. Sci.: Mater. Electron. 2020, 31(15), 12536–12545.
  • Selvaraj, K.; Arumugam, H.; Muthukaruppan, A.; Kannaiyan, S. K.; Krishnan, S.; Peethambaram, P.; Magaraphan, R.; Kannaiyan, D. Supercapacitor and High K Properties of CNT–PbS Reinforced Quinoxaline Amine Based Polybenzoxazine Composites. Soft Matter. 2022, 18(46), 8779–8791. DOI: 10.1039/D2SM00737A.
  • Li, Y.; Zhou, M.; Wang, Y.; Pan, Q.; Gong, Q.; Xia, Z.; Li, Y. Remarkably Enhanced Performances of Novel Polythiophene-Grafting-Graphene Oxide Composite via Long Alkoxy Linkage for Supercapacitor Application. Carbon. 2019, 147, 519–531. DOI: 10.1016/j.carbon.2019.03.030.
  • Tammanoon, N.; Poochai, C.; Pothaya, S. Yaowamarn Chuminjak, Tanom Lomas, Anurat Wisitsoraat, Chakrit Sriprachuabwong, Adisorn Tuantranont, Synthesis of SnS2 Nanoparticles@carbon Nanotubes as Anode for High-Performance Half/Full Sodium-Ion Batteries. Diamond Relat. Mater. 2023, 136, 109903. DOI: 10.1016/j.diamond.2023.109903.
  • Fadojutimi, P.; Tetana, Z.; Moma, J.; Moloto, N.; Gqoba, S. Colloidal Synthesis of Zirconium Disulphide Nanostructures and Their Stability Against Oxidation. ChemistrySelect. 2022, 7(32), e202202293. DOI: 10.1002/slct.202202293.
  • Sundari Chandraraj, S.; Xavier, J. R. Facile Synthesis of Graphene Based Mixed Metal Sulphide Nanocomposite for Energy Storage Applications. Surf. Interfaces. 2023, 36, 102515. DOI: 10.1016/j.surfin.2022.102515.
  • Nejati-Moghadam, L.; Gholamrezaei, S.; Salavati-Niasari, M.; Esmaeili-Bafghi-Karimabad, A. Hydrothermal Synthesis and Characterization of Lead Oxide Nanocrystal in Presence of Tetradentate Schiff-Base and Degradation Investigation of Organic Pollutant in Waste Water. J. Mater. Sci. Mater. Electron. 2017, 28(13), 9919–9926. DOI: 10.1007/s10854-017-6748-2.
  • Krishnakumar, B.; Imae, T.; Miras, J.; Esquena, J. Synthesis and Azo Dye Photodegradation Activity of ZrS2–ZnO Nano-Composites. Sep. Purif. Techn. 2014, 132, 281–288. DOI: 10.1016/j.seppur.2014.05.018.
  • Ma, D.; Zhou, H.; Zhang, J.; Qian, Y. Controlled Synthesis and Possible Formation Mechanism of Leaf-Shaped SnS2 Nanocrystals. Mater. Chem. Phys. 2008, 111, 391–395. DOI: 10.1016/j.matchemphys.2008.04.035.
  • Xavier, J. R. Synthesis and Electrochemical Performance of rGO Wrapped Mixed Metal Oxide and Sulfide Nanocomposite for Superior Energy Storage Applications. Fullerenes Nanotubes And Carbon Nanostruct. 2023, 31(7), 1–15. DOI: 10.1080/1536383X.2023.2198228.
  • Sriv, T.; Kim, K.; Cheong, H. Low-Frequency Raman Spectroscopy of Few-Layer 2H-Sns2. Sci. Rep. 2018, 8(1), 10194. DOI: 10.1038/s41598-018-28569-6.
  • Xavier, J. R. Investigation of Anticorrosion, Flame Retardant and Mechanical Properties of Polyurethane/GO Nanocomposites Coated AJ62 Mg Alloy for Aerospace/Automobile Components. Diamond Relat. Mater. 2023, 136, 110025. DOI: 10.1016/j.diamond.2023.110025.
  • XAVIER, J. R; DHANALAKSHMI, C.; Sundari CHANDRARAJ, S.; VINODHINI, S. P. Bionanocomposites Containing SnO2 with Improved Chemical Resistance and Hydrophobic Behaviours for Applications in Food Packaging Industry. Trans. Nonferrous Met. Soc. China. 2023, 33, 2136–2154. DOI: 10.1016/S1003-6326(23)66249-1.
  • Xavier, J. R. Effects of Functionalized CNTs in Improving the Dielectric, Corrosion Protection, and Mechanical Properties of Epoxy Nanocomposites for Automotive/Aircraft Components. Polym. Plast. Technol. Eng. 2023, 62(12), 1498–1524. DOI: 10.1080/25740881.2023.2222790.
  • Teslaru, T.; Topala, I.; Dobromir, M.; Pohoata, V.; Curecheriu, L.; Dumitrascu, N. Polythiophene Films Obtained by Polymerization Under Atmospheric Pressure Plasma Conditions. Mater. Chem. Phys. 2016, 169, 120–127. DOI: 10.1016/j.matchemphys.2015.11.038.
  • Han, M.; Zhu, Y.; Wang, G.; Ding, X.; Liu, J.; Luo, S. Full Laser Irradiation Processed Pb-Graphene Nanocomposite Electrodes Toward the Manufacturing of High-Performance Supercapacitors. Carbon. 2023, 216, 118583. DOI: 10.1016/j.carbon.2023.118583.
  • Omidtorshiz, A.; Benam, M. R.; Momennezhad, M.; Sabouri, Z.; Darroudi, M. Green Synthesis of Lead Oxide Nanoparticles Using Ocimum Basilicum Extract: Photocatalytic Assessment and Cytotoxicity Effects. Inorg. Chem. Commun. 2023, 158, 111575. DOI: 10.1016/j.inoche.2023.111575.
  • Zheng, J.; Lian, X.; Wu, M.; Zheng, F.; Gao, Y.; Niu, H., One-step preparation of Ni3S4 quantum dots composite graphene/carbon nanotube conductive network for asymmetric supercapacitor, J. Alloys Compound., 859, 2021, 158247, 10.1016/j.jallcom.2020.158247
  • Zhang, M.; Nautiyal, A.; Du, H.; Li, J.; Liu, Z.; Zhang, X.; Wang, R. Polypyrrole Film Based Flexible Supercapacitor: Mechanistic Insight into Influence of Acid Dopants on Electrochemical Performance. Electrochim. Acta. 2020, 357, 136877. DOI: 10.1016/j.electacta.2020.136877.
  • Shokry, A.; Karim, M.; Khalil, M.; Ebrahim, S.; El Nady, J. Supercapacitor Based on Polymeric Binary Composite of Polythiophene and Single-Walled Carbon Nanotubes. Sci. Rep. 2022, 12(1), 11278. DOI: 10.1038/s41598-022-15477-z.
  • Ates, M.; Alperen, C. Polythiophene-Based Reduced Graphene Oxide and Carbon Black Nanocomposites for Supercapacitors. Iran. Polym. J. 2023, 32(10), 1241–1255. DOI: 10.1007/s13726-023-01201-9.
  • Shah, M. Z. U.; Sajjad, M.; Hou, H.; Ur Rahman, S.; Mahmood, A.; Aziz, U.; Shah, A. A New CuO/TiO2 Nanocomposite: An Emerging and High Energy Efficient Electrode Material for Aqueous Asymmetric Supercapacitors. J. Energy Storage. 2022, 55, 105492. DOI: 10.1016/j.est.2022.105492.
  • Miniach, E.; Śliwak, A.; Moyseowicz, A.; Fernández-Garcia, L.; González, Z.; Granda, M.; Menendez, R.; Gryglewicz, G. MnO2/Thermally Reduced Graphene Oxide Composites for High-Voltage Asymmetric Supercapacitors. Electrochim. Acta. 2017, 240, 53–62. DOI: 10.1016/j.electacta.2017.04.056.
  • Ahlawat, S.; Lata, S. Immaculate composite of g-C3N4/TiO2/polypyrrole as a facile super-capacitive electrode material for energy accumulation. Mater. Res. Bull. 2023, 165, 112328. DOI: 10.1016/j.materresbull.2023.112328.
  • Ye, Y.; Guo, X.; Ma, Y.; Zhao, Q.; Sui, Y.; Song, J.; Ma, W.; Zhang, P.; Qin, C. Synthesis of Polypyrrole Nanotubes@ Nickel-Molybdenum Sulfide Core–Shell Composites for Aqueous High-Performance Asymmetric Supercapacitors. J. Electroanal. Chem. 2021, 897, 115588. DOI: 10.1016/j.jelechem.2021.115588.
  • Ma, J.; Tao, X. Y.; Zhou, S. X.; Song, X. Z.; Zhu, Y. B.; Guo, L. T.; Liu, Z. S.; Fan, H. L.; Wei, X. Y. Facile Fabrication of Ag/pani/g-C3N4 Composite with Enhanced Electrochemical Performance as Supercapacitor Electrode. J. Electroanal. Chem. 2019, 835, 346–353. DOI: 10.1016/j.jelechem.2018.12.025.
  • Tomy, M.; Anu, M. A.; Xavier, T. S. Effect of Chemical Exfoliation on the Specific Capacitance of MoS2 Decorated Conducting Polymer Electrodes for Supercapacitor Applications. Appl. Phys. A. 2023, 129(12), 818. DOI: 10.1007/s00339-023-07098-8.
  • Xavier, J. R.; Vinodhini, S. P. Fabrication of Reduced Graphene Oxide Encapsulated MnO2/MnS2 Nanocomposite for High Performance Electrochemical Devices. J. Porous Mater. 2023, 30(6), 1–14. DOI: 10.1007/s10934-023-01473-9.
  • Iqbal, M.; Saykar, N. G.; Alegaonkar, P. S.; Mahapatra, S. K. Synergistically Modified WS 2@ PANI Binary Nanocomposite-Based All-Solid-State Symmetric Supercapacitor with High Energy Density. New J. Chem. 2022, 46(15), 7043–7054. DOI: 10.1039/D2NJ00165A.
  • Patil, S. B.; Nikam, R. P.; Lokhande, C. D.; Patil, R. S. Chemisynthesized tungsten oxide (WO3) electrodes for high-performance asymmetric supercapacitor application: effect of deposition time. J. Mater. Sci. Mater. Electron. 2023, 34(28), 1956. DOI: 10.1007/s10854-023-11384-9.
  • Mashkoor, F.; Kim, D.; Ansari, M. Z.; Anwer, A. H.; Shoeb, M.; Jeong, C. Synergistic Effects of Multifunctional Nanostructured WO3-WS2 Decorated on Polypyrrole (WO3-WS2/PPy) for the Removal of Toxic Heavy Metals from Wastewaters and High Supercapacitor Performance. J. Mol. Liq. 2023, 375, 121312. DOI: 10.1016/j.molliq.2023.121312.
  • Hao, J.; Liu, H.; Han, S.; Lian, J. MoS2 Nanosheet-Polypyrrole Composites Deposited on Reduced Graphene Oxide for Supercapacitor Applications. Acs Appl. Nano Mater. 2021, 4(2), 1330–1339. DOI: 10.1021/acsanm.0c02899.
  • Liu, Y.; Ji, X.; Sun, H.; Lin, X. Preparation of Polypyrrole Modified Molybdenum Trioxide Nanorod and Their Applications in Supercapacitors. Mater. Technol. 2022, 37(11), 1947–1953. DOI: 10.1080/10667857.2021.2014031.
  • Abdullah, T.; Shamsah, S. I.; Shaaban, I. A.; Akhtar, M.; Yousaf, S. Engineering Energy Storage Properties of rGO Based Fe2O3/CuO/PANI Quaternary Nanohybrid as an Ideal Electroactive Material for Hybrid Supercapacitor Application. Synth. Met. 2023, 299, 117472. DOI: 10.1016/j.synthmet.2023.117472.
  • Ates, M.; Yoruk, O.; Bayrak, Y. Symmetric supercapacitor device applications of rGO/Co3O4/polypyrrole nanocomposites. Ionics. 2022, 28(12), 5581–5598. DOI: 10.1007/s11581-022-04764-4.
  • Liu, S.; Li, Y.; Zhang, W.; Wang, J.; Xu, W.; Wang, C. NiCoP/MXene nanocomposites via electrostatic self-assembly for high-performance supercapacitor electrodes. Dalton Trans. 2023, 52(29), 10115–10125. DOI: 10.1039/D3DT01242E.
  • Karmur, R. S.; Gogoi, D.; Das, M. R.; Ghosh, N. N. High-Performance Flexible Supercapacitor Device Composed of a Hierarchical 2-D MXene-Ni (OH) 2 Nanocomposite and Biomass-Derived Porous Carbon Electrodes. Energy. Fuels. 2022, 36(15), 8488–8499. DOI: 10.1021/acs.energyfuels.2c01699.
  • Zamiri, G.; Haseeb, A. M. A.; Jagadish, P.; Khalid, M.; Kong, I.; Krishnan, S. G. Three-Dimensional Graphene–TiO2–SnO2 Ternary Nanocomposites for High-Performance Asymmetric Supercapacitors. ACS Omega. 2022, 7(48), 43981–43991. DOI: 10.1021/acsomega.2c05343.
  • Vinodhini, S. P.; Xavier, J. R. Novel Synthesis of Layered MoS2/TiO2/CNT Nanocomposite as a Potential Electrode for High Performance Supercapacitor Applications. Int. J. Energy Res. 2022, 46(10), 14088–14104. DOI: 10.1002/er.8125.
  • Hu, Y.; Quan, H.; Cui, J.; Luo, W.; Zeng, W.; Chen, D. Carbon Nanodot Modified N, O-Doped Porous Carbon for Solid-State Supercapacitor: A Comparative Study with Carbon Nanotube and Graphene Oxide. J. Alloys Compound. 2021, 877, 160237. DOI: 10.1016/j.jallcom.2021.160237.
  • Xavier, J. R.; Vinodhini, S. P. Flexible and High-Energy Density Asymmetrical Supercapacitors Based on Polyindole/GCN/MnO2 Nanocomposite for Energy Storage Applications. J. Mater. Sci. 2023, 58(48), 18147–18168. DOI: 10.1007/s10853-023-09176-x.
  • Ganesan, R.; Raj Xavier, J. Fabrication of Polythiophene/Graphitic Carbon Nitride/V2O5 Nanocomposite for High-Performance Supercapacitor Electrode. Mater. Sci. Eng. 2024, 300, 117101. DOI: 10.1016/j.mseb.2023.117101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.