66
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Encapsulated iodine–chitosan graphene oxide nanocomposite: fabrication and evaluation for antibacterial activity

, , , , &
Pages 1129-1142 | Received 13 Dec 2023, Accepted 26 Feb 2024, Published online: 18 Mar 2024

References

  • Agubata, C. O.; Okereke, C.; Nzekwe, I. T.; Onoja, R. I.; Obitte, N. C. Development and Evaluation of Wound Healing Hydrogels Based on a Quinolone, Hydroxypropyl Methylcellulose and Biodegradable Microfibres. Eur. J. Pharm. Sci. 2016, 89. DOI: 10.1016/j.ejps.2016.04.017.
  • Huljev, D. Obstacles in Wound Healing. Acta Med. Croatica. 2013, 67(Suppl 1), 5–10.
  • Mohamadi, S.; Norooznezhad, A. H.; Mostafaei, S.; Nikbakht, M.; Nassiri, S.; Safar, H.; Moghaddam, K. A.; Ghavamzadeh, A.; Kazemnejad, A. A Randomized Controlled Trial of Effectiveness of Platelet-Rich Plasma Gel and Regular Dressing on Wound Healing Time in Pilonidal Sinus Surgery: Role of Different Affecting Factors. BioMed. J. 2019, 42, 403–410. DOI: 10.1016/j.bj.2019.05.002.
  • Mirmohammadi, S. A.; Imani, M.; Uyama, H.; Atai, M. International Journal of Polymeric Materials and Polymeric Biomaterials 63: Hybrid Organic-Inorganic Nanocomposites Based on Poly(Epsilon) -Caprolactone)/polyhedral Oligomeric Silsesquioxane: Synthesis and in vitro Evaluations. Cell. Polym. 2014, 33, 331. DOI: 10.1080/00914037.2013.854236.
  • Sahana, T. G.; Rekha, P. D. Biopolymers: Applications in Wound Healing and Skin Tissue Engineering. Mol. Biol. Rep. 2018, 45, 2857–2867. DOI: 10.1007/s11033-018-4296-3.
  • Hosseini, V.; Maroufi, N. F.; Saghati, S.; Asadi, N.; Darabi, M.; Ahmad, S. N. S.; Hosseinkhani, H.; Rahbarghazi, R. Current Progress in Hepatic Tissue Regeneration by Tissue Engineering. J. Transl. Med. 2019, 17, 383. DOI: 10.1186/s12967-019-02137-6.
  • Leijten, J.; Seo, J.; Yue, K.; Santiago, G. T.; Tamayol, A.; Ruiz-Esparza, G. U.; Shin, S. R.; Sharifi, R.; Noshadi, I.; Álvarez, M. M., et al. Spatially and Temporally Controlled Hydrogels for Tissue Engineering. Mater. Sci. Eng. R Rep. 2017, 119, 1–35. DOI: 10.1016/j.mser.2017.07.001.
  • Nik Md Noordin Kahar, N. N. F.; Osman, A. F.; Alosime, E.; Arsat, N.; Mohammad Azman, N. A.; Syamsir, A.; Itam, Z.; Abdul Hamid, Z. A. The Versatility of Polymeric Materials as Self-Healing Agents for Various Types of Applications: A Review. Polymers. 2021, 13, 1194. DOI: 10.3390/polym13081194.
  • Shukla, S. K.; Mishra, A. K.; Arotiba, O. A.; Mamba, B. B. Chitosan-Based Nanomaterials: A State-Of-The-Art Review. Int. J. Biol. Macromol. 2013, 59, 46–58. DOI: 10.1016/j.ijbiomac.2013.04.043.
  • Islam, M. M.; Shahruzzaman, M.; Biswas, S.; Nurus Sakib, M.; Rashid, T. U. Chitosan Based Bioactive Materials in Tissue Engineering Applications-A Review. Bioact. Mater. 2020, 5, 164–183. DOI: 10.1016/j.bioactmat.2020.01.012.
  • Hosseinkhani, H.; Hong, P.-D.; Yu, D.-S. Self-Assembled Proteins and Peptides for Regenerative Medicine. Chem. Rev. 2013, 113, 4837–4861. DOI: 10.1021/cr300131h.
  • Chhabra, P.; Bhati, K. Bionanomaterials: Advancements in Wound Healing and Tissue Regeneration. In Recent Advances in Wound Healing; Aghaei, S., Ed.; IntechOpen : Rijeka, 2021; pp. 137–151.
  • Organization, I. L. ILO 2012 Global Estimate of Forced Labour. Executive Summary, 2012.
  • Hosseinkhani, H. Nanomaterials in Advanced Medicine; Weinheim, Germany: John wiley & sons, 2019.
  • Pericles_9783527818921.
  • Choudhary, M.; Chhabra, P.; Tyagi, A.; Singh, H. Scar Free Healing of Full Thickness Diabetic Wounds: A Unique Combination of Silver Nanoparticles as Antimicrobial Agent, Calcium Alginate Nanoparticles as Hemostatic Agent, Fresh Blood as Nutrient/Growth Factor Supplier and Chitosan as Base Matrix. Int. J. Biol. Macromol. 2021, 178, 41–52. DOI: 10.1016/j.ijbiomac.2021.02.133.
  • Le, H.; Karakasyan, C.; Jouenne, T.; Le Cerf, D.; Dé, E. Application of Polymeric Nanocarriers for Enhancing the Bioavailability of Antibiotics at the Target Site and Overcoming Antimicrobial Resistance. Applied Sciences. 2021, 11, 11. DOI: 10.3390/app112210695.
  • Chhabra, P.; Chauhan, G.; Kumar, A. Augmented Healing of Full Thickness Chronic Excision Wound by Rosmarinic Acid Loaded Chitosan Encapsulated Graphene Nanopockets. Drug Dev. Ind. Pharm. 2020, 46, 878–888. DOI: 10.1080/03639045.2020.1762200.
  • Hosseinkhani, H. Biomedical Engineering : Materials, Technology, and Applications; Wiley-VCH: Weinheim, Germany, 2023.
  • Banerjee, A.; Ibsen, K.; Iwao, Y.; Zakrewsky, M.; Mitragotri, S. Transdermal Protein Delivery Using Choline and Geranate (CAGE) Deep Eutectic Solvent. Adv. Healthc. Mater. 2017, 6, 1601411. DOI: 10.1002/adhm.201601411.
  • Bigliardi, P. L.; Alsagoff, S. A. L.; El-Kafrawi, H. Y.; Pyon, J.-K.; Wa, C. T. C.; Villa, M. A. Povidone Iodine in Wound Healing: A Review of Current Concepts and Practices. Int. J. Surg. 2017, 44, 260–268. DOI: 10.1016/j.ijsu.2017.06.073.
  • Sibbald, R.; Leaper, D.; Queen, D. Iodine Made Easy. Wounds Int. 2011, 2, 1–6.
  • Viswanathan, K.; Babu, D. B.; Jayakumar, G.; Raj, G. D. Anti-Microbial and Skin Wound Dressing Application of Molecular Iodine Nanoparticles. Mater. Res. Express. 2017, 4, 104003. DOI: 10.1088/2053-1591/aa91e5.
  • Nguyen, H. T.; Ho, T.-L.; Pratomo, A.; Ilsan, N. A.; Huang, T.; Chen, C.-H.; Chuang, E.-Y. Enzymatically Triggered Graphene Oxide Released from Multifunctional Carriers Boosts Anti-Pathogenic Properties for Promising Wound-Healing Applications. Mater. Sci. Eng. C. 2021, 128, 112265. DOI: 10.1016/j.msec.2021.112265.
  • Ray, S. C. Chapter 2 - Application and Uses of Graphene Oxide and Reduced Graphene Oxide. In Micro and Nano Technologies; Ray, S.-C.-B.-T.-A.-O.-G., G.-O.B.N., Ed.; William Andrew Publishing: Oxford, 2015; pp. 39–55.
  • Khine, Y. Y.; Wen, X.; Jin, X.; Foller, T.; Joshi, R. Functional Groups in Graphene Oxide. Phys. Chem. Chem. Phys. 2022, 24, 26337–26355. DOI: 10.1039/D2CP04082D.
  • Jin, H.; Abu-Raya, Y. S.; Haick, H. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices. Adv. Healthc. Mater. 2017, 6, 1700024. DOI: 10.1002/adhm.201700024.
  • Zare, P.; Aleemardani, M.; Seifalian, A.; Bagher, Z.; Seifalian, A. M. Graphene Oxide: Opportunities and Challenges in Biomedicine. Nanomaterials. 2021, 11, 1–18. DOI: 10.3390/nano11051083.
  • Some, S.; Sohn, J. S.; Kim, J.; Lee, S.-H.; Lee, S. C.; Lee, J.; Shackery, I.; Kim, S. K.; Kim, S. H.; Choi, N., et al. Graphene-Iodine Nanocomposites: Highly Potent Bacterial Inhibitors That are Bio-Compatible with Human Cells. Sci. Rep. 2016, 6, 20015. DOI: 10.1038/srep20015.
  • Gyarmati, B.; Mammadova, A.; Barczikai, D.; Stankovits, G.; Misra, A.; Alavijeh, M. S.; Varga, Z.; László, K.; Szilágyi, A. Side Group Ratio as a Novel Means to Tune the Hydrolytic Degradation of Thiolated and Disulfide Cross-Linked Polyaspartamides. Polym. Degrad. Stab. 2021, 188, 109577. DOI: 10.1016/j.polymdegradstab.2021.109577.
  • Saberianpour, S.; Heidarzadeh, M.; Geranmayeh, M. H.; Hosseinkhani, H.; Rahbarghazi, R.; Nouri, M. Tissue Engineering Strategies for the Induction of Angiogenesis Using Biomaterials. J. Biol. Eng. 2018, 12, 36. DOI: 10.1186/s13036-018-0133-4.
  • Chauhan, G.; Chopra, V.; Tyagi, A.; Rath, G.; Sharma, R. K.; Goyal, A. K. “Gold Nanoparticles Composite-Folic Acid Conjugated Graphene Oxide Nanohybrids” for Targeted Chemo-Thermal Cancer Ablation: In Vitro Screening and in vivo Studies. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2017, 96, 351–361. DOI: 10.1016/j.ejps.2016.10.011.
  • Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. DOI: 10.1002/adma.201001068.
  • Nepal, A. K.; Raj Shakya, P.; Gelal, B.; Lamsal, M.; Brodie, D. A.; Baral, N. Household Salt Iodine Content Estimation with the Use of Rapid Test Kits and Iodometric Titration Methods. J. Clin. Diagn. Res. 2013, 7, 892–895. DOI: 10.7860/JCDR/2013/5477.2969.
  • He, M.; Zhong, C.; Hu, H.; Jin, Y.; Chen, Y.; Lou, K.; Gao, F. Cyclodextrin/Chitosan Nanoparticles for Oral Ovalbumin Delivery: Preparation, Characterization and Intestinal Mucosal Immunity in Mice. Asian J. Pharm. Sci. 2019, 14, 193–203. DOI: 10.1016/j.ajps.2018.04.001.
  • Bhat, I. A.; Nazir, M. I.; Ahmad, I.; Pathakota, G.-B.; Chanu, T. I.; Goswami, M.; Sundaray, J. K.; Sharma, R. Fabrication and Characterization of Chitosan Conjugated Eurycomanone Nanoparticles: In Vivo Evaluation of the Biodistribution and Toxicity in Fish. Int. J. Biol. Macromol. 2018, 112, 1093–1103. DOI: 10.1016/j.ijbiomac.2018.02.067.
  • Jana, S.; Manna, S.; Nayak, A. K.; Sen, K. K.; Basu, S. K. Carbopol Gel Containing Chitosan-Egg Albumin Nanoparticles for Transdermal Aceclofenac Delivery. Colloids Surf. B Biointerfaces. 2014, 114, 36–44. DOI: 10.1016/j.colsurfb.2013.09.045.
  • Zheng, Y.; Ouyang, W.-Q.; Wei, Y.-P.; Syed, S. F.; Hao, C.-S.; Wang, B.-Z.; Shang, Y.-H. Effects of Carbopol(®) 934 Proportion on Nanoemulsion Gel for Topical and Transdermal Drug Delivery: A Skin Permeation Study. Int. J. Nanomed. 2016, 11, 5971–5987. DOI: 10.2147/IJN.S119286.
  • Deshkar, S. S.; Bhalerao, S. G.; Jadhav, M. S.; Shirolkar, S. V. Formulation and Optimization of Topical Solid Lipid Nanoparticles Based Gel of Dapsone Using Design of Experiment. Pharm. Nanotechnol. 2018, 6, 264–275. DOI: 10.2174/2211738506666181105141522.
  • Dawoud, M. H. S.; Yassin, G. E.; Ghorab, D. M.; Morsi, N. M. Insulin Mucoadhesive Liposomal Gel for Wound Healing: A Formulation with Sustained Release and Extended Stability Using Quality by Design Approach. AAPS PharmScitech. 2019, 20, 158. DOI: 10.1208/s12249-019-1363-6.
  • Zhou, L. H.; Nahm, W. K.; Badiavas, E.; Yufit, T.; Falanga, V. Slow Release Iodine Preparation and Wound Healing: In Vitro Effects Consistent with Lack of in vivo Toxicity in Human Chronic Wounds. Br. J. Dermatol. 2002, 146, 365–374. DOI: 10.1046/j.1365-2133.2002.04605.x.
  • Nawarathne, N. W.; Wijesekera, K.; Wijayaratne, W. M. D. G. B.; Napagoda, M. Development of Novel Topical Cosmeceutical Formulations from Nigella Sativa L. with Antimicrobial Activity Against Acne-Causing Microorganisms. ScientificWorldjournal. 2019, 2019, 5985207. DOI: 10.1155/2019/5985207.
  • Wellington, D.; Mikaelian, I.; Singer, L. Comparison of Ketamine-Xylazine and Ketamine-Dexmedetomidine Anesthesia and Intraperitoneal Tolerance in Rats. J. Am. Assoc. Lab. Anim. Sci. 2013, 52, 481–487.
  • Chhabra, P.; Tyagi, P.; Bhatnagar, A.; Mittal, G.; Kumar, A. Optimization, Characterization, and Efficacy Evaluation of 2% Chitosan Scaffold for Tissue Engineering and Wound Healing. J. Pharm. Bioallied Sci. 2016, 8, 300. DOI: 10.4103/0975-7406.199346.
  • Chhabra, P.; Mehra, L.; Mittal, G.; Kumar, A. A Comparative Study on the Efficacy of Chitosan Gel Formulation and Conventional Silver Sulfadiazine Treatment in Healing Burn Wound Injury at Molecular Level. Asian J. Pharm. 2017, 11, S489–S496.
  • Rath, G.; Hussain, T.; Chauhan, G.; Garg, T.; Goyal, A. K. Collagen Nanofiber Containing Silver Nanoparticles for Improved Wound-Healing Applications. J. Drug Target. 2016, 24, 520–529. DOI: 10.3109/1061186X.2015.1095922.
  • Kitamura, A.; Minematsu, T.; Nakagami, G.; Sanada, H. Assessment of Histopathology of Wounds Based on Protein Distribution Detected by Wound Blotting. SAGE open Med. 2018, 6, 2050312118812220. DOI: 10.1177/2050312118812220.
  • Dwivedi, D.; Dwivedi, M.; Malviya, S.; Singh, V. Evaluation of Wound Healing, Anti-Microbial and Antioxidant Potential of Pongamia Pinnata in Wistar Rats. J. Tradit. Complement. Med. 2017, 7, 79–85. DOI: 10.1016/j.jtcme.2015.12.002.
  • Li, Q.; Li, S.; Liu, Q.; Liu, X.; Shui, J.; Kong, X. Iodine Cation Bridged Graphene Sheets with Strengthened Interface Combination for Electromagnetic Wave Absorption. Carbon. 2021, 183, 100–107. DOI: 10.1016/j.carbon.2021.07.015.
  • Ramezanli, T.; Michniak-Kohn, B. B. Development and Characterization of a Topical Gel Formulation of Adapalene-TyroSpheres and Assessment of Its Clinical Efficacy. Mol. Pharm. 2018, 15, 3813–3822. DOI: 10.1021/acs.molpharmaceut.8b00318.
  • Ashry, N. M.; El Bahgy, H. E. K.; Mohamed, A.; Alsubhi, N. H.; Alrefaei, G. I.; Binothman, N.; Alharbi, M.; Selim, S.; Almuhayawi, M. S.; Alharbi, M. T., et al. Evaluation of Graphene Oxide, Chitosan and Their Complex as Antibacterial Agents and Anticancer Apoptotic Effect on HeLa Cell Line. Front. Microbiol. 2022, 13. DOI: 10.3389/fmicb.2022.922324.
  • Su, Z.; Sun, D.; Zhang, L.; He, M.; Jiang, Y.; Millar, B.; Douglas, P.; Mariotti, D.; Maguire, P.; Sun, D. Chitosan/Silver Nanoparticle/Graphene Oxide Nanocomposites with Multi-Drug Release, Antimicrobial, and Photothermal Conversion Functions. Mater. (Basel, Switzerland). 2021, 14. DOI: 10.3390/ma14092351.
  • Li, R.; Wang, Z.; Lian, X.; Hu, X.; Wang, Y. Antimicrobial Rubber Nanocapsule-Based Iodophor Promotes Wound Healing. CCS Chem. 2020, 2, 245–256. DOI: 10.31635/ccschem.020.201900101.
  • Feng, W.; Wang, Z. Biomedical Applications of Chitosan-Graphene Oxide Nanocomposites. iScience. 2022, 25, 103629. DOI: 10.1016/j.isci.2021.103629.
  • Chhabra, P.; Mehra, L.; Mittal, G.; Kumar, A. A Comparative Study on the Efficacy of Chitosan Gel Formulation and Conventional Silver Sulfadiazine Treatment in Healing Burn Wound Injury at Molecular Level. Asian J. Pharm. 2017, 11, 489–496.
  • Moeini, A.; Pedram, P.; Makvandi, P.; Malinconico, M.; Gomez d’ Ayala, G. Wound Healing and Antimicrobial Effect of Active Secondary Metabolites in Chitosan-Based Wound Dressings: A Review. Carbohydr. Polym. 2020, 233, 115839. DOI: 10.1016/j.carbpol.2020.115839.
  • Shin, S. R.; Li, Y.-C.; Jang, H. L.; Khoshakhlagh, P.; Akbari, M.; Nasajpour, A.; Zhang, Y. S.; Tamayol, A.; Khademhosseini, A. Graphene-Based Materials for Tissue Engineering. Adv. Drug Deliv. Rev. 2016, 105, 255–274. DOI: 10.1016/j.addr.2016.03.007.
  • Ali, I. H.; Ouf, A.; Elshishiny, F.; Taskin, M. B.; Song, J.; Dong, M.; Chen, M.; Siam, R.; Mamdouh, W. Antimicrobial and Wound-Healing Activities of Graphene-Reinforced Electrospun Chitosan/Gelatin Nanofibrous Nanocomposite Scaffolds. ACS Omega. 2022, 7, 1838–1850. DOI: 10.1021/acsomega.1c05095.
  • Berce, C.; Muresan, M.-S.; Soritau, O.; Petrushev, B.; Tefas, L.; Rigo, I.; Ungureanu, G.; Catoi, C.; Irimie, A.; Tomuleasa, C. Cutaneous Wound Healing Using Polymeric Surgical Dressings Based on Chitosan, Sodium Hyaluronate and Resveratrol. A Preclinical Experimental Study. Colloids Surf. B Biointerfaces. 2018, 163, 155–166. DOI: 10.1016/j.colsurfb.2017.12.041.
  • Gouda, M. H.; Ali, S. M.; Othman, S. S.; Abd Al-Aziz, S. A.; Abu-Serie, M. M.; Elsokary, N. A.; Elessawy, N. A. Novel Scaffold Based Graphene Oxide Doped Electrospun Iota Carrageenan/Polyvinyl Alcohol for Wound Healing and Pathogen Reduction: In-Vitro and in-Vivo Study. Sci. Rep. 2021, 11, 20456. DOI: 10.1038/s41598-021-00069-0.
  • Johansen, P. G.; Marshall, R. D.; Neuberger, A. Carbohydrates in Protein. 2. The Hexose, Hexosamine, Acetyl and Amide-Nitrogen Content of Hen’s-Egg Albumin. Biochem. J. 1960, 77(2), 239. DOI: 10.1042/bj0770239.
  • Cissell, D. D.; Link, J. M.; Hu, J. C.; Athanasiou, K. A. A Modified Hydroxyproline Assay Based on Hydrochloric Acid in Ehrlich’s Solution Accurately Measures Tissue Collagen Content. Tissue Eng. Part C Methods. 2017, 23, 243–250. DOI: 10.1089/ten.tec.2017.0018.
  • Albaugh, V. L.; Mukherjee, K.; Barbul, A. Proline Precursors and Collagen Synthesis: Biochemical Challenges of Nutrient Supplementation and Wound Healing. J. Nutr. 2017, 147, 2011–2017. DOI: 10.3945/jn.117.256404.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.