130
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A complete overview of self-healing composites including its models in aeronautical systems

, , , &
Pages 1143-1174 | Received 12 Jan 2024, Accepted 27 Feb 2024, Published online: 17 Mar 2024

References

  • Chee, S. S.; Jawaid, M.; Sultan, M. T. H.; Alothman, O. Y.; Abdullah, L. C. Thermomechanical and Dynamic Mechanical Properties of Bamboo/Woven Kenaf Mat Reinforced Epoxy Hybrid Composites. Compos. Part B Eng. 2019, 163, 165–174. DOI: 10.1016/j.compositesb.2018.11.039.
  • Wang, X.; Liang, D.; Cheng, B. Preparation and Research of Intrinsic Self-Healing Elastomers Based on Hydrogen and Ionic Bond. Compos. Sci. Technol. 2020, 193, 108127. DOI: 10.1016/j.compscitech.2020.108127.
  • Rahmani, H.; Eslami-Farsani, R.; Ebrahimnezhad-Khaljiri, H. High Velocity Impact Response of Aluminum-Carbon Fibers-Epoxy Laminated Composites Toughened by Nano Silica and Zirconia. Fibers Polym. 2020, 21(1), 170–178. DOI: 10.1007/s12221-020-9594-4.
  • Han, J.; Ding, Q.; Mei, C.; Wu, Q.; Yue, Y.; Xu, X. An Intrinsically Self-Healing and Biocompatible Electroconductive Hydrogel Based on Nanostructured Nanocellulose-Polyaniline Complexes Embedded in a Viscoelastic Polymer Network Towards Flexible Conductors and Electrodes. Electrochim. Acta. 2019, 318, 660–672. DOI: 10.1016/j.electacta.2019.06.132.
  • Ding, Q.; Xu, X.; Yue, Y.; Mei, C.; Huang, C.; Jiang, S.; Wu, Q.; Han, J. Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility Toward Multifunctional Applications. ACS Appl. Mater. Interfaces. 2018, 10(33), 27987–28002. DOI: 10.1021/acsami.8b09656.
  • Ghosh, S. K. Self-Healing Materials: Fundamentals, Design Strategies, and Applications; Wiley Online Library, 2009; Vol. 18. https://application.wiley-vch.de/books/sample/3527318291_c01.pdf
  • Feiz, A.; Khosravi, H. Multiscale Composites Based on a Nanoclay-Enhanced Matrix and E-Glass Chopped Strand Mat. J. Reinf. Plast. Compos. 2019, 38(13), 591–600. DOI: 10.1177/0731684419836219.
  • Naresh, K.; Cantwell, W. J.; Khan, K. A.; Umer, R. Single and Multi-Layer Core Designs for Pseudo-Ductile Failure in Honeycomb Sandwich Structures. Compos. Struct. 2021, 256, 113059. DOI: 10.1016/j.compstruct.2020.113059.
  • Khan, T.; Irfan, M. S.; Cantwell, W. J.; Umer, R. Crack Healing in Infusible Thermoplastic Composite Laminates. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106896. DOI: 10.1016/j.compositesa.2022.106896.
  • Bolimowski, P. A.; Bond, I. P.; Wass, D. F. Robust Synthesis of Epoxy Resin-Filled Microcapsules for Application to Self-Healing Materials. Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 2016, 374(2061), 20150083. DOI: 10.1098/rsta.2015.0083.
  • Ouyang, Z.; Yu, H.-Y.; Song, M.; Zhu, J.; Wang, D. Ultrasensitive and Robust Self-Healing Composite Films with Reinforcement of Multi-Branched Cellulose Nanocrystals. Compos. Sci. Technol. 2020, 198, 108300. DOI: 10.1016/j.compscitech.2020.108300.
  • Karimi, M.; Bayesteh, H.; Mohammadi, S. An Adapting Cohesive Approach for Crack-Healing Analysis in SMA Fiber-Reinforced Composites. Comput. Methods Appl. Mech. Eng. 2019, 349, 550–575. DOI: 10.1016/j.cma.2019.02.019.
  • Ahangaran, F.; Hayaty, M.; Navarchian, A. H.; Picchioni, F. Micromechanical Assessment of PMMA Microcapsules Containing Epoxy and Mercaptan as Self-Healing Agents. Polym. Test. 2017, 64, 330–336. DOI: 10.1016/j.polymertesting.2017.10.014.
  • Al-Tabbaa, A.; Litina, C.; Giannaros, P.; Kanellopoulos, A.; Souza, L. First UK Field Application and Performance of Microcapsule-Based Self-Healing Concrete. Constr. Build. Mater. 2019, 208, 669–685. DOI: 10.1016/j.conbuildmat.2019.02.178.
  • Maira, B.; Takeuchi, K.; Chammingkwan, P.; Terano, M.; Taniike, T. Thermal Conductivity of Polypropylene/Aluminum Oxide Nanocomposites Prepared Based on Reactor Granule Technology. Compos. Sci. Technol. 2018, 165, 259–265. DOI: 10.1016/j.compscitech.2018.07.007.
  • Nematollahi, B.; Sanjayan, J.; Shaikh, F. U. A. Comparative Deflection Hardening Behavior of Short Fiber Reinforced Geopolymer Composites. Constr. Build. Mater. 2014, 70, 54–64. DOI: 10.1016/j.conbuildmat.2014.07.085.
  • Parida, C.; Dash, S. K.; Das, S. C. Effect of Fiber Treatment and Fiber Loading on Mechanical Properties of Luffa-Resorcinol Composites. Indian J. Mater. Sci. 2015, 2015, 1–6. DOI: 10.1155/2015/658064.
  • Yu, C.; Zhang, J.; Li, Z.; Tian, W.; Wang, L.; Luo, J.; Li, Q.; Fan, X.; Yao, Y. Enhanced Through-Plane Thermal Conductivity of Boron Nitride/Epoxy Composites. Compos. Part A Appl. Sci. Manuf. 2017, 98, 25–31. DOI: 10.1016/j.compositesa.2017.03.012.
  • Cohades, A.; Branfoot, C.; Rae, S.; Bond, I.; Michaud, V. Progress in Self‐Healing Fiber‐Reinforced Polymer Composites. Adv. Mater. Interfaces. 2018, 5(17), 1800177. DOI: 10.1002/admi.201800177.
  • De Rooij, M.; Van Tittelboom, K.; De Belie, N.; Schlangen, E. Self-Healing Phenomena in Cement-Based Materials: State-Of-The-Art Report of RILEM Technical Committee 221-SHC: Self-Healing Phenomena in Cement-Based Materials; Springer, 2013; Vol. 11. DOI: 10.1007/978-94-007-6624-2.
  • Kanu, N. J.; Gupta, E.; Vates, U. K.; Singh, G. K. Self-Healing Composites: A State-Of-The-Art Review. Compos. Part A Appl. Sci. Manuf. 2019, 121, 474–486. DOI: 10.1016/j.compositesa.2019.04.012.
  • Larin, G. E.; Bernklau, N.; Kessler, M. R.; DiCesare, J. C. Rheokinetics of Ring‐Opening Metathesis Polymerization of Norbornene‐Based Monomers Intended for Self‐Healing Applications. Polym. Eng. Sci. 2006, 46(12), 1804–1811. DOI: 10.1002/pen.20655.
  • Rule, J. D.; Sottos, N. R.; White, S. R. Effect of Microcapsule Size on the Performance of Self-Healing Polymers. Polymer (Guildf.). 2007, 48(12), 3520–3529. DOI: 10.1016/j.polymer.2007.04.008.
  • Khan, N. I.; Halder, S.; Wang, J. Diels-Alder Based Epoxy Matrix and Interfacial Healing of Bismaleimide Grafted GNP Infused Hybrid Nanocomposites. Polym. Test. 2019, 74, 138–151. DOI: 10.1016/j.polymertesting.2018.12.021.
  • Ebrahimnezhad-Khaljiri, H.; Eslami-Farsani, R.; Banaie, K. A. The Evaluation of the Thermal and Mechanical Properties of Aramid/semi-Carbon Fibers Hybrid Composites. Fibers Polym. 2017, 18(2), 296–302. DOI: 10.1007/s12221-017-6442-2.
  • Ebrahimnezhad‐Khaljiri, H.; Eslami‐Farsani, R. Thermal and Mechanical Properties of Hybrid Carbon/Oxidized Polyacrylonitrile Fibers‐Epoxy Composites. Polym. Compos. 2017, 38(7), 1412–1417. DOI: 10.1002/pc.23708.
  • Ebrahimnezhad-Khaljiri, H.; Eslami-Farsani, R. The Effect of Hybridization on Thermal and Mechanical Properties of Glass/Oxidized PAN Fibers-Polymer Composites. Fibers Polym. 2015, 16(11), 2445–2450. DOI: 10.1007/s12221-015-5296-8.
  • Eslami-Farsani, R.; Khazaie, M. Effect of Shape Memory Alloy Wires on High-Velocity Impact Response of Basalt Fiber Metal Laminates. J. Reinf. Plast. Compos. 2018, 37(5), 300–309. DOI: 10.1177/0731684417744054.
  • Ebrahimnezhad-Khaljiri, H.; Eslami-Farsani, R.; Akbarzadeh, E. Effect of Interlayer Hybridization of Carbon, Kevlar, and Glass Fibers with Oxidized Polyacrylonitrile Fibers on the Mechanical Behaviors of Hybrid Composites. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234(9), 1823–1835. DOI: 10.1177/0954406219897935.
  • Zwaag, S. Self Healing Materials: An Alternative Approach to 20 Centuries of Material Science; Univ. Michigan Springer, 2007. https://research.tudelft.nl/en/publications/self-healing-materials-an-alternative-approach-to-20-centuries-of.
  • Qureshi, T.; Kanellopoulos, A.; Al-Tabbaa, A. Autogenous Self-Healing of Cement with Expansive Minerals-II: Impact of Age and the Role of Optimised Expansive Minerals in Healing Performance. Constr. Build. Mater. 2019, 194, 266–275. DOI: 10.1016/j.conbuildmat.2018.11.027.
  • Ye, B.; Zhang, S.; Li, R.; Li, L.; Lu, L.; Zhou, C. An in-Situ Formable and Fibrils-Reinforced Polysaccharide Composite Hydrogel by Self-Crosslinking with Dual Healing Ability. Compos. Sci. Technol. 2018, 156, 238–246. DOI: 10.1016/j.compscitech.2017.12.032.
  • Gu, J.; Lv, Z.; Wu, Y.; Guo, Y.; Tian, L.; Qiu, H.; Li, W.; Zhang, Q. Dielectric Thermally Conductive Boron Nitride/Polyimide Composites with Outstanding Thermal Stabilities via in-Situ Polymerization-Electrospinning-Hot Press Method. Compos. Part A Appl. Sci. Manuf. 2017, 94, 209–216. DOI: 10.1016/j.compositesa.2016.12.014.
  • Zheng, C.; Yue, Y.; Gan, L.; Xu, X.; Mei, C.; Han, J. Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels. Nanomaterials. 2019, 9(7), 937. DOI: 10.3390/nano9070937.
  • Bond, I. P.; Trask, R. S.; Williams, H. R. Self-Healing Fiber-Reinforced Polymer Composites. MRS Bull. 2008, 33(8), 770–774. DOI: 10.1557/mrs2008.164.
  • Chen, X.; Wudl, F.; Mal, A. K.; Shen, H.; Nutt, S. R. New Thermally Remendable Highly Cross-Linked Polymeric Materials. Macromolecules. 2003, 36(6), 1802–1807. DOI: 10.1021/ma0210675.
  • Chen, X. Novel Polymers with Thermally Controlled Covalent Cross-Linking; University of California: Los Angeles, 2003.
  • Sadasivuni, K. K.; Cabibihan, J.-J.; Deshmukh, K.; Goutham, S.; Abubasha, M. K.; Gogoi, J. P.; Klemenoks, I.; Sakale, G.; Sekhar, B. S.; Rama Sreekanth, P. S. A Review on Porous Polymer Composite Materials for Multifunctional Electronic Applications. Polym. Technol. Mater. 2019, 58(12), 1253–1294. DOI: 10.1080/03602559.2018.1542729.
  • DiCarlo, J. A. Microstructural Optimization of High Temperature SiC/SiC Composites. In 5th International Conference on High Temperature Ceramic Matrix Composites; Seattle: WA, USA, 2004.
  • Danish, A.; Salim, M. U.; Ahmed, T. Trends and Developments in Green Cement “A Sustainable Approach. Sustain. Struct. Mater. An Int. J. 2019, 2(1), 45–60.
  • Ebrahimnezhad-Khaljiri, H.; Eslami-Farsani, R.; Khosravi, H.; Shahrabi-Farahani, A. Improving the Flexural Properties of E-Glass Fibers/Epoxy Isogrid Stiffened Composites Through Addition of 3-Glycidoxypropyltrimethoxysilane Functionalized Nanoclay. Silicon. 2020, 12(11), 2515–2523. DOI: 10.1007/s12633-019-00346-8.
  • Garoushi, S.; Vallittu, P.; Lassila, L. Hollow Glass Fibers in Reinforcing Glass Ionomer Cements. Dent. Mater. 2017, 33(2), e86–e93. DOI: 10.1016/j.dental.2016.10.004.
  • Cho, S. H.; Andersson, H. M.; White, S. R.; Sottos, N. R.; Braun, P. V. Polydimethylsiloxane‐Based Self‐Healing Materials. Adv. Mater. 2006, 18(8), 997–1000. DOI: 10.1002/adma.200501814.
  • Xue, C.; Li, W.; Li, J.; Tam, V. W. Y.; Ye, G. A Review Study on Encapsulation‐Based Self‐Healing for Cementitious Materials. Struct. Concr. 2019, 20(1), 198–212. DOI: 10.1002/suco.201800177.
  • Chowdhury, R. A.; Hosur, M. V.; Nuruddin, M.; Tcherbi-Narteh, A.; Kumar, A.; Boddu, V.; Jeelani, S. Self-Healing Epoxy Composites: Preparation, Characterization and Healing Performance. J. Mater. Res. Technol. 2015, 4(1), 33–43. DOI: 10.1016/j.jmrt.2014.10.016.
  • de Carvalho, A. C. M.; Ferreira, E. P. D. C.; Bomio, M.; Melo, J. D. D.; Cysne Barbosa, A. P.; Costa, M. C. B. Influence of Synthesis Parameters on Properties and Characteristics of Poly (Urea-Formaldehyde) Microcapsules for Self-Healing Applications. J. Microencapsul. 2019, 36(4), 410–419. DOI: 10.1080/02652048.2019.1638462.
  • Ebrahimnezhad-Khaljiri, H.; Eslami-Farsani, R. Experimental Investigation of Flexural Properties of Glass Fiber–Epoxy Self-Healable Composite Structures Containing Capsulated Epoxy Healing Agent and NiCl2(imidazole)4 Catalyst. J. Ind. Text. 2021, 51(5), 788–805. DOI: 10.1177/1528083719892923.
  • Aloui, H.; Khwaldia, K.; Hamdi, M.; Fortunati, E.; Kenny, J. M.; Buonocore, G. G.; Lavorgna, M. Synergistic Effect of Halloysite and Cellulose Nanocrystals on the Functional Properties of PVA Based Nanocomposites. ACS Sustain. Chem. Eng. 2016, 4(3), 794–800. DOI: 10.1021/acssuschemeng.5b00806.
  • Tekinalp, H. L.; Kunc, V.; Velez-Garcia, G. M.; Duty, C. E.; Love, L. J.; Naskar, A. K.; Blue, C. A.; Ozcan, S. Highly Oriented Carbon Fiber–Polymer Composites via Additive Manufacturing. Compos. Sci. Technol. 2014, 105, 144–150. DOI: 10.1016/j.compscitech.2014.10.009.
  • Qiao, H.; Qi, P.; Zhang, X.; Wang, L.; Tan, Y.; Luan, Z.; Xia, Y.; Li, Y.; Sui, K. Multiple Weak H-Bonds Lead to Highly Sensitive, Stretchable, Self-Adhesive, and Self-Healing Ionic Sensors. ACS Appl. Mater. Interfaces. 2019, 11(8), 7755–7763. DOI: 10.1021/acsami.8b20380.
  • He, Z.; Jiang, S.; An, N.; Li, X.; Li, Q.; Wang, J.; Zhao, Y.; Kang, M. Self-Healing Isocyanate Microcapsules for Efficient Restoration of Fracture Damage of Polyurethane and Epoxy Resins. J. Mater. Sci. 2019, 54(11), 8262–8275. DOI: 10.1007/s10853-018-03236-3.
  • Suslu, H.; Fan, J.; Ibekwe, S.; Jerro, D.; Mensah, P.; Li, G. Shape Memory Alloy Reinforced Vitrimer Composite for Healing Wide-Opened Cracks. Smart Mater. Struct. 2020, 29(6), 65008. DOI: 10.1088/1361-665X/ab85a7.
  • Xu, H.; Feng, Z.-X.; Xie, L.; Hakkarainen, M. Graphene Oxide-Driven Design of Strong and Flexible Biopolymer Barrier Films: From Smart Crystallization Control to Affordable Engineering. ACS Sustain. Chem. Eng. 2016, 4(1), 334–349. DOI: 10.1021/acssuschemeng.5b01273.
  • Bergman, S. D.; Wudl, F. Mendable Polymers. J. Mater. Chem. 2008, 18(1), 41–62. DOI: 10.1039/B713953P.
  • Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A Thermally Re-Mendable Cross-Linked Polymeric Material. Science. 2002, 295(5560), 1698–1702. (80-.). DOI: 10.1126/science.1065879.
  • Du, Y.; Li, D.; Liu, L.; Gai, G. Recent Achievements of Self-Healing Graphene/Polymer Composites. Polymers. 2018, 10(2), 114. DOI: 10.3390/polym10020114.
  • Bellah, M.; Nosonovsky, M.; Rohatgi, P. Recent Advances in Self-Healing Metal Matrix Composites. Met. Compos. Adv. Process. Charact. Perform. Anal 13(12), 2022, 297–310.
  • 新谷紀雄; 京野純郎. 自己修復材料研究の現状と展望. 日本ロボット学会誌. 2006. 244, 442–447. 10.7210/jrsj.24.442
  • Ji, B.; Wu, Y.; Zhang, P.; Zhao, X. Mussel Inspired Interfacial Modification of Boron Nitride/Carbon Nanotubes Hybrid Fillers for Epoxy Composites with Improved Thermal Conductivity and Electrical Insulation Properties. J. Polym. Res. 2020, 27(8), 1–12. DOI: 10.1007/s10965-020-02189-z.
  • Ebrahimnezhad-Khaljiri, H.; Eslami-Farsani, R. The Tensile Properties and Interlaminar Shear Strength of Microcapsules-Glass Fibers/Epoxy Self-Healable Composites. Eng. Fract. Mech. 2020, 230, 106937. DOI: 10.1016/j.engfracmech.2020.106937.
  • Cuenca, E.; Tejedor, A.; Ferrara, L. A Methodology to Assess Crack-Sealing Effectiveness of Crystalline Admixtures Under Repeated Cracking-Healing Cycles. Constr. Build. Mater. 2018, 179, 619–632. DOI: 10.1016/j.conbuildmat.2018.05.261.
  • Provis, J. L. Alkali-Activated Materials. Cem. Concr. Res. 2018, 114, 40–48. DOI: 10.1016/j.cemconres.2017.02.009.
  • Han, J.; Lu, K.; Yue, Y.; Mei, C.; Huang, C.; Wu, Q.; Xu, X. Nanocellulose-Templated Assembly of Polyaniline in Natural Rubber-Based Hybrid Elastomers Toward Flexible Electronic Conductors. Ind. Crops Prod. 2019, 128, 94–107. DOI: 10.1016/j.indcrop.2018.11.004.
  • Jaysingrao, J. S.; Sunil, C. N. Nutritional Assessment of Fruits of Luffa Acutangula Var. Amara. Int. J. Sci. Res. 2014, 10, 2205–2207.
  • Wang, J. Y.; Soens, H.; Verstraete, W.; De Belie, N. Self-Healing Concrete by Use of Microencapsulated Bacterial Spores. Cem. Concr. Res. 2014, 56, 139–152. DOI: 10.1016/j.cemconres.2013.11.009.
  • Kian, L. K.; Saba, N.; Jawaid, M.; Sultan, M. T. H. A Review on Processing Techniques of Bast Fibers Nanocellulose and Its Polylactic Acid (PLA) Nanocomposites. Int J Biol Macromol. 2019, 121, 1314–1328. DOI: 10.1016/j.ijbiomac.2018.09.040.
  • Kling, S.; Czigány, T. Damage Detection and Self-Repair in Hollow Glass Fiber Fabric-Reinforced Epoxy Composites via Fiber Filling. Compos. Sci. Technol. 2014, 99, 82–88. DOI: 10.1016/j.compscitech.2014.05.020.
  • Kumar, P.; Patnaik, A.; Chaudhary, S. A Review on Application of Structural Adhesives in Concrete and Steel–Concrete Composite and Factors Influencing the Performance of Composite Connections. Int. J. Adhes. Adhes. 2017, 77, 1–14. DOI: 10.1016/j.ijadhadh.2017.03.009.
  • Tian, K.; Bae, J.; Bakarich, S. E.; Yang, C.; Gately, R. D.; Spinks, G. M.; Vlassak, Z.; Suo, J. J. 3D Printing of Transparent and Conductive Heterogeneous Hydrogel–Elastomer Systems. Adv. Mater. 2017, 29(10). DOI: 10.1002/adma.201604827.
  • Keller, M. W.; White, S. R.; Sottos, N. R. An Elastomeric Self-Healing Material. In Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, Society for Experimental Mechanics: Saint Louis, Missouri, USA, 2006; vol. 1. pp. 379–382.
  • Montesano, J.; McCleave, B.; Singh, C. V. Prediction of Ply Crack Evolution and Stiffness Degradation in Multidirectional Symmetric Laminates Under Multiaxial Stress States. Compos. Part B Eng. 2018, 133, 53–67. DOI: 10.1016/j.compositesb.2017.09.016.
  • Liu, Y.; Hsieh, C. Crosslinked Epoxy Materials Exhibiting Thermal Remendablility and Removability from Multifunctional Maleimide and Furan Compounds. J. Polym. Sci. Part A Polym. Chem. 2006, 44(2), 905–913. DOI: 10.1002/pola.21184.
  • Cao, L.; Yuan, D.; Xu, C.; Chen, Y.; Biobased, S.-H. High Strength Rubber with Tunicate Cellulose Nanocrystals. Nanoscale. 2017, 9(40), 15696–15706. DOI: 10.1039/C7NR05011A.
  • Ferrara, L.; Krelani, V.; Moretti, F. On the Use of Crystalline Admixtures in Cement Based Construction Materials: From Porosity Reducers to Promoters of Self Healing. Smart Mater. Struct. 2016, 25(8), 84002. DOI: 10.1088/0964-1726/25/8/084002.
  • Ferrara, L.; Krelani, V.; Moretti, F. Autogenous Healing on the Recovery of Mechanical Performance of High Performance Fibre Reinforced Cementitious Composites (HPFRCCs): Part 2–Correlation Between Healing of Mechanical Performance and Crack Sealing. Cem. Concr. Compos. 2016, 73, 299–315. DOI: 10.1016/j.cemconcomp.2016.08.003.
  • Ferrara, L.; Krelani, V.; Moretti, F.; Flores, M. R.; Ros, P. S. Effects of Autogenous Healing on the Recovery of Mechanical Performance of High Performance Fibre Reinforced Cementitious Composites (HPFRCCs): Part 1. Cem. Concr. Compos. 2017, 83, 76–100. DOI: 10.1016/j.cemconcomp.2017.07.010.
  • Thostenson, E. T.; Chou, T. Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing. Adv. Mater. 2006, 18(21), 2837–2841. DOI: 10.1002/adma.200600977.
  • Liu, Y.; Zhou, L.; Wang, L.; Pan, X.; Wang, K.; Shu, J.; Liu, L.; Zhang, H.; Lin, L.; Shi, X. Air-Dried Porous Powder of Polymethyl Methacrylate Modified Cellulose Nanocrystal Nanocomposite and Its Diverse Applications. Compos. Sci. Technol. 2020, 188, 107985. DOI: 10.1016/j.compscitech.2019.107985.
  • Ni, W.; Cheng, Y.-T.; Grummon, D. S. Recovery of Microindents in a Nickel–Titanium Shape-Memory Alloy: A “Self-Healing” Effect. Appl. Phys. Lett. 2002, 80(18), 3310–3312. DOI: 10.1063/1.1476064.
  • Lee, J.; Bhattacharyya, D.; Zhang, M. Q.; Yuan, Y. C. Mechanical Properties of a Self-Healing Fibre Reinforced Epoxy Composites. Compos. Part B Eng. 2015, 78, 515–519. DOI: 10.1016/j.compositesb.2015.04.014.
  • Wang, L.; Qiu, H.; Liang, C.; Song, P.; Han, Y.; Han, Y.; Gu, J.; Kong, J.; Pan, D.; Guo, Z. Electromagnetic Interference Shielding MWCNT-Fe3O4@ Ag/Epoxy Nanocomposites with Satisfactory Thermal Conductivity and High Thermal Stability. Carbon. 2019, 141, 506–514. DOI: 10.1016/j.carbon.2018.10.003.
  • Manfredi, E. Assessment of Solvent Capsule-Based Healing for Woven Fibre-Reinforced Epoxies; EPFL, 2015. DOI: 10.1088/0964-1726/24/1/015019.
  • Roig-Flores, M.; Moscato, S.; Serna, P.; Ferrara, L. Self-Healing Capability of Concrete with Crystalline Admixtures in Different Environments. Constr. Build. Mater. 2015, 86, 1–11. DOI: 10.1016/j.conbuildmat.2015.03.091.
  • Low, C. T. J.; Walsh, F. C. Self-Lubricating Metal Composite Coatings by Electrodeposition or Electroless Deposition. Encycl. Tribol. 2013, 3025–3031.
  • Garitte, E. Etude de l’oxydation/Corrosion Des Composites Céramiques. Université Bordeaux. 2007, 1, 1–235.
  • Roig-Flores, M.; Pirritano, F.; Serna, P.; Ferrara, L. Effect of Crystalline Admixtures on the Self-Healing Capability of Early-Age Concrete Studied by Means of Permeability and Crack Closing Tests. Constr. Build. Mater. 2016, 114, 447–457. DOI: 10.1016/j.conbuildmat.2016.03.196.
  • Maharaj, P. S. R. S.; Maheswaran, R.; Vasanthanathan, A. Numerical Analysis of Fractured Femur Bone with Prosthetic Bone Plates. Procedia Eng. 2013, 64, 1242–1251. DOI: 10.1016/j.proeng.2013.09.204.
  • Maharaj, P. S. R. S.; Vasanthanathan, A.; Ebenezer, F. B. D.; Giriharan, R.; Athithiyan, M. In Situ Bio Printing of Carbon Fiber Reinforced PEEK Hip Implant Stem. AIP Conf. Proc. 2022, October, 2653. DOI: 10.1063/5.0110578.
  • Vasanthanathan, A.; Kennedy, S. M. Bio-Printing of Femur Model: A Bone Substitute for Biomedical Research. Mater. Tehnol. 2023, 57(3), 283–289. DOI: 10.17222/mit.2023.831.
  • Senthil Maharaj, P.; Vasanthanathan, A. An Insight into the Mechanical and Tribological Behavior of Carbon-Flax Reinforced Bioepoxy Hybrid Composite Bone Plates for Orthopedic Applications. Polymers And Polymer Composites. 2023, 31, 1–11. DOI: 10.1177/09673911231178444.
  • Kennedy, S. M.; Robert, R. B. J.; Seenikannan, P.; Arunachalam, V.; Amudhan, K. An Investigation on Mechanical Properties of 3D Pen Fused Zones for Additive Manufactured Parts. Eng. Solid Mech. 2023, 11(3), 263–270. DOI: 10.5267/j.esm.2023.3.003.
  • Kennedy, S. M.; Amudhan, K.; Jeen Robert, R. B.; Vasanthanathan, A.; Vignesh Moorthi Pandian, A. Experimental and Finite Element Analysis on the Effect of Pores on Bio-Printed Polycaprolactone Bone Scaffolds. Bioprinting. 2023, 34(August), e00301. DOI: 10.1016/j.bprint.2023.e00301.
  • Kennedy, S. M.; Vasanthanathan, A.; RB, J. R.; Amudhan, K. Advancements and Prospects of Polymer-Based Hybrid Composites for Bone Plate Applications. Polym. Technol. Mater. 2023, 63(1), 1–20. DOI: 10.1080/25740881.2023.2274564.
  • Kennedy, S. M.; Raghav, G. R.; Jeen Robert, R. B.; Manikandaraja, G.; Selvakumar, M. PEEK-Based 3D Printing: A Paradigm Shift in Implant Revolution for Healthcare. Polym. Technol. Mater. 2024, 00(00), 1–23. DOI: 10.1080/25740881.2024.2302537.
  • Maharaj, S.; Vasanthanathan, K. A.; Jeen, R. B.; Vignesh, R. A.; Pandian, M. Impact of Mechanical Engineering Innovations in Biomedical Advancements. Vitr. Model. 2024, No. 0123456789. DOI: 10.1007/s44164-024-00065-4.
  • Song, M.-L.; Yu, H.-Y.; Chen, L.-M.; Zhu, J.-Y.; Wang, Y.-Y.; Yao, J.-M.; Zou, Z.; Tam, K. C. Multibranch Strategy to Decorate Carboxyl Groups on Cellulose Nanocrystals to Prepare Adsorbent/Flocculants and Pickering Emulsions. ACS Sustain. Chem. Eng. 2019, 7(7), 6969–6980. DOI: 10.1021/acssuschemeng.8b06671.
  • Ali, M. K.; Kinuthia, A. I. A.; Kinuthia, J. M.; Babecki, R.-S. Healing and Strength Development of Geopolymer Concrete Made with Waste by Products. Int. Conf. Biol. Civ. Environ. Eng. 2015, 1, 3–4.
  • Alshaaer, M.; Mallouh, S. A.; Al-Kafawein, J.; Al-Faiyz, Y.; Fahmy, T.; Kallel, A.; Fabrication, R. F. Microstructural and Mechanical Characterization of Luffa Cylindrical Fibre – Reinforced Geopolymer Composite. Appl. Clay Sci. 2017, 143, 125–133. DOI: 10.1016/j.clay.2017.03.030.
  • Srivastava, V.; Gupta, M. Approach to Self Healing in Metal Matrix Composites: A Review. Mater. Today Proc. 2018, 5(9, Part 3), 19703–19713. DOI: 10.1016/j.matpr.2018.06.332.
  • Li, F.; Yu, H.-Y.; Wang, Y.-Y.; Zhou, Y.; Zhang, H.; Yao, J.-M.; Abdalkarim, S. Y. H.; Tam, K. C. Natural Biodegradable Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Nanocomposites with Multifunctional Cellulose Nanocrystals/Graphene Oxide Hybrids for High-Performance Food Packaging. J. Agric. Food. Chem. 2019, 67(39), 10954–10967. DOI: 10.1021/acs.jafc.9b03110.
  • Azizi, A.; Gadinski, M. R.; Li, Q.; AlSaud, M. A.; Wang, J.; Wang, Y.; Wang, B.; Liu, F.; Chen, L.-Q.; Alem, N., et al. High-Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High-Temperature Dielectric Materials. Adv. Mater. 2017, 29(35), 1701864.
  • An, F.; Li, X.; Min, P.; Li, H.; Dai, Z.; Yu, Z.-Z. Highly Anisotropic Graphene/Boron Nitride Hybrid Aerogels with Long-Range Ordered Architecture and Moderate Density for Highly Thermally Conductive Composites. Carbon. 2018, 126, 119–127. DOI: 10.1016/j.carbon.2017.10.011.
  • Act, C.; Act, C.; Act, T. C. A Thesis Submitted in Fulfillment. 1968, No. December.
  • Han, L.; Cui, S.; Yu, H.-Y.; Song, M.; Zhang, H.; Grishkewich, N.; Huang, C.; Kim, D.; Tam, K. M. C. Self-Healable Conductive Nanocellulose Nanocomposites for Biocompatible Electronic Skin Sensor Systems. ACS Appl. Mater. Interfaces. 2019, 11(47), 44642–44651. DOI: 10.1021/acsami.9b17030.
  • Karaiskos, G.; Tsangouri, E.; Aggelis, D. G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D. Performance Monitoring of Large-Scale Autonomously Healed Concrete Beams Under Four-Point Bending Through Multiple Non-Destructive Testing Methods. Smart Mater. Struct. 2016, 25(5), 55003. DOI: 10.1088/0964-1726/25/5/055003.
  • Guadagno, L.; Vertuccio, L.; Naddeo, C.; Calabrese, E.; Barra, G.; Raimondo, M.; Sorrentino, A.; Binder, W. H.; Michael, P.; Rana, S. Self-Healing Epoxy Nanocomposites via Reversible Hydrogen Bonding. Compos. Part B Eng. 2019, 157, 1–13. DOI: 10.1016/j.compositesb.2018.08.082.
  • Mi, X.; Zhong, L.; Wei, F.; Zeng, L.; Zhang, J.; Zhang, D.; Xu, T. Fabrication of Halloysite Nanotubes/Reduced Graphene Oxide Hybrids for Epoxy Composites with Improved Thermal and Mechanical Properties. Polym. Test. 2019, 76, 473–480. DOI: 10.1016/j.polymertesting.2019.04.007.
  • Mohammadi, M. A.; Eslami-Farsani, R.; Ebrahimnezhad-Khaljiri, H. Experimental Investigation of the Healing Properties of the Microvascular Channels-Based Self-Healing Glass Fibers/Epoxy Composites Containing the Three-Part Healant. Polym. Test. 2020, 91, 106862. DOI: 10.1016/j.polymertesting.2020.106862.
  • Djugum, R.; Lumley, R. N.; Viano, D. M.; Davidson, C. J. Enhanced Fatigue Resistance in a Commercial Al-Cu-Mg Alloy Through Underageing. CSIRO Light Metals Flagship. 2009, 2009, 8–11.
  • Guadagno, L.; Longo, P.; Raimondo, M.; Naddeo, C.; Mariconda, A.; Sorrentino, A.; Vittoria, V.; Iannuzzo, G.; Russo, S. Cure Behavior and Mechanical Properties of Structural Self-Healing Epoxy Resins. J. Polym. Sci. Part B: Polym. Phys. 2010, 48(23), 2413–2423. DOI: 10.1002/polb.22139.
  • Zhu, M.; Yu, H.-Y.; Tang, F.; Li, Y.; Liu, Y.; Yao, J. Robust Natural Biomaterial Based Flexible Artificial Skin Sensor with High Transparency and Multiple Signals Capture. Chem. Eng. J. 2020, 394, 124855. DOI: 10.1016/j.cej.2020.124855.
  • Muhammad, N. Z.; Keyvanfar, A.; Abd, M. M. Z.; Shafaghat, A.; Mirza, J. Waterproof Performance of Concrete: A Critical Review on Implemented Approaches. Constr. Build. Mater. 2015, 101, 80–90. DOI: 10.1016/j.conbuildmat.2015.10.048.
  • Salowitz, N.; Correa, A.; Moghadam, A.Mechanics of NiTi Reinforced Self-Healing Materials Producing Crack Closing Loads10.1115/SMASIS2017-3939September 2017
  • Han, J.; Wang, H.; Yue, Y.; Mei, C.; Chen, J.; Huang, C.; Wu, Q.; Xu, X. A Self-Healable and Highly Flexible Supercapacitor Integrated by Dynamically Cross-Linked Electro-Conductive Hydrogels Based on Nanocellulose-Templated Carbon Nanotubes Embedded in a Viscoelastic Polymer Network. Carbon. 2019, 149, 1–18. DOI: 10.1016/j.carbon.2019.04.029.
  • Kılıçlı, V. Kendini Onarabilen/İyileştirebilen Metaller ve Metal Matrisli Kompozit Malzemeler.
  • Wool, R. P. Self-Healing Materials: A Review. Soft Matter. 2008, 4(3), 400–418. DOI: 10.1039/b711716g.
  • Ferguson, J. B.; Schultz, B. F.; Rohatgi, P. K. Self-Healing Metals and Metal Matrix Composites. JOM. 2014, 66(6), 866–871. DOI: 10.1007/s11837-014-0912-4.
  • Kwon, O. H.; Ha, T.; Kim, D.-G.; Kim, B. G.; Kim, Y. S.; Shin, T. J.; Koh, W.-G.; Lim, H. S.; Yoo, Y. Anisotropy-Driven High Thermal Conductivity in Stretchable Poly (Vinyl Alcohol)/Hexagonal Boron Nitride Nanohybrid Films. ACS Appl. Mater. Interfaces. 2018, 10(40), 34625–34633. DOI: 10.1021/acsami.8b12075.
  • Chen, J.; Sun, D.; Gu, T.; Qi, X.; Yang, J.; Lei, Y.; Wang, Y. Photo-Induced Shape Memory Blend Composites with Remote Selective Self-Healing Performance Enabled by Polypyrrole Nanoparticles. Compos. Sci. Technol. 2022, 217, 109123. DOI: 10.1016/j.compscitech.2021.109123.
  • Palanisamy, M.; Kolandasamy, P.; Awoyera, P.; Gobinath, R.; Muthusamy, S.; Krishnasamy, T. R.; Viloria, A. Permeability Properties of Lightweight Self-Consolidating Concrete Made with Coconut Shell Aggregate. J. Mater. Res. Technol. 2020, 9(3), 3547–3557. DOI: 10.1016/j.jmrt.2020.01.092.
  • Ubi, P. A.; Asipita, S. A. R. Effect of Sodium Hydroxide Treatment on the Mechanical Properties of Crushed and Uncrushed Luffa Cylindrica Fibre Reinforced Rldpe Composites. Int. J. Mater. Metall. Eng. 2015, 9(1), 203–208.
  • Han, J.; Wang, S.; Zhu, S.; Huang, C.; Yue, Y.; Mei, C.; Xu, X.; Xia, C. Electrospun Core–Shell Nanofibrous Membranes with Nanocellulose-Stabilized Carbon Nanotubes for Use as High-Performance Flexible Supercapacitor Electrodes with Enhanced Water Resistance, Thermal Stability, and Mechanical Toughness. ACS Appl. Mater. Interfaces. 2019, 11(47), 44624–44635. DOI: 10.1021/acsami.9b16458.
  • Alaneme, K. K.; Bodunrin, M. O. Self-Healing Using Metallic Material Systems–A Review. Appl. Mater. Today. 2017, 6, 9–15. DOI: 10.1016/j.apmt.2016.11.002.
  • JE, P. C.; Sultan, M. T. H.; Selvan, C. P.; Irulappasamy, S.; Mustapha, F.; Basri, A. A.; Safri, S. N. A. Manufacturing Challenges in Self-Healing Technology for Polymer Composites—A Review. J. Mater. Res. Technol. 2020, 9(4), 7370–7379. DOI: 10.1016/j.jmrt.2020.04.082.
  • Zheng, K.; Yang, X.; Chen, R.; Xu, L. Application of a Capillary Crystalline Material to Enhance Cement Grout for Sealing Tunnel Leakage. Constr. Build. Mater. 2019, 214, 497–505. DOI: 10.1016/j.conbuildmat.2019.04.095.
  • Krahl, P. A.; Gidrão, G. D. M. S.; Carrazedo, R. Cyclic Behavior of UHPFRC Under Compression. Cem. Concr. Compos. 2019, 104, 103363. DOI: 10.1016/j.cemconcomp.2019.103363.
  • Van den Heede, P.; Mignon, A.; Habert, G.; De Belie, N. Cradle-To-Gate Life Cycle Assessment of Self-Healing Engineered Cementitious Composite with In-House Developed (Semi-) Synthetic Superabsorbent Polymers. Cem. Concr. Compos. 2018, 94, 166–180. DOI: 10.1016/j.cemconcomp.2018.08.017.
  • Li, Q.; Chen, L.; Gadinski, M. R.; Zhang, S.; Zhang, G.; Li, H. U.; Iagodkine, E.; Haque, A.; Chen, L.-Q.; Jackson, T. N. Flexible High-Temperature Dielectric Materials from Polymer Nanocomposites. Nature. 2015, 523(7562), 576–579. DOI: 10.1038/nature14647.
  • Weng, Q.; Wang, X.; Wang, X.; Bando, Y.; Golberg, D. Functionalized Hexagonal Boron Nitride Nanomaterials: Emerging Properties and Applications. Chem. Soc. Rev. 2016, 45(14), 3989–4012. DOI: 10.1039/C5CS00869G.
  • Anjabin, R.; Khosravi, H. Property Improvement of a Fibrous Composite Using Functionalized Carbon Nanofibers. Polym. Compos. 2019, 40(11), 4281–4288. DOI: 10.1002/pc.25289.
  • Saeed, M.-U.; Chen, Z.; Li, B. Manufacturing Strategies for Microvascular Polymeric Composites: A Review. Compos. Part A Appl. Sci. Manuf. 2015, 78, 327–340. DOI: 10.1016/j.compositesa.2015.08.028.
  • Jones, A. R.; Watkins, C. A.; White, S. R.; Sottos, N. R. Self-Healing Thermoplastic-Toughened Epoxy. Polymer (Guildf.). 2015, 74, 254–261. DOI: 10.1016/j.polymer.2015.07.028.
  • Naslain, R.; Guette, A.; Rebillat, F.; Le Gallet, S.; Lamouroux, F.; Filipuzzi, L.; Louchet, C. Oxidation Mechanisms and Kinetics of SiC-Matrix Composites and Their Constituents. J. Mater. Sci. 2004, 39(24), 7303–7316. DOI: 10.1023/B:JMSC.0000048745.18938.d5.
  • Naslain, R.; Guette, A.; Rebillat, F.; Pailler, R.; Langlais, F.; Bourrat, X. Boron-Bearing Species in Ceramic Matrix Composites for Long-Term Aerospace Applications. J. Solid State Chem. 2004, 177(2), 449–456. DOI: 10.1016/j.jssc.2003.03.005.
  • Kancherla, K. B.; Subbappa, D. B.; Hiremath, S. R.; Raju, B.; Mahapatra, D. R. Enhancing Mechanical Properties of Glass Fabric Composite with Surfactant Treated Zirconia Nanoparticles. Compos. Part A Appl. Sci. Manuf. 2019, 118, 131–141. DOI: 10.1016/j.compositesa.2018.12.023.
  • Salman, S. D.; Leman, Z.; Sultan, M. T. H.; Ishak, M. R.; Cardona, F. Effect of Kenaf Fibers on Trauma Penetration Depth and Ballistic Impact Resistance for Laminated Composites. Text. Res. J. 2017, 87(17), 2051–2065. DOI: 10.1177/0040517516663155.
  • Chhetri, S.; Adak, N. C.; Samanta, P.; Murmu, N. C.; Kuila, T. Functionalized Reduced Graphene Oxide/Epoxy Composites with Enhanced Mechanical Properties and Thermal Stability. Polym. Test. 2017, 63, 1–11. DOI: 10.1016/j.polymertesting.2017.08.005.
  • Park, S.; Pour-Ghaz, M. What is the Role of Water in the Geopolymerization of Metakaolin? Constr. Build. Mater. 2018, 182, 360–370. DOI: 10.1016/j.conbuildmat.2018.06.073.
  • Singh, S.; Shervin, S.; Sun, H.; Yarali, M.; Chen, J.; Lin, R.; Li, K.-H.; Li, X.; Ryou, J.-H.; Mavrokefalos, A. Using Mosaicity to Tune Thermal Transport in Polycrystalline Aluminum Nitride Thin Films. ACS Appl. Mater. Interfaces. 2018, 10(23), 20085–20094. DOI: 10.1021/acsami.8b02899.
  • de Freitas, S. T.; Sinke, J. Failure Analysis of Adhesively-Bonded Skin-To-Stiffener Joints: Metal–Metal Vs. Composite–Metal. Eng. Fail. Anal. 2015, 56, 2–13. DOI: 10.1016/j.engfailanal.2015.05.023.
  • Park, S.; Kim, J.; Chu, M.; Khine, M. Flexible Piezoresistive Pressure Sensor Using Wrinkled Carbon Nanotube Thin Films for Human Physiological Signals. Adv. Mater. Technol. 2018, 3(1), 1700158. DOI: 10.1002/admt.201700158.
  • Kim, S.; Yoo, D.-Y.; Kim, M.-J.; Banthia, N. Self-Healing Capability of Ultra-High-Performance Fiber-Reinforced Concrete After Exposure to Cryogenic Temperature. Cem. Concr. Compos. 2019, 104, 103335. DOI: 10.1016/j.cemconcomp.2019.103335.
  • Ling, S.; Wang, Q.; Zhang, D.; Zhang, Y.; Mu, X.; Kaplan, D. L.; Buehler, M. J. Integration of Stiff Graphene and Tough Silk for the Design and Fabrication of Versatile Electronic Materials. Adv. Funct. Mater. 2018, 28(9), 1705291. DOI: 10.1002/adfm.201705291.
  • Morscher, G. N.; Ojard, G.; Miller, R.; Gowayed, Y.; Santhosh, U.; Ahmad, J.; John, R. Tensile Creep and Fatigue of Sylramic-IBN Melt-Infiltrated SiC Matrix Composites: Retained Properties, Damage Development, and Failure Mechanisms. Compos. Sci. Technol. 2008, 68(15–16), 3305–3313. DOI: 10.1016/j.compscitech.2008.08.028.
  • Rebillat, F.; Martin, X.; Garitte, E.; Guette, A. Overview on the Self-Sealing Process in the SiCf/(Si, C, B) M Composites Under Wet Atmosphere at High TEMPERATURE; American Ceramic Society, Inc, 2010; Vol. 215.
  • Ferrara, L.; Van Mullem, T.; Alonso, M. C.; Antonaci, P.; Borg, R. P.; Cuenca, E.; Jefferson, A.; Ng, P.-L.; Peled, A.; Roig-Flores, M. Experimental Characterization of the Self-Healing Capacity of Cement Based Materials and Its Effects on the Material Performance: A State of the Art Report by COST Action SARCOS WG2. Constr. Build. Mater. 2018, 167, 115–142. DOI: 10.1016/j.conbuildmat.2018.01.143.
  • Yang, S.; Li, W.; Bai, S.; Wang, Q. Fabrication of Morphologically Controlled Composites with High Thermal Conductivity and Dielectric Performance from Aluminum Nanoflake and Recycled Plastic Package. ACS Appl. Mater. Interfaces. 2018, 11(3), 3388–3399. DOI: 10.1021/acsami.8b16209.
  • Shaikh, F. U. A. Effect of Cracking on Corrosion of Steel in Concrete. Int. J. Concr. Struct. Mater. 2018, 12(1), 1–12. DOI: 10.1186/s40069-018-0234-y.
  • Talaiekhozani, A.; Keyvanfar, A.; Shafaghat, A.; Andalib, R.; Majid, M. Z. A.; Fulazzaky, M. A.; Zin, R. M.; Lee, C. T.; Hussin, M. W.; Hamzah, N., Talaiekhozani, A. and Majid, M. Z. A. et al. A Review of Self-Healing Concrete Research Development (February 26, 2014). J. Envir. Treat. Tech Techniques. 21, 1–11. Available at SSRN No. March. 2014. https://Ssrn.Com/Abstract=37257.
  • Tang, J.; Fan, C.; Lin, Q.; Smooth, Z. X. Stable and Optically Transparent Microcapsules Prepared by One-Step Method Using Sodium Carboxymethyl Cellulose as Protective Colloid. Colloids Surf. A Physicochem. Eng. Asp. 2014, 459, 65–73. DOI: 10.1016/j.colsurfa.2014.06.044.
  • Tripathi, M.; Dwivedi, R.; Kumar, D.; Roy, P. K. Thermal Activation of Mendable Epoxy Through Inclusion of Microcapsules and Imidazole Complexes. Polym. Plast. Technol. Eng. 2016, 55(2), 129–137. DOI: 10.1080/03602559.2015.1070866.
  • Qureshi, T.; Kanellopoulos, A.; Al-Tabbaa, A. Autogenous Self-Healing of Cement with Expansive Minerals-I: Impact in Early Age Crack Healing. Constr. Build. Mater. 2018, 192, 768–784. DOI: 10.1016/j.conbuildmat.2018.10.143.
  • Bigdilou, B.; Eslami-Farsani, M.; Ebrahimnezhad-Khaljiri, R.; Mohammadi, H.; A, M. Experimental Assessment of Adding Carbon Nanotubes on the Impact Properties of Kevlar-Ultrahigh Molecular Weight Polyethylene Fibers Hybrid Composites. J. Ind. Text. 2022, 51(3), 3767S–3785S. DOI: 10.1177/1528083720921483.
  • Suwan, T.; Fan, M.; Braimah, N. Micro-Mechanisms and Compressive Strength of Geopolymer-Portland Cementitious System Under Various Curing Temperatures. Mater. Chem. Phys. 2016, 180, 219–225. DOI: 10.1016/j.matchemphys.2016.05.069.
  • Zhou, T.; Wang, J.-W.; Huang, M.; An, R.; Tan, H.; Wei, H.; Chen, Z.-D.; Wang, X.; Liu, X.; Wang, F., et al. Breathable Nanowood Biofilms as Guiding Layer for Green On-Skin Electronics. Small. 2019, 15(31), 1901079.
  • Vahedi, V.; Pasbakhsh, P.; Piao, C. S.; Seng, C. E. A Facile Method for Preparation of Self-Healing Epoxy Composites: Using Electrospun Nanofibers as Microchannels. J. Mater. Chem. A. 2015, 3(31), 16005–16012. DOI: 10.1039/C5TA02294K.
  • Wang, Y.; Jiang, D.; Zhang, L.; Li, B.; Sun, C.; Yan, H.; Wu, Z.; Liu, H.; Zhang, J.; Fan, J. et al. Hydrogen Bonding Derived Self-Healing Polymer Composites Reinforced with Amidation Carbon Fibers. Nanotechnology. 2020. 312: 25704. 10.1088/1361-6528/ab4743
  • Wu, M.; Johannesson, B.; Geiker, M. A Review: Self-Healing in Cementitious Materials and Engineered Cementitious Composite as a Self-Healing Material. Constr. Build. Mater. 2012, 28(1), 571–583. DOI: 10.1016/j.conbuildmat.2011.08.086.
  • Jacobson, N.; Myers, D.; Opila, E.; Copland, E. Interactions of Water Vapor with Oxides at Elevated Temperatures. J. Phys. Chem. Solids. 2005, 66(2), 471–478. DOI: 10.1016/j.jpcs.2004.06.044.
  • Wang, J. Y.; De Belie, N.; Verstraete, W. Diatomaceous Earth as a Protective Vehicle for Bacteria Applied for Self-Healing Concrete. J. Ind. Microbiol. Biotechnol. 2012, 39(4), 567–577. DOI: 10.1007/s10295-011-1037-1.
  • Kang, X.; Kuga, S.; Wang, C.; Zhao, Y.; Wu, M.; Huang, Y. Green Preparation of Cellulose Nanocrystal and Its Application. ACS Sustain. Chem. Eng. 2018, 6(3), 2954–2960. DOI: 10.1021/acssuschemeng.7b02363.
  • Huang, X.; Sun, B.; Zhu, Y.; Li, S.; Jiang, P. High-K Polymer Nanocomposites with 1D Filler for Dielectric and Energy Storage Applications. Prog. Mater. Sci. 2019, 100, 187–225. DOI: 10.1016/j.pmatsci.2018.10.003.
  • Chen, Y.; Zhu, J.; Yu, H.-Y.; Li, Y. Fabricating Robust Soft-Hard Network of Self-Healable Polyvinyl Alcohol Composite Films with Functionalized Cellulose Nanocrystals. Compos. Sci. Technol. 2020, 194, 108165. DOI: 10.1016/j.compscitech.2020.108165.
  • Feng, Y.; Su, Y.-F.; Lu, N.; Shah, S.; Meta Concrete: Exploring Novel Functionality of Concrete Using Nanotechnology. Engineered Science. 2019. 1–10. 10.30919/es8d816
  • Su, Y.-F.; Kotian, R. R.; Lu, N. Energy Harvesting Potential of Bendable Concrete Using Polymer Based Piezoelectric Generator. Compos. Part B Eng. 2018, 153, 124–129. DOI: 10.1016/j.compositesb.2018.07.018.
  • Rim, Y. S.; Bae, S.-H.; Chen, H.; De Marco, N.; Yang, Y. Recent Progress in Materials and Devices Toward Printable and Flexible Sensors. Adv. Mater. 2016, 28(22), 4415–4440. DOI: 10.1002/adma.201505118.
  • Zhang, Y.; Heo, Y.-J.; Son, Y.-R.; In, I.; An, K.-H.; Kim, B.-J.; Park, S.-J. Recent Advanced Thermal Interfacial Materials: A Review of Conducting Mechanisms and Parameters of Carbon Materials. Carbon. 2019, 142, 445–460. DOI: 10.1016/j.carbon.2018.10.077.
  • Zamal, H. H.; Barba, D.; Aissa, B.; Haddad, E.; Rosei, F. Cure Kinetics of Poly (5-Ethylidene-2-Norbornene) with 2nd Generation Hoveyda-Grubbs’ Catalyst for Self-Healing Applications. Polymer (Guildf.). 2018, 153, 1–8. DOI: 10.1016/j.polymer.2018.07.082.
  • Duan, Z.; He, H.; Liang, W.; Wang, Z.; He, L.; Zhang, X. T. Quasistatic and Dynamic Fracture Properties of Nano-Al2O3-Modified Epoxy Resin. Materials. 2018, 11(6), 905. DOI: 10.3390/ma11060905.
  • Zhu, Z.; Li, C.; Songfeng, E.; Xie, L.; Geng, R.; Lin, C.-T.; Li, L.; Yao, Y. Enhanced Thermal Conductivity of Polyurethane Composites via Engineering Small/Large Sizes Interconnected Boron Nitride Nanosheets. Compos. Sci. Technol. 2019, 170, 93–100. DOI: 10.1016/j.compscitech.2018.11.035.
  • Su, Z.; Wang, H.; He, J.; Guo, Y.; Qu, Q.; Tian, X. Fabrication of Thermal Conductivity Enhanced Polymer Composites by Constructing an Oriented Three-Dimensional Staggered Interconnected Network of Boron Nitride Platelets and Carbon Nanotubes. ACS Appl. Mater. Interfaces. 2018, 10(42), 36342–36351. DOI: 10.1021/acsami.8b09703.
  • Brown, E. N.; Kessler, M. R.; Sottos, N. R.; White, S. R. In situ Poly(urea-Formaldehyde) Microencapsulation of Dicyclopentadiene. J. Microencapsul. 2003, 20(6), 719–730. DOI: 10.3109/02652040309178083.
  • Azarsa, P.; Gupta, R.; Biparva, A. Assessment of Self-Healing and Durability Parameters of Concretes Incorporating Crystalline Admixtures and Portland Limestone Cement. Cem. Concr. Compos. 2019, 99, 17–31. DOI: 10.1016/j.cemconcomp.2019.02.017.
  • Martin, X. Oxydation/Corrosion de Matériaux Composites (SiCf/SiBCm) à Matrice Auto-Cicatrisante To Cite This Version; France: HAL Id, 2022; pp. Tel–03618089.
  • Chen, Y.; Lu, K.; Song, Y.; Han, J.; Yue, Y.; Biswas, S. K.; Wu, Q.; Xiao, H. A Skin-Inspired Stretchable, Self-Healing and Electro-Conductive Hydrogel with a Synergistic Triple Network for Wearable Strain Sensors Applied in Human-Motion Detection. Nanomaterials. 2019, 9(12), 1–20. DOI: 10.3390/nano9121737.
  • Ramesh, M.; Kumar, L. R.; Khan, A.; Asiri, A. M. 22 - Self-Healing Polymer Composites and Its Chemistry. In Woodhead Publishing Series in Composites Science and Engineering, Khan, A., Jawaid, M., Raveendran, S. N. Ahmed Asiri, A.-M.-B.-T.-S.-H.-C.-M.; Eds; Woodhead Publishing, 2020; pp. 415–427. DOI: 10.1016/B978-0-12-817354-1.00022-3.
  • Teoh, S. H.; Chia, H. Y.; Lee, M. S.; Nasyitah, A. J. N.; Luqman, H. B. S. M.; Nurhidayah, S.; Tan, Willy. C.K. Self Healing Composite for Aircraft’s Structural Application. Int. J. Mod Phys B. 2010, 24(1n02), 157–163. DOI: 10.1142/S0217979210064083.
  • Norris, C. J.; Bond, I. P.; Trask, R. S. The Role of Embedded Bioinspired Vasculature on Damage Formation in Self-Healing Carbon Fibre Reinforced Composites. Compos. Part A Appl. Sci. Manuf. 2011, 42(6), 639–648. DOI: 10.1016/j.compositesa.2011.02.003.
  • Toohey, K. S.; Sottos, N. R.; Lewis, J. A.; Moore, J. S.; White, S. R. Self-Healing Materials with Microvascular Networks. Nat. Mater. 2007, 6(8), 581–585. DOI: 10.1038/nmat1934.
  • Lee, M. W.; An, S.; Yoon, S. S.; Yarin, A. L. Advances in Self-Healing Materials Based on Vascular Networks with Mechanical Self-Repair Characteristics. Adv. Colloid Interface Sci. 2018, 252, 21–37. DOI: 10.1016/j.cis.2017.12.010.
  • Bi, H.; Ye, G.; Sun, H.; Ren, Z.; Gu, T.; Xu, M. Mechanically Robust, Shape Memory, Self-Healing and 3D Printable Thermoreversible Cross-Linked Polymer Composites Toward Conductive and Biomimetic Skin Devices Applications. Addit. Manuf. 2022, 49, 102487. DOI: 10.1016/j.addma.2021.102487.
  • Ilangovan, S.; Senthil Kumaran, S.; Naresh, K.; Shankar, K.; Velmurugan, R. Studies on Glass/Epoxy and Basalt/Epoxy Thin-Walled Pressure Vessels Subjected to Internal Pressure Using Ultrasonic ‘C’ Scan Technique. Thin-Walled Struct. 2023, 182, 110160. DOI: 10.1016/j.tws.2022.110160.
  • Zhang, H.; Yang, J. Development of Self-Healing Polymers via Amine–Epoxy Chemistry: I. Properties of Healing Agent Carriers and the Modelling of a Two-Part Self-Healing System. Smart Mater. Struct. 2014, 23(6), 65003. DOI: 10.1088/0964-1726/23/6/065003.
  • Hong, S. Y.; Kim, M. S.; Park, H.; Jin, S. W.; Jeong, Y. R.; Kim, J. W.; Lee, Y. H.; Sun, L.; Zi, G.; Ha, J. S. High-Sensitivity, Skin-Attachable, and Stretchable Array of Thermo-Responsive Suspended Gate Field-Effect Transistors with Thermochromic Display. Adv. Funct. Mater. 2019, 29(6), 1807679. DOI: 10.1002/adfm.201807679.
  • Kadam, S.; Chavan, S.; Kanu, N. J. An Insight into Advance Self-Healing Composites. Mater. Res. Express. 2021, 8(5), 52001. DOI: 10.1088/2053-1591/abfba5.
  • Jones, A. S.; Rule, J. D.; Moore, J. S.; White, S. R.; Sottos, N. R. Catalyst Morphology and Dissolution Kinetics of Self-Healing Polymers. Chem. Mater. 2006, 18(5), 1312–1317. DOI: 10.1021/cm051864s.
  • Kumar, R.; Hynes, N. R. J.; Manju, R.; Senthamaraikannan, P.; Saravanakumar, S. S.; Khan, A.; Bharathi, S. R. S.; Asiri, A. M.; Khan, I.; Khan, M. M. A. 20 – Self-Healing Fiber-Reinforced Epoxy Composites. In Woodhead Publishing Series in Composites Science and Engineering,eds Khan, A., Jawaid, M., Raveendran, S. N. Ahmed Asiri, A.-M.-B.-T.-S.-H.-C.-M., et al.; Woodhead Publishing, 2020; pp. 393–404. 10.1016/B978-0-12-817354-1.00020-X.
  • Hayes, S. A.; Jones, F. R.; Marshiya, K.; Zhang, W. A Self-Healing Thermosetting Composite Material. Compos. Part A Appl. Sci. Manuf. 2007, 38(4), 1116–1120. DOI: 10.1016/j.compositesa.2006.06.008.
  • Wang, X.; Xu, W.; Xie, Y.; Yao, H.; Xia, L. Improving Particle Characteristic and Encapsulated Indicators of Urea–Formaldehyde/epoxy Self-Healing Microcapsule by Incorporating Resorcinol. Mater. Technol. 2019, 34(2), 51–58. DOI: 10.1080/10667857.2018.1522474.
  • Nualas, F.; Rebillat, F. A Multi-Scale Approach of Degradation Mechanisms Inside a SiC(f)/si–B–C(m) Based Self-Healing Matrix Composite in a Dry Oxidizing Environment. Oxid. Met. 2013, 80(3), 279–287. DOI: 10.1007/s11085-013-9385-z.
  • Liu, Y.; Rajadas, A.; Chattopadhyay, A. Self-Healing Nanocomposite Using Shape Memory Polymer and Carbon Nanotubes. In Proc.SPIE; 2013; Vol. 8692, p. 869205. DOI: 10.1117/12.2009908.
  • Osada, T.; Wataru, N.; Takahashi, K.; Ando, K. 21 – Self-Crack-Healing Behavior in Ceramic Matrix Composites. In Woodhead Publishing Series in Composites Science and Engineering, Low, I.-M.-B.-T.-A. in C, C. M.; Eds; Woodhead Publishing, 2014; pp. 515–544. DOI: 10.1016/B978-0-08-102166-8.00021-9.
  • Naresh, K.; Khan, K. A.; Umer, R.; Vasudevan, A. Temperature-Frequency–Dependent Viscoelastic Properties of Neat Epoxy and Fiber Reinforced Polymer Composites: Experimental Characterization and Theoretical Predictions. Polymers. 2020, 12(8), 1700. DOI: 10.3390/polym12081700.
  • Preethikaharshini, J.; Naresh, K.; Rajeshkumar, G.; Arumugaprabu, V.; Khan, M. A.; Khan, K. A. Review of Advanced Techniques for Manufacturing Biocomposites: Non-Destructive Evaluation and Artificial Intelligence-Assisted Modeling. J. Mater. Sci. 2022, 57(34), 16091–16146. DOI: 10.1007/s10853-022-07558-1.
  • Coope, T. S.; Wass, D. F.; Trask, R. S.; Bond, I. P. Metal Triflates as Catalytic Curing Agents in Self-Healing Fibre Reinforced Polymer Composite Materials. Macromol. Mater. Eng. 2014, 299(2), 208–218. DOI: 10.1002/mame.201300026.
  • Naresh, K.; Shankar, K.; Rao, B. S.; Velmurugan, R. Effect of High Strain Rate on Glass/Carbon/Hybrid Fiber Reinforced Epoxy Laminated Composites. Compos. Part B Eng. 2016, 100, 125–135. DOI: 10.1016/j.compositesb.2016.06.007.
  • Naresh, K.; Khan, K. A.; Umer, R. Experimental Characterization and Modeling Multifunctional Properties of Epoxy/Graphene Oxide Nanocomposites. Polymers. 2021, 13(16), 2831. DOI: 10.3390/polym13162831.
  • Yang, Z.; Wei, Z.; Le-Ping, L.; Hong-Mei, W.; Wu-Jun, L. The Self-Healing Composite Anticorrosion Coating. Phys. Procedia. 2011, 18, 216–221. DOI: 10.1016/j.phpro.2011.06.084.
  • Hamdy, A. S.; Doench, I.; Möhwald, H. Intelligent Self-Healing Corrosion Resistant Vanadia Coating for AA2024. Thin Solid Films. 2011, 520(5), 1668–1678. DOI: 10.1016/j.tsf.2011.05.080.
  • Hamdy, A. S.; Doench, I.; Möhwald, H. Smart Self-Healing Anti-Corrosion Vanadia Coating for Magnesium Alloys. Prog. Org. Coatings. 2011, 72(3), 387–393. DOI: 10.1016/j.porgcoat.2011.05.011.
  • Hamdy, A. S.; Butt, D. P. Novel Smart Stannate Based Coatings of Self-Healing Functionality for AZ91D Magnesium Alloy. Electrochim. Acta. 2013, 97, 296–303. DOI: 10.1016/j.electacta.2013.02.108.
  • Zaghloul, M. M. Y.; Mohamed, Y. S.; El-Gamal, H. Fatigue and Tensile Behaviors of Fiber-Reinforced Thermosetting Composites Embedded with Nanoparticles. J. Compos. Mater. 2018, 53(6), 709–718. DOI: 10.1177/0021998318790093.
  • Zaghloul, M. M. Y.; Zaghloul, M. Y. M.; Zaghloul, M. M. Y. Experimental and Modeling Analysis of Mechanical-Electrical Behaviors of Polypropylene Composites Filled with Graphite and MWCNT Fillers. Polym. Test. 2017, 63, 467–474. DOI: 10.1016/j.polymertesting.2017.09.009.
  • Naresh, K.; Khan, K. A.; Umer, R.; Cantwell, W. J. The Use of X-Ray Computed Tomography for Design and Process Modeling of Aerospace Composites: A Review. Mater. Des. 2020, 190, 108553. DOI: 10.1016/j.matdes.2020.108553.
  • Ud Din, I.; Naresh, K.; Umer, R.; Khan, K. A.; Drzal, L. T.; Haq, M.; Cantwell, W. J. Processing and Out-Of-Plane Properties of Composites with Embedded Graphene Paper for EMI Shielding Applications. Compos. Part A Appl. Sci. Manuf. 2020, 134, 105901. DOI: 10.1016/j.compositesa.2020.105901.
  • Naresh, K.; Rajalakshmi, K.; Vasudevan, A.; Senthil Kumaran, S.; Velmurugan, R.; Shankar, K. Effect of Nanoclay and Different Impactor Shapes on Glass/Epoxy Composites Subjected to Quasi-Static Punch Shear Loading. Adv. Mater. Process. Technol. 2018, 4(3), 345–357. DOI: 10.1080/2374068X.2018.1428879.
  • Malekkhouyan, R.; Neisiany, R. E.; Khorasani, S. N.; Das, O.; Berto, F.; Ramakrishna, S. The Influence of Size and Healing Content on the Performance of Extrinsic Self-Healing Coatings. J. Appl. Polym. Sci. 2021, 138(10), 49964. DOI: 10.1002/app.49964.
  • Panahi, P.; Khorasani, S. N.; Koochaki, M. S.; Dinari, M.; Das, O.; Neisiany, R. E. Synthesis of Cloisite 30B-Acrylamide/Acrylic Acid Nanogel Composite for Self-Healing Purposes. Appl. Clay Sci. 2021, 210, 106174. DOI: 10.1016/j.clay.2021.106174.
  • Malekkhouyan, R.; Nouri Khorasani, S.; Esmaeely Neisiany, R.; Torkaman, R.; Koochaki, M. S.; Das, O. Preparation and Characterization of Electrosprayed Nanocapsules Containing Coconut-Oil-Based Alkyd Resin for the Fabrication of Self-Healing Epoxy Coatings. Applied Sciences. 2020, 10(9), 3171. DOI: 10.3390/app10093171.
  • Mondal, S.; Mondal, P.; Mishra, D. P. Research Progress on Ceramic Nanomaterials Reinforced Aluminum Matrix Nanocomposites. Mater. Sci. Technol. 2023, 39, 1–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.