78
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Incipient shape memory featuring nano-reinforced epoxy nanocomposites—structural diversity and innovations

Pages 1209-1226 | Received 26 Nov 2023, Accepted 28 Feb 2024, Published online: 06 Mar 2024

References

  • Basak, S.; Dasgupta, P.; Bandyopadhyay, A. One-Way Shape Memory Polyesters-Evolution, Growth, Developments, and Current Trends. Polym. Plast. Technol. Eng. 2023, 62(17), 2286–2317. DOI: 10.1080/25740881.2023.2254372.
  • Chan, Q.-H.; Alias, S. A.; Quek, S. W.; Ng, C. Y.; Ku Marsilla, K. I. A Review of the Preparations, Properties, and Applications of Smart Biodegradable Polymers. Polym. Plast. Technol. Eng. 2023, 62(10), 1273–1289. DOI: 10.1080/25740881.2023.2204954.
  • Kausar, A. Cutting-Edge Shape Memory Polymer/Fullerene Nanocomposite: Design and Contemporary Status. Polym. Plast. Technol. Eng. 2023, 62(5), 604–617. DOI: 10.1080/25740881.2022.2121222.
  • Mondal, S. Temperature Responsive Shape Memory Polyurethanes. Polym. Plast. Technol. Eng. 2021, 60(14), 1491–1518. DOI: 10.1080/25740881.2021.1906903.
  • Lu, J.-H.; Li, Z.; Chen, J.-H.; Li, S.-L.; He, J.-H.; Gu, S.; Liu, B.-W.; Chen, L.; Wang, Y.-Z. Adaptable Phosphate Networks Towards Robust, Reprocessable, Weldable, and Alertable-Yet-Extinguishable Epoxy Vitrimer. Res. 2022. 2022. DOI: 10.34133/2022/9846940.
  • Xavier, J. R. Effects of Functionalized CNTs in Improving the Dielectric, Corrosion Protection, and Mechanical Properties of Epoxy Nanocomposites for Automotive/Aircraft Components. Polym. Plast. Technol. Eng. 2023, 62(12), 1–27. DOI: 10.1080/25740881.2023.2222790.
  • Zhao, W.; Li, N.; Liu, L.; Leng, J.; Liu, Y. Mechanical Behaviors and Applications of Shape Memory Polymer and Its Composites. Appl. Phys. Rev. 2023, 10(1), 011306. DOI: 10.1063/5.0126892.
  • Madgula, K.; Puli, V. S. Recent Progress in Synthesis Methods of Shape-Memory Polymer Nanocomposites. In Shape Memory Composites Based on Polymers and Metals for 4D Printing: Processes, Maurya M. R., Sadasivuni K. K., Cabibihan J. J., Ahmad S., Kazim S. Eds. Springer Cham: Switzerland, 2022; pp. 173–212.
  • Mat Yazik, M. H.; Sultan, M. T. H.; Jawaid, M.; Abu Talib, A. R.; Mazlan, N.; Md Shah, A. U.; Safri, S. N. A. Effect of Nanofiller Content on Dynamic Mechanical and Thermal Properties of Multi-Walled Carbon Nanotube and Montmorillonite Nanoclay Filler Hybrid Shape Memory Epoxy Composites. Polymers. 2021, 13(5), 700. DOI: 10.3390/polym13050700.
  • Leonardi, A. B.; Puig, J.; Antonacci, J.; Arenas, G. F.; Zucchi, I. A.; Hoppe, C. E.; Reven, L.; Zhu, L.; Toader, V.; Williams, R. J. J. Remote Activation by Green-Light Irradiation of Shape Memory Epoxies Containing Gold Nanoparticles. Eur. Polym. J. 2015, 71, 451–460. DOI: 10.1016/j.eurpolymj.2015.08.024.
  • Mat Yazik, M. H.; Hameed Sultan, M. T.; Jawaid, M.; Mazlan, N.; Abu Talib, A. R.; Md Shah, A. U.; Safri, S. N. A. Shape Memory Properties of Epoxy with Hybrid Multi-Walled Carbon Nanotube and Montmorillonite Nanoclay Nanofiller. Polym. Bull. 2023, 81(1), 951–968. DOI: 10.1007/s00289-023-04750-4.
  • Mostovoy, A.; Yakovlev, A.; Tseluikin, V.; Lopukhova, M. Epoxy Nanocomposites Reinforced with Functionalized Carbon Nanotubes. Polymers. 2020, 12(8), 1816. DOI: 10.3390/polym12081816.
  • Singh, N. P.; Gupta, V.; Singh, A. P. Graphene and Carbon Nanotube Reinforced Epoxy Nanocomposites: A Review. Polymer. 2019, 180, 121724. DOI: 10.1016/j.polymer.2019.121724.
  • Ellis, B. ‘Chemistry and Technology of Epoxy Resins’, Cham, Switzerland: Springer, 1993.
  • Sun, Y.; Peng, Y.; Zhang, Y. A Study on the Synthesis, Curing Behavior and Flame Retardance of a Novel Flame Retardant Curing Agent for Epoxy Resin. Polymers. 2022, 14(2), 245. DOI: 10.3390/polym14020245.
  • Zhou, L.; Zhang, G.; Yang, S.; Yang, L.; Cao, J.; Yang, K. The Synthesis, Curing Kinetics, Thermal Properties and Flame Rertardancy of Cyclotriphosphazene-Containing Multifunctional Epoxy Resin. Thermochim. Acta. 2019, 680, 178348. DOI: 10.1016/j.tca.2019.178348.
  • Gobiraman, A.; Nagaraja, S.; Sathiyamoorthi, V. ‘Epoxy Resin as Matrix for Polymer Composites: Factors Influencing the Properties of Polymers and Their Composites’: ‘Epoxy-Based Biocomposites’; Boca Raton, Florida, US: CRC Press: 2023; pp. 1–19.
  • Dallaev, R.; Pisarenko, T.; Papež, N.; Sadovský, P.; Holcman, V. A Brief Overview on Epoxies in Electronics: Properties, Applications, and Modifications. Polymers. 2023, 15(19), 3964. DOI: 10.3390/polym15193964.
  • Tavernier, R.; Semsarilar, M.; Caillol, S. Bio-Sourced Alternatives to Diglycidyl Ether of Bisphenol a in Epoxy–Amine Thermosets. Green Mater. 2023, 40(XXXX), 1–47. DOI: 10.1680/jgrma.23.00027.
  • McCoy, J. D.; Ancipink, W. B.; Clarkson, C. M.; Kropka, J. M.; Celina, M. C.; Giron, N. H.; Hailesilassie, L.; Fredj, N. Cure Mechanisms of Diglycidyl Ether of Bisphenol a (DGEBA) Epoxy with Diethanolamine. Polymer. 2016, 105, 243–254. DOI: 10.1016/j.polymer.2016.10.028.
  • Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and Application of Epoxy Resins: A Review. J. Ind. Eng. Chem. 2015, 29, 1–11. DOI: 10.1016/j.jiec.2015.03.026.
  • Fan, C.; Zhang, R.; Luo, X.; Hu, Z.; Zhou, W.; Zhang, W.; Liu, J.; Liu, J. Epoxy Phenol Novolac Resin: ANovel Precursor to Construct High Performance Hard Carbon Anode Toward Enhanced Sodium-Ion Batteries. Carbon. 2023, 205353–364.
  • Strohmeier, L.; Balasooriya, W.; Schrittesser, B.; Van Duin, M.; Schlögl, S. Hybrid in situ Reinforcement of EPDM Rubber Compounds Based on Phenolic Novolac Resin and Ionic Coagent. Appl. Sci. 2022, 12(5), 2432. DOI: 10.3390/app12052432.
  • Farzanehfar, N.; Nasr Esfahani, A.; Sheikhi, M.; Rafiemanzelat, F. ‘Imparting Electrical Conductivity in Epoxy Resins (Chemistry and Approaches)’: ‘Multifunctional Epoxy Resins: Self-Healing, Thermally and Electrically Conductive Resins’; Cham, Switzerland: Springer: 2023; pp. 365–413.
  • Zhou, X.; Zhu, M.; Ma, B.; Li, N.; Wang, X. Shape Optimization of Thermal Shape Memory Epoxy Resin and Its Mechanism for Improving the Self-Healing of Asphalt Mixtures. Constr. Build. Mater. 2023, 401, 132863. DOI: 10.1016/j.conbuildmat.2023.132863.
  • Starokadomsky, D.; Reshetnyk, M.; Kokhtych, L. Effect of Surface Modification of Nanosilica by Hydride-Groups on Morphology, Strength and Resistance of Epoxy-Composites. Results in Surfaces and Interfaces. 2023, 13, 100152.
  • Chen, H.; Zhu, Z.; Patil, D.; Bajaj, D.; Verghese, N.; Jiang, Z.; Sue, H.-J. Mechanical Properties of Reactive Polyetherimide-Modified Tetrafunctional Epoxy Systems. Polymer. 2023, 270, 125763. DOI: 10.1016/j.polymer.2023.125763.
  • Shahkarami, F.; Moini, N.; Kabiri, K.; Piri, F.; Jahandideh, A. Engineered Conductive Green Epoxy Hardener: Star-Shaped Bio-Based Core Functionalized with Conjugated Oligoaniline via Microwave Irradiation. J. Polym. Environ. 2023, 31(11), 1–20. DOI: 10.1007/s10924-023-02918-7.
  • Ling, C.; Guo, L. Recent Developments and Applications of Hyperbranched Polymers as Flame Retardants. J. Anal. Appl. Pyrolysis. 2022, 169, 105842. DOI: 10.1016/j.jaap.2022.105842.
  • Duraibabu, D.; Kumar, S. A.; Alagar, M. Tetra Functional Epoxy/Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites with Enhanced Mechanical, Thermal, Anticorrosion and Dielectric Properties. J. Plast. Film Sheeting. 2023, 39(1), 52–79. DOI: 10.1177/87560879221114650.
  • Fache, M.; Viola, A.; Auvergne, R.; Boutevin, B.; Caillol, S. Biobased Epoxy Thermosets from Vanillin-Derived Oligomers. Eur. Polym. J. 2015, 68, 526–535. DOI: 10.1016/j.eurpolymj.2015.03.048.
  • Faye, I.; Decostanzi, M.; Ecochard, Y.; Caillol, S. Eugenol Bio-Based Epoxy Thermosets: From Cloves to Applied Materials. Green Chem. 2017, 19(21), 5236–5242. DOI: 10.1039/C7GC02322G.
  • Kausar, A. Role of Thermosetting Polymer in Structural Composite. Am. J. Polym. Sci. Eng. 2017, 5(1), 1–12.
  • Zhao, X.; Wang, X.-L.; Tian, F.; An, W.-L.; Xu, S.; Wang, Y.-Z. A Fast and Mild Closed-Loop Recycling of Anhydride-Cured Epoxy Through Microwave-Assisted Catalytic Degradation by Trifunctional Amine and Subsequent Reuse without Separation. Green Chem. 2019, 21(9), 2487–2493. DOI: 10.1039/C9GC00685K.
  • Hou, L.; Wu, Y.; Shan, D.; Guo, B.; Zong, Y. High Energy Proton Irradiation Stability and Damage Mechanism of Shape-Memory Epoxy Resin. Smart Mater. Struct. 2019, 28(11), 115003. DOI: 10.1088/1361-665X/ab3ee8.
  • Cui, K.; Jiang, G.; Xie, C.; Yang, L.; He, Y.; Shen, X.; Wang, X. A Novel Temperature-Sensitive Expandable Lost Circulation Material Based on Shape Memory Epoxy Foams to Prevent Losses in Geothermal Drilling. Geothermics. 2021, 95, 102145. DOI: 10.1016/j.geothermics.2021.102145.
  • Luo, L.; Zhang, F.; Liu, Y.; Leng, J. Super-Tough, Self-Sensing and Shape-Programmable Polymers via Topological Structure Crosslinking Networks. Chem. Eng. J. 2023, 457, 141282. DOI: 10.1016/j.cej.2023.141282.
  • Yang, J.; Tao, L.; Cao, P.; Yang, Z.; Zhang, X.; Wang, Q.; Wang, T.; Luo, H.; Zhang, Y. Biphenyl Containing Shape Memory Epoxy Resin with Post‐Heating Adjustable Properties. Macromol. Mater. Eng. 2021, 306(8), 2100185. DOI: 10.1002/mame.202100185.
  • Yu, T.; Zhu, F.; Peng, X.; Chen, Z. Acetylated Nanocelluloses Reinforced Shape Memory Epoxy with Enhanced Mechanical Properties and Outstanding Shape Memory Effect. Nanomaterials. 2022, 12(23), 4129. DOI: 10.3390/nano12234129.
  • Gogoi, J. P.; Barman, S.; Mahanta, U. J.; Maurya, M. R.; Paramparambath, S.; Waseem, S.; Sadasivuni, K. K.; Cabibihan, J.-J. ‘Combination of Shape-Memory Polymers and Metal Alloys’: ‘Shape Memory Composites Based on Polymers and Metals for 4D Printing: Processes, Applications and Challenges’; Cham, Switzerland: Springer: 2022; pp. 311–339.
  • Li, Z.; Yang, Y.; Ma, L.; Liu, H.; Zhang, X. Shape Memory Epoxy Resin and Its Composite with Good Shape Memory Performance and High Mechanical Strength. Polym. Bull. 2022, 80(2), 1–15. DOI: 10.1007/s00289-022-04140-2.
  • Shundo, A.; Yamamoto, S.; Tanaka, K. Network Formation and Physical Properties of Epoxy Resins for Future Practical Applications. JACS. Au. 2022, 2(7), 1522–1542. DOI: 10.1021/jacsau.2c00120.
  • Ning, J.; Huang, L.; Zhao, F.; Zhu, W.; Yang, Y.; Zeng, F.; Tian, C.; Liu, Q.; Lv, J.; Cui, M. Thermoset Shape Memory Polymer with Permanent Shape Reconfigurability Based on Dynamic Disulfide Bonds. J. Polym. Res. 2022, 29(7), 278. DOI: 10.1007/s10965-022-03114-2.
  • Meng, Q.; Hu, J. A Review of Shape Memory Polymer Composites and blends’, Composites Part a. Compos. Part A Appl. Sci. Manuf. 2009, 40(11), 1661–1672. DOI: 10.1016/j.compositesa.2009.08.011.
  • Moosburger‐Will, J.; Greisel, M.; Sause, M. G.; Horny, R.; Horn, S. Influence of Partial Cross‐Linking Degree on Basic Physical Properties of RTM6 Epoxy Resin. J. Appl. Polym. Sci. 2013, 130(6), 4338–4346. DOI: 10.1002/app.39722.
  • Fan, M.; Liu, J.; Li, X.; Zhang, J.; Cheng, J. Thermal, Mechanical and Shape Memory Properties of an Intrinsically Toughened Epoxy/Anhydride System. J. Polym. Res. 2014, 21(3), 1–8. DOI: 10.1007/s10965-014-0376-9.
  • Guo, H.; Li, Y.; Zheng, J.; Gan, J.; Liang, L.; Wu, K.; Lu, M. High Thermo-Responsive Shape Memory Epoxies Based on Substituted Biphenyl Mesogenic with Good Water Resistance. RSC Adv. 2015, 5(82), 67247–67257. DOI: 10.1039/C5RA10957D.
  • Kumar, S.; Samal, S. K.; Mohanty, S.; Nayak, S. K. Recent Development of Biobased Epoxy Resins: A Review. Polym.-Plast. Technol. Eng. 2018, 57(3), 133–155. DOI: 10.1080/03602559.2016.1253742.
  • Kumar, S.; Krishnan, S.; Mohanty, S.; Nayak, S. K. Synthesis and Characterization of Petroleum and Biobased Epoxy Resins: A Review. Polym. Int. 2018, 67(7), 815–839. DOI: 10.1002/pi.5575.
  • Yu, Z.; Wang, Z.; Li, H.; Teng, J.; Xu, L. Shape Memory Epoxy Polymer (SMEP) Composite Mechanical Properties Enhanced by Introducing Graphene Oxide (GO) into the Matrix. Materials. 2019, 12(7), 1107. DOI: 10.3390/ma12071107.
  • Rathore, D. Shape-Memory polymers. In Advances in Biomedical Polymers and Composites; Pal K., Verma S., Datta P., Barui A., Hashmi S.A.R., Srivastava A. K., Eds. Elsevier: Netherlands, 2023; pp. 299–313.
  • Biju, R.; Gouri, C.; Nair, C. R. Shape Memory Polymers Based on Cyanate Ester-Epoxy-Poly (Tetramethyleneoxide) Co-Reacted System. Eur. Polym. J. 2012, 48(3), 499–511. DOI: 10.1016/j.eurpolymj.2011.11.019.
  • Xie, T.; Rousseau, I. A. Facile Tailoring of Thermal Transition Temperatures of Epoxy Shape Memory Polymers. Polymer. 2009, 50(8), 1852–1856. DOI: 10.1016/j.polymer.2009.02.035.
  • Liang, L. Y.; Zhou, D. W.; Lu, M. G. Study on shape memory effects of LC epoxy resins with lateral substituents. Key Eng. Mater. 2010, 428, 391–393.
  • Zhang, B.; Zhang, W.; Zhang, Z.; Zhang, Y.-F.; Hingorani, H.; Liu, Z.; Liu, J.; Ge, Q. Self-Healing Four-Dimensional Printing with an Ultraviolet Curable Double-Network Shape Memory Polymer System. ACS Appl. Mater. Interfaces. 2019, 11(10), 10328–10336. DOI: 10.1021/acsami.9b00359.
  • Li, C.; Medvedev, G. A.; Lee, E.-W.; Kim, J.; Caruthers, J. M.; Strachan, A. Molecular Dynamics Simulations and Experimental Studies of the Thermomechanical Response of an Epoxy Thermoset Polymer. Polymer. 2012, 53(19), 4222–4230. DOI: 10.1016/j.polymer.2012.07.026.
  • Ismail, A. M.; AL-Oqla, F. M.; Risby, M.; Sapuan, S. On the Enhancement of the Fatigue Fracture Performance of Polymer Matrix Composites by Reinforcement with Carbon Nanotubes: A Systematic Review. Carbon. Letters. 2022, 32(3), 727–740. DOI: 10.1007/s42823-022-00323-z.
  • Nurly, H.; Yan, Q.; Song, B.; Shi, Y. Effect of Carbon Nanotubes Reinforcement on the Polyvinyl Alcohol–Polyethylene Glycol Double-Network Hydrogel Composites: A General Approach to Shape Memory and Printability. Eur. Polym. J. 2019, 110, 114–122. DOI: 10.1016/j.eurpolymj.2018.11.006.
  • Dong, X.; Hu, M.; He, J.; Tian, Y.; Wang, H.-T. A New Phase from Compression of Carbon Nanotubes with Anisotropic Dirac Fermions. Sci. Rep. 2015, 5(1), 1–7. DOI: 10.1038/srep10713.
  • Iijima, S. Helical microtubules of graphitic carbon. Nature. 1991, 354(6348), 56–58. DOI: 10.1038/354056a0.
  • Dresselhaus, M. S.; Endo, M. ‘Relation of Carbon Nanotubes to Other Carbon materials’: ‘Carbon Nanotubes’; Cham, switzerland: Springer: 2001; pp. 11–28.
  • Dinadayalane, T.; Leszczynski, J. Remarkable Diversity of Carbon–Carbon Bonds: Structures and Properties of Fullerenes, Carbon Nanotubes, and Graphene. Struct. Chem. 2010, 21(6), 1155–1169. DOI: 10.1007/s11224-010-9670-2.
  • Khoo, K.; Louie, S. G.; Louie, S. G. Tuning the Electronic Properties of Boron Nitride Nanotubes with Transverse Electric Fields: A Giant Dc Stark Effect. Phys. Rev. B. 2004, 69(20), 201401. DOI: 10.1103/PhysRevB.69.201401.
  • Lian, F.; Llinas, J. P.; Li, Z.; Estrada, D.; Pop, E. Thermal Conductivity of Chirality-Sorted Carbon Nanotube Networks. Appl. Phys. Lett. 2016, 108(10), 103101. DOI: 10.1063/1.4942968.
  • Rathinavel, S.; Priyadharshini, K.; Panda, D. A Review on Carbon Nanotube: An Overview of Synthesis, Properties, Functionalization, Characterization, and the Application. Mater. Sci. Eng. 2021, 268, 115095. DOI: 10.1016/j.mseb.2021.115095.
  • Abare, A. Y. ‘Carbon-Based Nanomaterials and Their Properties’: ‘Nanomaterials: The Building Blocks of Modern Technology: Synthesis, Properties and Applications’; Cham, Switzerland: Springer: 2023; pp. 263–278.
  • Yazik, M. M.; Sultan, M.; Mazlan, N.; Talib, A. A.; Naveen, J.; Shah, A.; Safri, S. Effect of Hybrid Multi-Walled Carbon Nanotube and Montmorillonite Nanoclay Content on Mechanical Properties of Shape Memory Epoxy Nanocomposite. J. Mater. Res. Technol. 2020, 9(3), 6085–6100. DOI: 10.1016/j.jmrt.2020.04.012.
  • Chen, L.; Li, W.; Liu, X.; Zhang, C.; Zhou, H.; Song, S. Carbon Nanotubes Array Reinforced Shape‐Memory Epoxy with Fast Responses to Low‐Power Microwaves. J. Appl. Polym. Sci. 2019, 136(21), 47563. DOI: 10.1002/app.47563.
  • Abishera, R.; Velmurugan, R.; Nagendra Gopal, K. Free, Partial, and Fully Constrained Recovery Analysis of Cold-Programmed Shape Memory Epoxy/Carbon Nanotube Nanocomposites: Experiments and Predictions. J. Intell. Mater. Syst. Struct. 2018, 29(10), 2164–2176. DOI: 10.1177/1045389X18758187.
  • Lu, J.; Arsalan, A.; Dong, Y.; Zhu, Y.; Qian, C.; Wang, R.; Cuilan, C.; Fu, Y.; Ni, Q.-Q.; Ali, K. N. Shape Memory Effect and Recovery Stress Property of Carbon Nanotube/Waterborne Epoxy Nanocomposites Investigated via TMA. Polym. Test. 2017, 59, 462–469. DOI: 10.1016/j.polymertesting.2017.03.001.
  • Liu, Y.; Zhao, J.; Zhao, L.; Li, W.; Zhang, H.; Yu, X.; Zhang, Z. High Performance Shape Memory Epoxy/Carbon Nanotube Nanocomposites. ACS Appl. Mater. Interfaces. 2016, 8(1), 311–320. DOI: 10.1021/acsami.5b08766.
  • Abishera, R.; Velmurugan, R.; Gopal, K. N. Reversible plasticity shape memory effect in carbon nanotubes reinforced epoxy nanocomposites. Compos. Sci. Technol. 2016, 137, 148–158. DOI: 10.1016/j.compscitech.2016.10.030.
  • Wang, Y.; Tang, L.; Li, Y.; Li, Q.; Bai, B. Preparation of Modified Multi‐Walled Carbon Nanotubes as a Reinforcement for Epoxy Shape‐Memory Polymer Composites. Polym. Adv. Technol. 2021, 32(1), 67–75. DOI: 10.1002/pat.5061.
  • Ali, B.; Atif, M.; Perviaz, M.; Irshad, A.; Abdullah, M.; Mobeen, M. A. Catalyst-Free Synthesis of Low-Temperature Thermally Actuated Shape Memory Polyurethanes with Modified Biobased Plasticizers. RSC Adv. 2023, 13(1), 506–515. DOI: 10.1039/D2RA06862A.
  • Ni, Q.-Q.; Zhang, C.-S.; Fu, Y.; Dai, G.; Kimura, T. Shape Memory Effect and Mechanical Properties of Carbon Nanotube/Shape Memory Polymer Nanocomposites. Compos. Struct. 2007, 81(2), 176–184. DOI: 10.1016/j.compstruct.2006.08.017.
  • Kim, D.; Kim, M.; Reidt, S.; Han, H.; Baghizadeh, A.; Zeng, P.; Choi, H.; Puigmartí-Luis, J.; Trassin, M.; Nelson, B. J. Shape-Memory Effect in Twisted Ferroic Nanocomposites. Nat. Commun. 2023, 14(1), 750. DOI: 10.1038/s41467-023-36274-w.
  • Liu, X.; Song, X.; Chen, B.; Liu, J.; Feng, Z.; Zhang, W.; Zeng, J.; Liang, L. Self-Healing and Shape-Memory Epoxy Thermosets Based on Dynamic Diselenide Bonds. React. Funct. Polym. 2022, 170, 105121. DOI: 10.1016/j.reactfunctpolym.2021.105121.
  • Hu, Y.; Tong, S.; Hu, L.; Zhang, M.; Huang, Q.; Sha, Y.; Jia, P.; Zhou, Y. Molecularly Engineered Cardanol Derived Epoxy Vitrimers Based on Dynamic Disulfide and Dynamic Ester Exchanges with Desirable Dynamic Response, Degradability, and Recyclability. Chem. Eng. J. 2023, 477, 147284. DOI: 10.1016/j.cej.2023.147284.
  • Wang, E.; Dong, Y.; Islam, M. Z.; Yu, L.; Liu, F.; Chen, S.; Qi, X.; Zhu, Y.; Fu, Y.; Xu, Z. Effect of Graphene Oxide-Carbon Nanotube Hybrid Filler on the Mechanical Property and Thermal Response Speed of Shape Memory Epoxy Composites. Compos. Sci. Technol. 2019, 169, 209–216. DOI: 10.1016/j.compscitech.2018.11.022.
  • Lv, H.; Yao, Y.; Li, S.; Wu, G.; Zhao, B.; Zhou, X.; Dupont, R. L.; Kara, U. I.; Zhou, Y.; Xi, S. Staggered Circular Nanoporous Graphene Converts Electromagnetic Waves into Electricity. Nat. Commun. 2023, 14(1), 1982. DOI: 10.1038/s41467-023-37436-6.
  • Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv.Mate. 2010, 22(35), 3906–3924. DOI: 10.1002/adma.201001068.
  • Sun, Z.; Martinez, A.; Wang, F. Optical Modulators with 2D Layered Materials. Nat. Photonics. 2016, 10(4), 227. DOI: 10.1038/nphoton.2016.15.
  • Razaq, A.; Bibi, F.; Zheng, X.; Papadakis, R.; Jafri, S. H. M.; Li, H. Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications. Materials. 2022, 15(3), 1012. DOI: 10.3390/ma15031012.
  • Zhang, Y.; Wu, J.; Jia, L.; Qu, Y.; Yang, Y.; Jia, B.; Moss, D. J. Graphene Oxide for Nonlinear Integrated Photonics. Laser Photonics. Rev. 2023, 17(3), 2200512. DOI: 10.1002/lpor.202200512.
  • Li, F.; Long, L.; Weng, Y. A Review on the Contemporary Development of Composite Materials Comprising Graphene/Graphene Derivatives. Adv. Mat. Sci. Eng 2020. 2020, 2020, 1–16. DOI: 10.1155/2020/7915641.
  • Pakdel, S.; Majidi, S.; Azamat, J.; Erfan-Niya, H. ‘Graphene Oxide and Reduced Graphene Oxide as Nanofillers in Membrane separation’: ‘Two-Dimensional (2D) Nanomaterials in Separation Science’; Cham, Switzerland: Springer: 2021; pp. 113–144.
  • Mohan, V. B.; Lau, K.-T.; Hui, D.; Bhattacharyya, D. Graphene-Based Materials and Their Composites: A Review on Production, Applications and Product Limitations. Compos. B Eng. 2018, 142, 200–220. DOI: 10.1016/j.compositesb.2018.01.013.
  • Nasir, A.; Kausar, A.; Younus, A. Polymer/Graphite Nanocomposites: Physical Features, Fabrication and Current Relevance. Polym.-Plast. Technol. Eng. 2015, 54(7), 750–770. DOI: 10.1080/03602559.2014.979503.
  • Abuzeid, H. M.; Julien, C. M.; Zhu, L.; Hashem, A. M. Green Synthesis of Nanoparticles and Their Energy Storage. Environ. Biomed. Appl. Crystals. 2023, 13(11), 1576. DOI: 10.3390/cryst13111576.
  • Wang, Y.; Tian, W.; Xie, J.; Liu, Y. Thermoelectric Responsive Shape Memory Graphene/hydro-Epoxy Composites for Actuators. Micromachines. 2016, 7(8), 145. DOI: 10.3390/mi7080145.
  • Williams, T.; Meador, M.; Miller, S.; Scheiman, D. Effect of Graphene Addition on Shape Memory Behavior of Epoxy Resins. Society of Advanced Materials Processing and Engineering (SAMPE); Forth Worth, TX. 2011.
  • Romero‐Zúñiga, G. Y.; Navarro‐Rodríguez, D.; Treviño‐Martínez, M. E. Enhanced Mechanical Performance of a DGEBA Epoxy Resin‐Based Shape Memory Polymer by Introducing Graphene Oxide via Covalent Linking. J. Appl. Polym. Sci. 2022, 139(2), 51467. DOI: 10.1002/app.51467.
  • Wang, W.; Liu, D.; Liu, Y.; Leng, J.; Bhattacharyya, D. Electrical Actuation Properties of Reduced Graphene Oxide Paper/epoxy-Based Shape Memory Composites. Compos. Sci. Technol. 2015, 106, 20–24. DOI: 10.1016/j.compscitech.2014.10.016.
  • Lu, H.; Yao, Y.; Huang, W. M.; Hui, D. Noncovalently Functionalized Carbon Fiber by Grafted Self-Assembled Graphene Oxide and the Synergistic Effect on Polymeric Shape Memory Nanocomposites. Compos. B Eng. 2014, 67, 290–295. DOI: 10.1016/j.compositesb.2014.07.022.
  • Javanbakht, S.; Shaabani, A. Stimuli‐Responsive Bio‐Based Quantum Dots in Biomedical Applications. In Nanoengineering of Biomaterials, Sougata J., Subrata J., Eds.; WILEY‐VCH GmbH: Weinheim, Germany, 2022; pp. 323–352.
  • Madhi, A. Smart Epoxy/Polyurethane/Carbon Quantum Dots Hybrid Coatings: Synthesis and Study of UV-Shielding, Viscoelastic, and Anti-Corrosive Properties. Polym. Plast. Technol. Eng. 2023, 62(4), 403–418. DOI: 10.1080/25740881.2022.2116342.
  • Pourhashem, S.; Ghasemy, E.; Rashidi, A.; Vaezi, M. R. Corrosion Protection Properties of Novel Epoxy Nanocomposite Coatings Containing Silane Functionalized Graphene Quantum Dots. J. Alloys Compd. 2018, 731, 1112–1118. DOI: 10.1016/j.jallcom.2017.10.150.
  • Sanaka, R.; Sahu, S. K. ‘Influence of Nanofiller Addition on the Mechanical, Thermal, and Shape Recovery Behavior of Shape Memory Polymer Nanocomposite: A Brief Review’. Materials Today: Proceedings, 2023. DOI: 10.1016/j.matpr.2023.06.370.
  • Qiu, L.; Li, D.; Cheng, H.-M. Structural Control of Graphene-Based Materials for Unprecedented Performance. ACS Nano. 2018, 12(6), 5085–5092. DOI: 10.1021/acsnano.8b03792.
  • Kang, S.; Kang, T.-H.; Kim, B. S.; Oh, J.; Park, S.; Choi, I. S.; Lee, J.; Son, J. G. 2D Reentrant Micro-Honeycomb Structure of Graphene-CNT in Polyurethane: High Stretchability, Superior Electrical/Thermal Conductivity, and Improved Shape Memory Properties. Compos. B Eng. 2019, 162, 580–588. DOI: 10.1016/j.compositesb.2019.01.004.
  • Wang, J.; Wang, H.; Zhang, Z.; Zhao, Y. Shape Memory Graphene and Cutting-Edge Achievements. APL Mater. 2020, 8(5), 050903. DOI: 10.1063/5.0005755.
  • Qing, F.; Hou, Y.; Stehle, R.; Li, X. Chemical Vapor Deposition Synthesis of Graphene Films. APL Mater. 2019, 7(2), 020903. DOI: 10.1063/1.5078551.
  • Guo, F.; Zheng, X.; Liang, C.; Jiang, Y.; Xu, Z.; Jiao, Z.; Liu, Y.; Wang, H. T.; Sun, H.; Ma, L. Millisecond Response of Shape Memory Polymer Nanocomposite Aerogel Powered by Stretchable Graphene Framework. ACS Nano. 2019, 13(5), 5549–5558. DOI: 10.1021/acsnano.9b00428.
  • Xie, H.; Li, L.; Cheng, C.-Y.; Yang, K.-K.; Wang, Y.-Z. Poly (Ethylene-Co-Vinyl Acetate)/Graphene Shape-Memory Actuator with a Cyclic Thermal/Light Dual-Sensitive Capacity. Compos. Sci. Technol. 2019, 173, 41–46. DOI: 10.1016/j.compscitech.2019.01.020.
  • Wu, H.-Y.; Li, S.-T.; Shao, Y.-W.; Jin, X.-Z.; Qi, X.-D.; Yang, J.-H.; Zhou, Z.-W.; Wang, Y. Melamine Foam/Reduced Graphene Oxide Supported Form-Stable Phase Change Materials with Simultaneous Shape Memory Property and Light-To-Thermal Energy Storage Capability. Chem. Eng. J. 2020, 379, 122373. DOI: 10.1016/j.cej.2019.122373.
  • Garces, I. T.; Aslanzadeh, S.; Boluk, Y.; Ayranci, C. Effect of Moisture on Shape Memory Polyurethane Polymers for Extrusion-Based Additive Manufacturing. Materials. 2019, 12(2), 244. DOI: 10.3390/ma12020244.
  • Sosnowicz, W. Production of Graphene Coatings for Applications in Tissue Engineering and Food Industry. Instytut Metrologii i Inżynierii Biomedycznej, The Institute of Metrology and Biomedical Engineering, Warsaw University of Technology: Warsaw, Poland, 2020.
  • Idowu, A.; Thomas, T.; Boesl, B.; Agarwal, A. Cryo-Assisted Extrusion Three-Dimensional Printing of Shape Memory Polymer–Graphene Composites. J. Manuf. Sci. Eng. 2023, 145(4), 041003.
  • Hasan, S. M.; Harmon, G.; Zhou, F.; Raymond, J. E.; Gustafson, T. P.; Wilson, T. S.; Maitland, D. J. Tungsten‐Loaded SMP Foam Nanocomposites with Inherent Radiopacity and Tunable Thermo‐Mechanical Properties. Polym. Adv. Technol. 2016, 27(2), 195–203. DOI: 10.1002/pat.3621.
  • Wang, W.; Wang, K.; Kodur, V.; Wang, B. Mechanical Properties of High-Strength Q690 Steel at Elevated Temperature. J. Mater. Civil Eng. 2018, 30(5), 04018062. DOI: 10.1061/(ASCE)MT.1943-5533.0002244.
  • Das, R.; Melchior, C.; Karumbaiah, K. Self-Healing Composites for Aerospace applications. In Advanced Composite Materials for Aerospace Engineering, Sohel Rana, Raul Fangueiro Eds., Elsevier: Netherlands, 2016; pp. 333–364.
  • He, X.; Fang, Y.; Luo, Q.; Cao, Y.; Lu, H.; Ma, R.; Zhang, Z. Mechanical Properties of Microsteel Fiber Reinforced Concrete and Its Gradient Design in the Partially Reinforced RC Beam. Adv. Civil Eng. 2020. 2020, 2020, 1–13. DOI: 10.1155/2020/6639312.
  • Shi, K.; Xu, J.; Jiang, Z.; Lv, J.; Lu, Y.; Yam, M. Mechanical Properties of New Composite Wood-Plastic Formworks with Aluminum Alloy Frame. Adv. Civil Eng. 2020. 2020, 2020, 1–19. DOI: 10.1155/2020/8831999.
  • Petrone, C.; Magliulo, G.; Manfredi, G. Mechanical Properties of Plasterboards: Experimental Tests and Statistical Analysis. J. Mater. Civil Eng. 2016, 28(11), 04016129. DOI: 10.1061/(ASCE)MT.1943-5533.0001630.
  • Krystek, M.; Pakulski, D.; Patroniak, V.; Górski, M.; Szojda, L.; Ciesielski, A.; Samorì, P. High‐Performance Graphene‐Based Cementitious Composites. Adv. Sci. 2019, 6(9), 1801195. DOI: 10.1002/advs.201801195.
  • Baniasadi, M.; Maleki-Bigdeli, M.-A.; Baghani, M. Force and Multiple-Shape-Recovery in Shape-Memory-Polymers Under Finite Deformation Torsion-Extension. Smart Mater. Struct. 2020, 29(5), 055011. DOI: 10.1088/1361-665X/ab78b4.
  • Badeau, B. A.; DeForest, C. A. Programming Stimuli-Responsive Behavior into Biomaterials. Annu. Rev. Biomed. Eng. 2019, 21(1), 241–265. DOI: 10.1146/annurev-bioeng-060418-052324.
  • Gardner, D.; Lark, R.; Jefferson, T.; Davies, R. A Survey on Problems Encountered in Current Concrete Construction and the Potential Benefits of Self-Healing Cementitious Materials. Case Studies Const. Mat. 2018, 8, 238–247. DOI: 10.1016/j.cscm.2018.02.002.
  • Liu, Y.; Genzer, J.; Dickey, M. D. “2D or Not 2D”: Shape-Programming Polymer Sheets. Prog. Polym. Sci. 2016, 52, 79–106. DOI: 10.1016/j.progpolymsci.2015.09.001.
  • Zhang, Q.; Zhou, Y.; Tong, Y.; Chi, Y.; Liu, R.; Dai, C.; Li, Z.; Cui, Z.; Liang, Y.; Tan, Y. Reduced Graphene Oxide Coating LiFepo4 Composite Cathodes for Advanced Lithium-Ion Battery Applications. Int. J. Mol. Sci. 2023, 24(24), 17549. DOI: 10.3390/ijms242417549.
  • Sobhan, A.; Saedi, S.; Hoff, M.; Liang, Y.; Muthukumarappan, K. Evaluation and Improvement of Bio-Based Sustainable Resin Derived from Formic-Acid-Modified Epoxidized Soybean Oil for Packaging Applications. Polymers. 2023, 15(21), 4255. DOI: 10.3390/polym15214255.
  • Dai, C.; Shi, Y.; Li, Z.; Hu, T.; Wang, X.; Ding, Y.; Yan, L.; Liang, Y.; Cao, Y.; Wang, P. The Design, Synthesis, and Characterization of Epoxy Vitrimers with Enhanced Glass Transition Temperatures. Polymers. 2023, 15(22), 4346. DOI: 10.3390/polym15224346.
  • Papadopoulou, K. A.; Chroneos, A.; Christopoulos, S.-R. G. Ion Incorporation on the Zr2CS2 MXene Monolayer Towards Better-Performing Rechargeable Ion Batteries. J. Alloys Compd. 2022, 922, 166240. DOI: 10.1016/j.jallcom.2022.166240.
  • Liu, G.; Sun, Z.; Shi, X.; Wang, X.; Shao, L.; Liang, Y.; Lu, X.; Liu, J.; Guo, Z. 2D‐Layer‐Structure Bi to Quasi‐1D‐Structure NiBi3: Structural Dimensionality Reduction to Superior Sodium and Potassium Ion Storage. Adv.Mate. 2023, 35(41), 2305551. DOI: 10.1002/adma.202305551.
  • Kong, D.; Li, J.; Guo, A.; Zhang, X.; Xiao, X. Self-Healing High Temperature Shape Memory Polymer. Eur. Polym. J. 2019, 120, 109279. DOI: 10.1016/j.eurpolymj.2019.109279.
  • Osman, A. F.; Andriani, Y.; Edwards, G. A.; Schiller, T. L.; Jack, K. S.; Morrow, I. C.; Halley, P. J.; Martin, D. J. Engineered Nanofillers: Impact on the Morphology and Properties of Biomedical Thermoplastic Polyurethane Nanocomposites. RSC Adv. 2012, 2(24), 9151–9164. DOI: 10.1039/c2ra21420b.
  • Patel, K. K.; Purohit, R. Improved Shape Memory and Mechanical Properties of Microwave-Induced Thermoplastic Polyurethane/Graphene Nanoplatelets Composites. Sens. Actuators, A. 2019, 285, 17–24. DOI: 10.1016/j.sna.2018.10.049.
  • Dominique, P.; Crego, P. ‘Wearables, Smart Textiles & Smart Apparel’; Netherlands: Elsevier: 2018. 2018
  • Lima, T. A.; Fridman, A.; McLaughlin, J.; Francis, C.; Clay, A.; Narayanan, G.; Yoon, H.; Idrees, M.; Palmese, G. R.; Scala, J. L. High-Performance Thermosets for Additive Manufacturing. Innov. Emer. Technol. 2023, 10, 2330003. DOI: 10.1142/S2737599423300039.
  • Ahmad, S.; Habib, S.; Nawaz, M.; Shakoor, R.; Kahraman, R.; Al Tahtamouni, T. M. The Role of Polymeric Matrices on the Performance of Smart Self-Healing Coatings: A Review. J. Ind. Eng. Chem. 2023, 124, 40–67. DOI: 10.1016/j.jiec.2023.04.024.
  • Zheng, N.; Fang, G.; Cao, Z.; Zhao, Q.; Xie, T. High Strain Epoxy Shape Memory Polymer. Polym. Chem. 2015, 6(16), 3046–3053. DOI: 10.1039/C5PY00172B.
  • Li, Q.; Zhou, J.; Vatankhah-Varnoosfaderani, M.; Nykypanchuk, D.; Gang, O.; Sheiko, S. S. Advancing Reversible Shape Memory by Tuning the Polymer Network Architecture. Macromolecules. 2016, 49(4), 1383–1391. DOI: 10.1021/acs.macromol.5b02740.
  • Wang, L.; Wang, C.; Sun, W.; Du, A. Self-Healable, Strengthened, Shape Memory Elastomers Enabled by Dual Cross-Linked Networks. J. Elastomers Plast. 2022. 00952443221140466. 10.1177/00952443221140466
  • Guo, Y.; Liu, Y.; Liu, J.; Zhao, J.; Zhang, H.; Zhang, Z. Shape Memory Epoxy Composites with High Mechanical Performance Manufactured by Multi-Material Direct Ink Writing. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105903. DOI: 10.1016/j.compositesa.2020.105903.
  • Manning, K. B.; Wyatt, N.; Hughes, L.; Cook, A.; Giron, N. H.; Martinez, E.; Campbell, C. G.; Celina, M. C. Self Assembly–Assisted Additive Manufacturing: Direct Ink Write 3D Printing of Epoxy–Amine Thermosets. Macromol. Mater. Eng. 2019, 304(3), 1800511. DOI: 10.1002/mame.201800511.
  • Arnebold, A.; Hartwig, A. Fast Switchable, Epoxy Based Shape-Memory Polymers with High Strength and Toughness. Polymer. 2016, 83, 40–49. DOI: 10.1016/j.polymer.2015.12.007.
  • Mora, P.; Schäfer, H.; Jubsilp, C.; Rimdusit, S.; Koschek, K. Thermosetting Shape Memory Polymers and Composites Based on Polybenzoxazine Blends, Alloys and Copolymers. Chem. An Asian J. 2019, 14(23), 4129–4139. DOI: 10.1002/asia.201900969.
  • Liu, Y.; Han, C.; Tan, H.; Du, X. Thermal, Mechanical and Shape Memory Properties of Shape Memory Epoxy Resin. Mater. Sci. Eng. A. 2010, 527(10–11), 2510–2514. DOI: 10.1016/j.msea.2009.12.014.
  • Staszczak, M.; Urbański, L.; Cristea, M.; Ionita, D.; Pieczyska, E. A. Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applications. Polymers. 2024, 16(2), 219. DOI: 10.3390/polym16020219.
  • Luo, L.; Zhang, F.; Leng, J. Shape Memory Epoxy Resin and Its Composites: From Materials to Applications. Research. 2022, 2022. DOI: 10.34133/2022/9767830.
  • Nakagawa, T.; Ko, S.; Slaughter, C.; Abdullah, T.; Houser, G.; Salviato, M. Effects of Aging on the Mechanical and Fracture Properties of Chopped Fiber Composites Made from Repurposed Aerospace Prepreg Scrap and Waste. Sus. Mater. Technol. 2022, 33, e00470. DOI: 10.1016/j.susmat.2022.e00470.
  • Jansen, K.; Zhang, M.; Ernst, L.; Vu, D.-K.; Weiss, L. Effect of Temperature and Humidity on Moisture Diffusion in an Epoxy Moulding Compound Material. Microelectron. Reliab. 2020, 107, 113596. DOI: 10.1016/j.microrel.2020.113596.
  • Zhou, X.; Ma, B.; Wei, K.; Wang, X. Preparation of Shape Memory Epoxy Resin for Asphalt Mixtures and Its Influences on the Main Pavement Performance. Constr. Build. Mater. 2021, 267, 121055. DOI: 10.1016/j.conbuildmat.2020.121055.
  • Yuan, D.; Delpierre, S. B.; Ke, K.; Raquez, J.-M.; Dubois, P.; Manas-Zloczower, I. Biomimetic Water-Responsive Self-Healing Epoxy with Tunable Properties. ACS Appl. Mater. Interfaces. 2019, 11(19), 17853–17862. DOI: 10.1021/acsami.9b04249.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.