62
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effect of poly(ethylene glycol) on the properties of poly (lactic acid)/silane-modified bacterial cellulose nanocomposites

& ORCID Icon
Pages 1227-1238 | Received 17 Dec 2023, Accepted 28 Feb 2024, Published online: 15 Mar 2024

References

  • Park, S. H.; Lee, H. S.; Choi, J. H.; Jeong, J. C. M.; Sung, M. H.; Park, H. J. Improvements in Barrier Properties of Poly(lactic Acid) Films Coated with Chitosan or Chitosan/Clay Nanocomposite. J. Appl. Polym. Sci. 2012, 125(S1), 675–680. DOI: 10.1002/app.36405.
  • Scarfato, P.; Di Maio, L.; Incarnato, L. Recent Advances and Migration Issues in Biodegradable Polymers from Renewable Sources for Food Packaging. J. Appl. Polym. Sci. 2015, 132(48), 42597. DOI: 10.1002/app.42597.
  • Qiang, T.; Wang, J.; Wolcott, M. P. Polymer-Plastics Technology and Engineering. 2018, 57(13), 1288–1295. DOI: 10.1080/03602559.2017.1381243.
  • Ng, W. K.; Chow, W. S.; Ismail, H. Tensile, thermal and optical properties of poly(lactic acid)/poly(2-ethyl-2-oxazoline)/corn cob nanocellulose nanocomposite film. Polym.-Plast. Technol. Mater. 2022, 61(2), 207–219. DOI: 10.1080/25740881.2021.1976204.
  • Swetha, T.; Bora, A.; Mohanrasu, K.; Balaji, P.; Raja, R.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A comprehensive review on polylactic acid (PLA) – Synthesis, processing and application in food packaging. Int. J. Biol. Macromol. 2023, 234, 123715. DOI: 10.1016/j.ijbiomac.2023.123715.
  • Jadhav, H.; Jadhav, A.; Takkalkar, P.; Hossain, N.; Nizammudin, S.; Zahoor, M.; Jamal, M.; Mubarak, N. M.; Griffin, G.; Kao, N. J. Polym. Res. 2020, 27(11), 1–36. DOI: 10.1007/s10965-020-02287-y
  • Zhou, L.; Ke, K.; Yang, M. B.; Yang, W. Recent Progress on Chemical Modification of Cellulose for High Mechanical-Performance Poly(lactic Acid)/Cellulose Composite: A Review. Compos. Commun. 2021, 23, 100548. DOI: 10.1016/j.coco.2020.100548.
  • Liu, H.; Zhang, B.; Zhou, L.; Li, J.; Zhang, J.; Chen, X.; Xu, H. H. Synergistic effects of cellulose nanocrystals-organic montmorillonite as hybrid nanofillers for enhancing mechanical, crystallization, and heat-resistant properties of three-dimensional printed poly(lactic acid) nanocomposites. Polym. Eng. Sci. 2021, 61(12), 2985–3000. DOI: 10.1002/pen.25812
  • Ávila, R. J. A.; Bovi, J.; Bernal, C.; Errea, M. I.; Foresti, M. L. Development of poly (lactic acid) nanocomposites reinforced with hydrophobized bacterial cellulose. J. Polymers And The Environment. 2020, 28(1), 61–73. DOI: 10.1007/s10924-019-01581-1
  • Huang, L.; Zhang, X.; Xu, M.; Chen, J.; Shi, Y.; Huang, C.; Wang, S.; An, S.; Li, C. Preparation and Mechanical Properties of Modified Nanocellulose/PLA Composites from Cassava Residue. AIP Adv. 2018, 8(2), 8. DOI: 10.1063/1.5023278.
  • Somord, K.; Somord, K.; Suwantong, O.; Thanomsilp, C.; Peijs, T.; Soykeabkaew, N. Self-Reinforced Poly(lactic Acid) Nanocomposites with Integrated Bacterial Cellulose and Its Surface Modification. 2018. 4(3), 102–111. DOI: 10.1080/20550324.2018.1532671.
  • Johari, A. P.; Mohanty, S.; Kurmvanshi, S. K.; Nayak, S. K. Influence of Different Treated Cellulose Fibers on the Mechanical and Thermal Properties of Poly(lactic Acid). ACS Sustain. Chem. Eng. 2016, 4(3), 1619–1629. DOI: 10.1021/acssuschemeng.5b01563.
  • Li, Z. Q.; Zhou, X. D.; Pei, C. H. Preparation and characterization of bacterial cellulose/polylactide nanocomposites; Polymer-Plastics Technology and Engineering, 2010; Vol. 49, pp. 141–146.
  • Coltelli, M. B.; Cinelli, P.; Gigante, V.; Aliotta, L.; Morganti, P.; Panariello, L.; Lazzeri, A. Chitin Nanofibrils in Poly(lactic Acid) (PLA) Nanocomposites: Dispersion and Thermo-Mechanical Properties. Int. J. Mol. Sci. 2019, 20(3), 504. DOI: 10.3390/ijms20030504.
  • Fehri, M. K.; Mugoni, C.; Cinelli, P.; Anguillesi, I.; Coltelli, M. B.; Fiori, S.; Montorsi, M.; Lazzeri, A. Composition Dependence of the Synergistic Effect of Nucleating Agent and Plasticizer in Poly(lactic Acid): A Mixture Design Study. Express Polym. Lett. 2016, 10(4), 274–288. DOI: 10.3144/expresspolymlett.2016.26.
  • Jiang, G.; Zhang, M.; Feng, J.; Zhang, S.; Wang, X. High Oxygen Barrier Property of Poly(propylene Carbonate)/Polyethylene Glycol Nanocomposites with Low Loading of Cellulose Nanocrytals. ACS Sustain. Chem. Eng. 2017, 5(12), 11246–11254. DOI: 10.1021/acssuschemeng.7b01674.
  • Seraji, A. A.; Goharpey, F.; Khademzadeh, Y. J. Highly crystallized and tough polylactic acid through addition of surface modified cellulose nanocrystals. J. Appl. Polym. Sci. 2022, 139(37), e52871. DOI: 10.1002/app.52871
  • Lönnberg, H.; Zhou, Q.; Brumer, H.; Teeri, T. T.; Malmström, E.; Hult, A. Grafting of Cellulose Fibers with Poly(ε-caprolactone) and Poly(l-lactic acid) via Ring-Opening Polymerization. Biomacromolecules. 2006, 7(7), 2178–2185. DOI: 10.1021/bm060178z.
  • Song, Z.; Xiao, H.; Zhao, Y. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydr. Polym. 2014, 111, 442–448. DOI: 10.1016/j.carbpol.2014.04.049.
  • Lu, Y.; Cueva, M. C.; Lara-Curzio, E.; Ozcan, S. Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization. Carbohydr. Polym. 2015, 131, 208–217. DOI: 10.1016/j.carbpol.2015.05.047.
  • Yin, Y.; Ma, J.; Tian, X.; Jiang, X.; Wang, H.; Gao, W. Cellulose Nanocrystals Functionalized with Amino-Silane and Epoxy-Poly(ethylene Glycol) for Reinforcement and Flexibilization of Poly(lactic Acid): Material Preparation and Compatibility Mechanism. Cellulose. 2018, 25(11), 6447–6463. DOI: 10.1007/s10570-018-2033-7.
  • Yang, J. H.; Shen, Y.; He, W. D.; Zhang, N.; Huang, T.; Zhang Wang, J. H. Synergistic Effect of Poly(ethylene Glycol) and Graphene Oxides on the Crystallization Behavior of Poly(l-Lactide). J. Appl. Polym. Sci. 2013, 130(5), 3498–3508. DOI: 10.1002/app.39371.
  • Martin, O.; Averous, L. Poly(lactic acid): Plasticization and Properties of Biodegradable Multiphase Systems. Polymer. 2001, 42(14), 6209–6219. DOI: 10.1016/S0032-3861(01)00086-6.
  • Zhang, P.; Gao, D.; Zou, P.; Wang, B. Preparation and thermomechanical properties of nanocrystalline cellulose reinforced poly(lactic acid) nanocomposites. J. Appl. Polym. Sci. 2017, 134(14), 14–23. DOI: 10.1002/app.44683.
  • Wang, B.; Hina, K.; Zou, H.; Zuo, D.; Yi, C. J. Vinyl & Additive Technology. 2018, 24(24), E154–E163. DOI: 10.1002/vnl.21619
  • Hu, Y.; Hu, Y. S.; Topolkaraev, V.; Hiltner, A.; Baer, E. Aging of poly (lactide)/poly (ethylene glycol) blends. Part 2. Poly (lactide) with high stereoregularity. Polymer. 2003, 44(19), 5711–5720. DOI: 10.1016/S0032-3861(03)00615-3
  • Frone, A. N.; Panaitescu, D. M.; Chiulan, I.; Nicolae, C. A.; Vuluga, Z.; Vitelaru, C.; Damian, C. M. The effect of cellulose nanofibers on the crystallinity and nanostructure of poly (lactic acid) composites. J. Materials Science. 2016, 51(21), 9771–9791. DOI: 10.1007/s10853-016-0212-1
  • Robles, E.; Urruzola, I.; Labidi, J.; Serrano, L. Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites. Ind. Crops Prod. 2015, 71, 44–53. DOI: 10.1016/j.indcrop.2015.03.075.
  • Qing, W.; Wang, Y.; Wang, Y.; Zhao, D.; Liu, X.; Zhu, J. The modified nanocrystalline cellulose for hydrophobic drug delivery. Appl. Surf. Sci. 2016, 366, 404–409. DOI: 10.1016/j.apsusc.2016.01.133.
  • Carrillo, F.; Colom, X.; Sunol, J. J.; Saurina, J. Structural FTIR Analysis and Thermal Characterisation of Lyocell and Viscose-Type Fibres. Eur. Polym. J. 2004, 40(9), 2229–2234. DOI: 10.1016/j.eurpolymj.2004.05.003.
  • Meshitsuka, G. Isogai a Chemical Modification of Lignocellulosic Materials; D. N.-S. Hon. ed.; CRC Press: New York, 1995.
  • Tábi, T.; Hajba, S.; Kovács, J. G. Effect of crystalline forms (α′ and α) of poly (lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties. Eur. Polym. J. 2016, 82, 232–243. DOI: 10.1016/j.eurpolymj.2016.07.024.
  • Liu, C.; Ye, S.; Feng, J. Promoting the dispersion of graphene and crystallization of poly (lactic acid) with a freezing-dried graphene/PEG masterbatch. Compos. Sci. Technol. 2017, 144, 215–222. DOI: 10.1016/j.compscitech.2017.03.031.
  • Slark, A. T. The effect of intermolecular forces on the glass transition of solute-polymer blends. Polym. 1997, 38(10), 2407–2414. DOI: 10.1016/S0032-3861(96)00782-3.
  • Kowalczyk, M.; Piorkowska, E.; Kulpinski, P.; Pracella, M. Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Composites Part A: Applied Science and Manufacturing. 2011, 42(10), 1509–1514. DOI: 10.1016/j.compositesa.2011.07.003.
  • Pilla, S.; Gong, S.; O’Neill, E.; Yang, L.; Rowell, R. M. J. Appl. Polym. Sci. 2009, 111(1), 37–47. DOI: 10.1002/app.28860
  • Qian, S.; Sheng, K. PLA toughened by bamboo cellulose nanowhiskers: Role of silane compatibilization on the PLA bionanocomposite properties. Compos. Sci. Technol. 2017, 148, 59–69. DOI: 10.1016/j.compscitech.2017.05.020.
  • Oksman, K.; Mathew, A. P.; Bondeson, D.; Kvien, I. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos. Sci. Technol. 2006, 66(15), 2776–2784. DOI: 10.1016/j.compscitech.2006.03.002.
  • Jacobsen, S.; Fritz, H. G. Plasticizing Polylactide—The Effect of Different Plasticizers on the Mechanical Properties. Polym. Eng. Sci. 1999, 39(7), 1303–1310. DOI: 10.1002/pen.11517.
  • Thongpina, C.; Tippuwanan, C.; Buaksuntear, K.; Chuawittayawuta, T. Mechanical and thermal properties of PLA melt blended with high molecular weight PEG modified with peroxide and organo-clay. Key Eng. Mater. 2017, 751, 337–343. DOI: 10.4028/www.scientific.net/KEM.751.337.
  • Bijarimi, M.; Ahmad, S.; Rasid, R.; Khushairi, M. A.; Bijarimi, Z. M.; Ahmad, M.; Rasid, S.; Khushairi, R. M. A.; Zakir, M. Poly (lactic acid)/Poly (ethylene glycol) blends: Mechanical, thermal and morphological properties. AIP Conference Proceedings. 2016, 1727,020002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.