701
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Investigation of the extraction of samarium and gadolinium from leaching solutions of phosphorus-containing raw materials using solid extractants

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 68-73 | Received 20 Oct 2021, Accepted 09 Dec 2022, Published online: 17 Mar 2023

References

  • Abu Elgoud, E. M., Ismail, Z. H., El-Nadi, Y. A., & Aly, H. F. (2020). Separation of Cerium (IV) and Yttrium (III) from citrate medium by solvent extraction using D2EHPA in kerosene. Chemical Papers, 74(8), 2461–2469. doi:https://doi.org/10.1007/s11696-020-01083-8
  • Akkaya, R. (2014). Terbium adsorption onto polyhydroxyethylmethacrylate–hydroxyapatite composite and its modified composition by phytic acid. Desalination and Water Treatment. 52(7-9), 1440–1447. doi:10.1080/19443994.2013.793922
  • Artiushenko, O., Ávila, E. P., Nazarkovsky, M., & Zaitsev, V. (2020). Reusable hydroxamate immobilized silica adsorbent for dispersive solid phase extraction and separation of rare earth metal ions. Separation and Purification Technology. 231, 115934. doi:10.1016/j.seppur.2019.115934
  • Babu, C. M., Binnemans, K., & Roosen, J. (2018). Ethylenediaminetriacetic acid-functionalized activated carbon for the adsorption of rare earths from aqueous solutions. Industrial & Engineering Chemistry Research, 57(5), 1487–1497. doi:10.1021/acs.iecr.7b04274
  • Bao, S., Tang, Y., Zhang, Y., & Liang, L. (2016). Recovery and separation of metal ions from aqueous solutions by solvent-impregnated resins. Chemical Engineering & Technology, 39(8), 1377–1392. doi:10.1002/ceat.201500324
  • Binnemans, K., Jones, P., Muller, T., & Yurramendi, L. (2018). Rare earths and the balance problem: How to deal with changing markets? Journal of Sustainable Metallurgy, 4(1), 126–146. doi:10.1007/s40831-018-0162-8
  • Callura, J. C., Perkins, K. M., Baltrus, J. P., Washburn, N. R., Dzombak, D. A., & Karamalidis, A. K. (2019). Adsorption kinetics, thermodynamics, and isotherm studies for functionalized lanthanide-chelating resins. Journal of Colloid and Interface Science, 557, 465–477. doi:10.1016/j.jcis.2019.08.097
  • Cheremisina, O. V., Schenk, J., Cheremisina, E. A., & Ponomareva, M. A. (2019). Thermodynamic model of ion-exchange process as exemplified by cerium sorption from multisalt solutions. Journal of Mining Institute, 237(3), 307–316. doi:10.31897/pmi.2019.3.307
  • Cheremisina, O., Sergeev, V., Fedorov, A., & Iliyna, A. (2019). Specific features of solvent extraction of REM from phosphoric acid solutions with DEHPA. Mineral Processing and Extractive Metallurgy Review, 130, 233–239. doi:10.1080/25726641.2019.1626658
  • Guimei, Z., Yong, G., Wendong, W., Raimund, B., & Zewen, G. (2023). Assessing gadolinium resource efficiency and criticality in China. Resources Policy, 80, 103137. doi:10.1016/j.resourpol.2022.103137
  • Hérès, X., Blet, V., Di Natale, P., Ouaattou, A., Mazouz, H., Dhiba, D., & Cuer, F. (2018). Selective extraction of rare earth elements from phosphoric acid by ion exchange resins. Metals, 8(9), 682. doi:10.3390/met8090682
  • Kabay, N., Cortina, J. L., Trochimczuk, A., & Streat, M. (2010). Solvent-impregnated resins (SIRs)—Methods of preparation and their applications. Reactive and Functional Polymers. 70(8), 484–496. doi:10.1016/j.reactfunctpolym.2010.01.005
  • Kaibo, H., Lu, X., Yi, N., Xuewei, L., Haifeng, D., & Hongshuai, G. (2022). Removal of aluminum to obtain high purity gadolinium with pyridinium-based ionic liquids. Hydrometallurgy, 213, 105930. doi:10.1016/j.hydromet.2022.105930
  • Li, D. (2019). Development course of separating rare earths with acid phosphorus extractants: A critical review. J. Rare Earths, 37(5), 468–486. doi:10.1016/j.jre.2018.07.016
  • Litvinova, T. (2015). Separation of the heavy and light rare earth metals concentrate after sulfuric acid eudialyte concentrate treatment. FOG Freiberg Online Geoscience, 40, 159–166.
  • Lutskiy, D. S., Ignatovich, A. S., & Sulimova, M. A. (2019). Determination of the sorption characteristics of ammonium perrenate ions on anion exchange resin AV-17-8. Journal of Physics: Conference Series, 1399(5), 055069. doi:10.1088/1742-6596/1399/5/055069
  • Praveenkumar, S. (2021). Molecular simulation of separation of gadolinium ions from aqueous waste using directional solvent extraction. Journal of Molecular Liquids, 341, 117330. doi:10.1016/j.molliq.2021.117330
  • Razieh, S. A., Rezvan, T., & Mehdi, A. (2022). Evaluation of effective parameters on the non-aqueous solvent extraction of samarium and gadolinium to n-dodecane/D2EHPA. Progress in Nuclear Energy, 144, 104072. doi:10.1016/j.pnucene.2021.104072
  • Tunsu, C., & Petranikova, M. (2018). Perspectives for the recovery of critical elements from future energy-efficient refrigeration materials. Journal of Cleaner Production, 197, 232–241. doi:10.1016/j.jclepro.2018.06.185
  • Valenzuela, F., Valdés, A., Ide, V., Basualto, C., Sapag, J., & Araneda, C. (2012). Equilibrium, kinetic, and thermodynamic analysis of Cd (II) sorption from aqueous solutions using polymeric microcapsules containing an acidic organophosphonic extractant. Solvent Extraction and Ion Exchange. 30(4), 422–430. doi:10.1080/07366299.2012.687180
  • Voropanova, L. A., & Pukhova, V. P. (2018). Extraction of copper, cobalt and nickel ions from aqueous solutions by extractant Cyanex 272. Journal of Mining Institute, 233, 498–505. doi:10.31897/PMI.2018.5.498
  • Wang, L., Long, Z., Huang, X., Yu, Y., Cui, D., & Zhang, G. (2010). Recovery of rare earths from wet-process phosphoric acid. Hydrometallurgy, 101(1-2), 41–47. doi:10.1016/j.hydromet.2009.11.017
  • Zhang, W., Ye, G., & Chen, J. (2012). TRPO impregnated levextrel resin: Synthesis and extraction behavior of Zr (IV) and Nd (III) ions. Separation Science and Technology, 48(2), 263–271. doi:10.1080/01496395.2012.675002
  • Zheng, R., Bao, S., Zhang, Y., & Chen, B. (2018). Synthesis of di-(2-ethylhexyl) phosphoric acid (D2EHPA)-tributyl phosphate (TBP) impregnated resin and application in adsorption of vanadium (IV). Minerals, 8(5), 206. doi:10.3390/min8050206