880
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Synthesis and evaluation of newly E-octadec-9-enoic acid derivatives as sustainable corrosion inhibitors for mild steel in 1.0 M HCl

ORCID Icon
Pages 26-46 | Received 18 Jul 2022, Accepted 30 Dec 2022, Published online: 09 Jan 2023

References

  • Abd-Elaal, A. A., Elbasiony, N. M., Shaban, S. M., & Zaki, E. G. (2018). Studying the corrosion inhibition of some prepared nonionic surfactants based on 3-(4-hydroxyphenyl) propanoic acid and estimating the influence of silver nanoparticles on the surface parameters. Journal of Molecular Liquids. 249, 304–317. doi:10.1016/j.molliq.2017.11.052
  • Abdulazeez, I., Zeino, A., Kee, C. W., Al-Saadi, A. A., Khaled, M., Wong, M. W., & Al-Sunaidi, A. A. (2019). Mechanistic studies of the influence of halogen substituents on the corrosion inhibitive efficiency of selected imidazole molecules: A synergistic computational and experimental approach. Applied Surface Science, 471, 494–505. doi:10.1016/j.apsusc.2018.12.028
  • Aiad, I., Shaban, S. M., Elged, A. H., & Aljoboury, O. H. (2018). Cationic surfactant based on alignate as green corrosion inhibitors for the mild steel in 1.0 M HCl. Egyptian Journal of Petroleum, 27(4), 877–885. doi:10.1016/j.ejpe.2018.01.003
  • Aiad, I., Shaban, S. M., El-Sukkary, M., El-Awady, M., & Soliman, E. (2017). Electrical and gravimetric estimation the corrosion inhibition of three synthesized cationic surfactants N-(3-(butylidene amino) propyl)-N,N-dimethyl alkan-1-ammomium bromide. Materials Performance and Characterization, 6(1), 20170001–20170450. doi:10.1520/MPC20170001
  • Aiad, I., Shaban, S. M., Tawfik, S. M., Khalil, M. M. H., & El-Wakeel, N. (2018). Effect of some prepared surfactants on silver nanoparticles formation and surface solution behavior and their biological activity. Journal of Molecular Liquids, 266, 381–392. doi:10.1016/j.molliq.2018.06.089
  • Ali, S. A., Al-Muallem, H. A., Rahman, S. U., & Saeed, M. T. (2008a). Bis isoxazolidines: A new class of corrosion inhibitors of mild steel in acidic media. Corrosion Science, 50(11), 3070–3077. doi:10.1016/j.corsci.2008.08.011
  • Ali, S. A., Al-Muallem, H. A., Saeed, M. T., & Rahman, S. U. (2008b). Hydrophobic-tailed bicycloisoxazolidines: A comparative study of the newly synthesized compounds on the inhibition of mild steel corrosion in hydrochloric and sulfuric acid media. Corrosion Science, 50(3), 664–675. doi:10.1016/j.corsci.2007.10.010
  • Ali, S. A., & El-Sharif, A. M. (2012). Novel class of bisquaternary ammonium salts in inhibition of mild steel corrosion in HCl and H2SO4. Corrosion Engineering, Science and Technology, 47(4), 265–271. doi:10.1179/1743278212Y.0000000004
  • Ali, S. A., Haladu, S. A., & El-Sharif, A. M. (2016a). Diallylbis(3-ethoxycarbonylpropyl) ammonium chloride: A symmetrically substituted monomer for the synthesis of an alternate zwitterionic-anionic cyclopolymer. Macromolecular Research, 24(2), 163–169. doi:10.1007/s13233-016-4024-6
  • Ali, S. A., Haladu, S. A., & El-Sharif, A. M. (2016b). Synthesis and application of a cyclopolymer bearing a propylphosphonic acid and a propyl carboxylic acid pendants in the same repeating unit. Journal of Polymer Research, 23(8), 167. doi:10.1007/s10965-016-1006-5
  • Ali, S. A., Saeed, M. T., & El-Sharif, A. M. (2012). Diallyl-1,12-diaminododecane-based cyclopolymers and their use as inhibitors for mild steel corrosion. Polymer Engineering & Science, 52(12), 2588–2596. doi:10.1002/pen.23224
  • Al-Saadi, A. A. (2020). Understanding the influence of electron-donating and electron-withdrawing substituents on the anticorrosive properties of imidazole: A quantum-chemical approach. Arabian Journal for Science and Engineering, 45(1), 153–166. doi:10.1007/s13369-019-04167-0
  • Ashassi-Sorkhabi, H., Shaabani, B., & Seifzadeh, D. (2005). Effect of some pyrimidinic Shciff bases on the corrosion of mild steel in hydrochloric acid solution. Electrochimica Acta, 50(16-17), 3446–3452. doi:10.1016/j.electacta.2004.12.019
  • Aslam, R., Mobin, M., Aslam, J., Lgaz, H., Chung, I. M., & Zehra, S. (2021). Synergistic inhibition behavior between rhodamine blue and cationic gemini surfactant on mild steel corrosion in 1 M HCl medium. Journal of Molecular Structure, 1228, 129751. doi:10.1016/j.molstruc.2020.129751
  • Badr, E. A., Bedair, M. A., & Shaban, S. M. (2018). Adsorption and performance assessment of some imine derivatives as mild steel corrosion inhibitors in 1.0 M HCl solution by chemical, electrochemical and computational methods. Materials Chemistry and Physics, 219, 444–460. doi:10.1016/j.matchemphys.2018.08.041
  • Badr, E. A., Hefni, H. H. H., Shafek, S. H., & Shaban, S. M. (2020). Synthesis of anionic chitosan surfactant and application in silver nanoparticles preparation and corrosion inhibition of steel. International Journal of Biological Macromolecules, 157, 187–201. doi:10.1016/j.ijbiomac.2020.04.184
  • Badr, E. A., Shafek, S. H., Hefni, H. H., Elsharif, A. M., Alanezi, A. A., Shaban, S. M., & Kim, D. H. (2021). Synthesis of Schiff base-based cationic Gemini surfactants and evaluation of their effect on in-situ AgNPs preparation: Structure, catalytic, and biological activity study. Journal of Molecular Liquids, 326, 115342. doi:10.1016/j.molliq.2021.115342
  • Bahlakeh, G., Dehghani, A., Ramezanzadeh, B., & Ramezanzadeh, M. (2019). Highly effective mild steel corrosion inhibition in 1M HCl solution by novel green aqueous Mustard seed extract: Experimental, electronic-scale DFT and atomic-scale MC/MD explorations. Journal of Molecular Liquids, 293, 111559. doi:10.1016/j.molliq.2019.111559
  • Beattie, C., North, M., & Villuendas, P. (2011). Proline-catalyzed amination reactions in cyclic carbonate solvents. Molecules, 16(4), 3420–3432. doi:10.3390/molecules16043420
  • Dandigunta, B., Karthick, A., Chattopadhyay, P., & Dhoble, A. S. (2021). Impact of temperature and surfactant addition on milk foams. Journal of Food Engineering, 299, 110509. doi:10.1016/j.jfoodeng.2021.110509
  • Dehghani, A., Bahlakeh, G., & Ramezanzadeh, B. (2019). Green eucalyptus leaf extract: A potent source of bio-active corrosion inhibitors for mild steel. Bioelectrochemistry (Amsterdam, Netherlands), 130, 107339. doi:10.1016/j.bioelechem.2019.107339
  • Dennington, R. K., & Millam, T. (2009). J. GaussView, Version 5. Shawnee Mission, KS: Semichem Inc.
  • El-Ashry, E. H., El Nemr, A., & Ragab, S. (2012). Quantitative structure activity relationships of some pyridine derivatives as corrosion inhibitors of steel in acidic medium. Journal of Molecular Modeling, 18(3), 1173–1188. doi:10.1007/s00894-011-1148-7
  • Elged, A. H., Shaban, S. M., Eluskkary, M. M., Aiad, I., Soliman, E. A., Elsharif, A. M., & Kim, D. H. (2021). Impact of hydrophobic tails of new phospho-zwitterionic surfactants on the structure, catalytic, and biological activities of AgNPs. Journal of Industrial and Engineering Chemistry, 94, 435–447. doi:10.1016/j.jiec.2020.11.017
  • Elsharif, A. M. (2017). Effect of organo-nitrogen compounds on inhibition efficiency of mild steel corrosion in acidic media. Asian Journal of Chemistry, 29(8), 1779–1784. doi:10.14233/ajchem.2017.20631
  • Elsharif, A. M., Abubshait, S. A., Abdulazeez, I., & Abubshait, H. A. (2020a). Synthesis of a new class of corrosion inhibitors derived from natural fatty acid: 13-Docosenoic acid amide derivatives for oil and gas industry. Arabian Journal of Chemistry, 13(5), 5363–5376. doi:10.1016/j.arabjc.2020.03.015
  • Elsharif, A. M., Abubshait, S. A., Abdulazeez, I., & Abubshait, H. A. (2020b). Synthesis, characterization and corrosion inhibition studies of polyunsaturated fatty acid derivatives on the acidic corrosion of mild steel: Experimental and computational studies. Journal of Molecular Liquids, 319, 114162. doi:10.1016/j.molliq.2020.114162
  • Elsherif, A. M., Elged, A. H., & Shaban, S. M. (2021). Controlling effect of hydroxyl phenyl aminopropyl cationic surfactants on the catalytic and biological performance of AgNPs. Surfaces and Interfaces, 27, 101530. doi:10.1016/j.surfin.2021.101530
  • Fawzy, A., Abdallah, M., Zaafarany, I. A., Ahmed, S. A., & Althagafi, I. I. (2018). Thermodynamic, kinetic, and mechanistic approach to the corrosion inhibition of carbon steel by new synthesized amino acids-based surfactants as green inhibitors in neutral and alkaline aqueous media. Journal of Molecular Liquids, 265, 276–291. doi:10.1016/j.molliq.2018.05.140
  • Feng, L., Yin, C., Zhang, H., Li, Y., Song, X., Chen, Q., & Liu, H. (2018). Cationic gemini surfactants with a bipyridyl spacer as corrosion inhibitors for carbon steel. ACS Omega, 3(12), 18990–18999. doi:10.1021/acsomega.8b03043
  • Flores, E. A., Olivares, O., Likhanova, N. V., Domínguez-Aguilar, M. A., Nava, N., Guzman-Lucero, D., & Corrales, M. (2011). Sodium phthalamates as corrosion inhibitors for carbon steel in aqueous hydrochloric acid solution. Corrosion Science. 53(12), 3899–3913. doi:10.1016/j.corsci.2011.07.023
  • Fouda, A. S., Elmorsi, M. A., Shaban, S. M., Fayed, T., & Azazy, O. (2018). Evaluation of N-(3-(dimethyl hexadecyl ammonio)propyl) palmitamide bromide as cationic surfactant corrosion inhibitor for API N80 steel in acidic environment. Egyptian Journal of Petroleum, 27(4), 683–694. doi:10.1016/j.ejpe.2017.10.004
  • Frisch, M. J., Trucks, G. W., & Schlegel, H. B. (2009). Gaussian 09 Revision C 01 Gaussian 09 , Revision B.01. Wallingford CT: Wallingford.
  • Gao, M., Zhang, J., Liu, Q., Li, J., Zhang, R., & Chen, G. (2019). Effect of the alkyl chain of quaternary ammonium cationic surfactants on corrosion inhibition in hydrochloric acid solution. Comptes Rendus Chimie, 22(5), 355–362. doi:10.1016/j.crci.2019.03.006
  • Heakal, F. E., & Elkholy, A. (2017). Gemini surfactants as corrosion inhibitors for carbon steel. Journal of Molecular Liquids, 230, 395–407. doi:10.1016/j.molliq.2017.01.047
  • Hiremath, S. M., Suvitha, A., Patil, N. R., Hiremath, C. S., Khemalapure, S. S., Pattanayak, S. K., … Obelannavar, K. (2018). Molecular structure, vibrational spectra, NMR, UV, NBO, NLO, HOMO-LUMO and molecular docking of 2-(4, 6-dimethyl-1-benzofuran-3-yl) acetic acid (2DBAA): Experimental and theoretical approach. Journal of Molecular Structure, 1171, 362–374. doi:10.1016/j.molstruc.2018.05.109
  • Kamal, M. S., Hussein, I., Mahmoud, M., Sultan, A. S., Saad, M., & A., S. (2018). Oilfield scale formation and chemical removal: A review. Journal of Petroleum Science and Engineering, 171, 127–139. doi:10.1016/j.petrol.2018.07.037
  • Khalil, N. (2003). Quantum chemical approach of corrosion inhibition. Electrochim. Acta, 48(18), 2635–2640. doi:10.1016/S0013-4686(03)00307-4
  • Lei, Z., Gao, H., Chang, X., Zhang, L., Wen, X., & Wang, Y. (2020). An application of green surfactant synergistically metal supported cordierite catalyst in denitration of Selective Catalytic Oxidation. Journal of Cleaner Production, 249, 119307. doi:10.1016/j.jclepro.2019.119307
  • Liang, Y., Li, H., Li, M., Mao, X., Li, Y., Wang, Z., … Hao, X. (2019). Synthesis and physicochemical properties of ester-bonded gemini pyrrolidinium surfactants and a comparison with single-tailed amphiphiles. Journal of Molecular Liquids, 280, 319–326. doi:10.1016/j.molliq.2019.02.018
  • Liu, D., Quan, X., Zhu, H., Huang, Q., & Zhou, L. (2020). Evaluation of modified waste concrete powder used as a novel phosphorus remover. Journal of Cleaner Production, 257, 120646. doi:10.1016/j.jclepro.2020.120646
  • Liu, J., Wang, D., Gao, L., & Zhang, D. (2016). Synergism between cerium nitrate and sodium dodecylbenzenesulfonate on corrosion of AA5052 aluminium alloy in 3 wt.% NaCl solution. Applied Surface Science, 389, 369–377. doi:10.1016/j.apsusc.2016.07.107
  • Liu, Y., Zhang, H., Liu, Y., Li, J., & Li, W. (2019). Inhibitive effect of quaternary ammonium-type surfactants on the self-corrosion of the anode in alkaline aluminium-air battery. The Journal of Power Sources, 434, 226723. doi:10.1016/j.jpowsour.2019.226723
  • McCafferty, E. (2005). Validation of corrosion rates measured by the Tafel extrapolation method. Corrosion Science, 47(12), 3202–3215. doi:10.1016/j.corsci.2005.05.046
  • McCafferty, E. (2010). Introduction to corrosion science, Springer Science & Business Media, LLC.
  • Migahed, M. A., Alsabagh, A. M., Abdou, M. I., Abdel-Rahman, A. A. H., Aboulrous,., & A., A. (2019). Synthesis a novel family of phosphonate surfactants and their evaluation as corrosion inhibitors in formation water. Journal of Molecular Liquids, 281, 528–541. doi:10.1016/j.molliq.2019.02.093
  • Migahed, M. A., EL-Rabiei, M. M., Nady, H., Elgendy, A., Zaki1, E. G., Abdou, M. I., & Noamy, E. S. (2017). Novel ionic liquid compound act as sweet corrosion inhibitors for X-65 carbon tubing steel: Experimental and theoretical studies. Journal of Bio- and Tribo-Corrosion, 3, 31.
  • Mishrif, M. R., Noor El-Din, M. R., & Khamis, E. A. (2018). Utilization of ethoxylated pentamine oleamide as new Gemini surfactants for corrosion inhibition effectiveness in 1 M HCl solution. Egyptian Journal of Petroleum, 27(4), 1357–1370. doi:10.1016/j.ejpe.2018.09.004
  • Mobin, M., & Aslam, R. (2018). Experimental and theoretical study on corrosion inhibition performance of environmentally benign non-ionic surfactants for mild steel in 3.5% NaCl solution. Process Safety and Environmental Protection, 114, 279–295. doi:10.1016/j.psep.2018.01.001
  • Nezhad, A. K., Sarikhani, S., Shahidzadeh, E. S., & Panahi, F. (2012). L-Proline-promoted three component reaction of anilines, aldehydes and barbituric acids/malononitrile: Regioselective synthesis of 5-arylpyrimido[4,5-b] quinoline-dionesand2-amino-4-arylquinoline-3 carbonitriles in water. Green Chemistry, 14(10), 2876–2884. doi:10.1039/c2gc35765h
  • Pakiet, M., Tedim, J., Kowalczyk, I., & Brycki, B. (2019). Functionalised novel gemini surfactants as corrosion inhibitors for mild steel in 50 mM NaCl: Experimental and theoretical insights. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 580, 123699. doi:10.1016/j.colsurfa.2019.123699
  • Pearson, R. G. (1988). Absolute electronegativity and hardness: Application to inorganic chemistry. Inorganic Chemistry, 27(4), 734–740. doi:10.1021/ic00277a030
  • Prabhu, R. A., Venkatesha, T. V., Shanbhag, A. V., Kulkarni, G. M., & Kalkhambkar, R. G. (2008). Inhibition effects of some Schiff’s bases on the corrosion of mild steel in hydrochloric acid solution. Corrosion Science, 50(12), 3356–3362. doi:10.1016/j.corsci.2008.09.009
  • Ramezanzadeh, M., Bahlakeh, G., & Ramezanzadeh, B. (2019). Study of the synergistic effect of Mangifera indica leaves extract and zinc ions on the mild steel corrosion inhibition in simulated seawater: Computational and electrochemical studies. Journal of Molecular Liquids, 292, 111387. doi:10.1016/j.molliq.2019.111387
  • Saad, M. A., Abdurahman, N. H., & Yunus, R. M. (2021). Synthesis, characterization, and demulsification of water in crude oil emulsion via a corn oil-based demulsifier. Mater Today: Proceedings, 42, 251–258. doi:10.1016/j.matpr.2021.01.145
  • Shaban, S. M., Aiad, I., El-Sukkary, M. M., Soliman, E. A., & El-Awady, M. Y. (2015). Surface and biological activity of N-(((dimethoxybenzylidene)amino)propyl)-N,N-dimethylalkyl-1-ammonium derivatives as cationic surfactants. Journal of Molecular Liquids. 207, 256–265. doi:10.1016/j.molliq.2015.03.043
  • Shaban, S. M., Aiad, I., Moustafa, A. H., & Aljoboury, O. H. (2019). Some alginates polymeric cationic surfactants; surface study and their evaluation as biocide and corrosion inhibitors. Journal of Molecular Liquids, 273, 164–176. doi:10.1016/j.molliq.2018.10.017
  • Shaban, S. M., Aiad, I., Yassin, F. A., & Mosalam, A. (2019). The tail effect of some prepared cationic surfactants on silver nanoparticle preparation and their surface, thermodynamic parameters, and antimicrobial activity. Journal of Surfactants and Detergents, 22(6), 1445–1460. doi:10.1002/jsde.12318
  • Shaban, S., M., Elbhrawy, M. F., Fouda, A. S., Rashwan, S., M., Ibrahim, H. E., & Elsharif, A. M. (2021). Corrosion inhibition and surface examination of carbon steel 1018 via N-(2-(2-hydroxyethoxy) ethyl)-N, N-dimethyloctan-1-aminium bromide in 1.0 M HCl. Journal of Molecular Structure, 1227, 129713. doi:10.1016/j.molstruc.2020.129713
  • Shaban, S. M., Elsamad, S. A., Tawfik, S. M., Abdel-Rahman, A. A. H., & Aiad, I. (2020). Studying surface and thermodynamic behavior of a new multi-hydroxyl Gemini cationic surfactant and investigating their performance as corrosion inhibitor and biocide. Journal of Molecular Liquids, 316, 113881. doi:10.1016/j.molliq.2020.113881
  • Shaban, S. M., Elsharif, A. M., Elged, A. H., Eluskkary, M. M., Aiad, I., & Soliman, E. A. (2021). Some new phospho-zwitterionic Gemini surfactants as corrosion inhibitors for carbon steel in 1.0 M HCl solution. Environmental Technology & Innovation, 24, 102051. doi:10.1016/j.eti.2021.102051
  • Shaban, S. M., El-Sherif, R. M., & Fahim, M. A. (2018). Studying the surface behavior of some prepared free hydroxyl cationic amphipathic compounds in aqueous solution and their biological activity. Journal of Molecular Liquids, 252, 40–51. doi:10.1016/j.molliq.2017.12.105
  • Shamsheera, K. O., Prasad, A. R., Jaseela, P. K., & Joseph, A. (2021). Effect of surfactant addition to Guar Gum and protection of mild steel in hydrochloric acid at high temperatures: Experimental and theoretical studies. Journal of Molecular Liquids, 331, 115807. doi:10.1016/j.molliq.2021.115807
  • Sheldon, R. A. (2005). Green solvents for sustainable organic synthesis: State of the art. Green Chemistry, 7(5), 267–278. doi:10.1039/b418069k
  • Tabatabaei, M., Asaldous, S., Bahlakeh, G., Ramezanzadeh, B., & Ramezanzadeh, M. (2019a). Green method of carbon steel effective corrosion mitigation in 1M HCl medium protected by Primula vulgaris flower aqueous extract via experimental, atomic-level MC/MD simulation and electronic-level DFT theoretical elucidation. Journal of Molecular Liquids, 284, 658–674. doi:10.1016/j.molliq.2019.04.037
  • Tabatabaei, M., Bahlakeh, G., Dehghani, A., Ramezanzadeh, B., & Ramezanzadeh, M. (2019b). Combined molecular simulation, DFT computation and electrochemical studies of the mild steel corrosion protection against NaCl solution using aqueous Eucalyptus leaves extract molecules linked with zinc ions. Journal of Molecular Liquids, 294, 111550. doi:10.1016/j.molliq.2019.111550
  • Tabatabaei, M., Ramezanzadeh, M., Ramezanzadeh, B., & Bahlakeh, G. (2020). Production of an environmentally stable anti-corrosion film based on Esfand seed extract molecules-metal cations: Integrated experimental and computer modeling approaches. Journal of Hazardous Materials, 382, 121029.
  • Tariq, Z., Kamal, M. S., Mahmoud, M., Alade, O., & Al-Nakhli, A. (2021). Self-destructive barite filter cake in water-based and oil-based drilling fluids. Journal of Petroleum Science and Engineering, 197, 107963. doi:10.1016/j.petrol.2020.107963
  • Toghan, A., Abo-Bakr, A. M., Rageh, H. M., & Abd-Elsabour, M. (2019). Green electrochemical strategy for one-step synthesis of new catechol derivatives. RSC Advances, 9(23), 13145–13152. doi:10.1039/c9ra01206k
  • Tomasi, J., Menucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. ChemInform, 36(42), 2999–3093. doi:10.1002/chin.200542292
  • Tung, N. T., Tran, C. S., Nguyen, T. L., Pham, T. M. H., Chi, S. C., Nguyen, H. A., … Tran, T. Q. (2021). Effect of surfactant on the in vitro dissolution and the oral bioavailability of a weakly basic drug from an amorphous solid dispersion. European Journal of Pharmaceutical Sciences: official Journal of the European Federation for Pharmaceutical Sciences, 162, 105836. doi:10.1016/j.ejps.2021.105836
  • Zhang, M., Guo, L., Zhu, M., Wang, K., Zhang, R., He, Z., … Zheng, X. (2021). Akebia trifoliate koiaz peels extract as environmentally benign corrosion inhibitor for mild steel in HCl solutions: Integrated experimental and theoretical investigations. Journal of Industrial and Engineering Chemistry, 101, 227–236. doi:10.1016/j.jiec.2021.06.009
  • Zhu, Y., & Free, M. L. (2016). Experimental investigation and modeling of the performance of pure and mixed surfactant inhibitors: Micellization and corrosion inhibition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 489, 407–422. doi:10.1016/j.colsurfa.2015.11.005