814
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Effects of chemical reaction and activation energy on Marangoni flow, heat and mass transfer over circular porous surface

, &
Pages 46-54 | Received 28 Sep 2022, Accepted 14 Jan 2023, Published online: 27 Jan 2023

References

  • Bestman, A. R. (1990). Natural convection boundary layer with suction and mass transfer in a porous medium. International Journal of Energy Research, 14(4), 389–396. doi:10.1002/er.4440140403
  • Bestman, A. R. (1991). Radiative heat transfer to flow of a combustible mixture in a vertical pipe. International Journal of Energy Research, 15(3), 179–184. doi:10.1002/er.4440150305
  • Butt, A. S., Ali, A., & Mehmood, A. (2017). Hydromagnetic stagnation point flow and heat transfer of particle suspended fluid towards a radially stretching sheet with heat generation. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(3), 385–394. doi:10.1007/s40010-017-0370-9
  • Christopher, D. M., & Wang, B. (2001a). Prandtl number effects for Marangoni convection over a flat surface. International Journal of Thermal Sciences, 40(6), 564–570. doi:10.1016/S1290-0729(01)01244-3
  • Christopher, D. M., & Wang, B. X. (2001b). Similarity simulation for Marangoni convection around a vapor bubble during nucleation and growth. International Journal of Heat and Mass Transfer, 44(4), 799–810. doi:10.1016/S0017-9310(00)00129-0
  • El-Gamel, M., El-Azab, M. S., & Fathy, M. (2014). The numerical solution of sixth order boundary value problems by the Legendre-Galerkin method. Acta Universitatis Apulensis Mathematics - Informatics, 40, 145–165. doi: 10.17114/j.aua.2014.40.13
  • El-Gamel, M., El-Azab, M. S., & Fathy, M. (2017). An efficient technique for finding the eigenvalues and the eigenelements of fourth-order Sturm-Liouville problems. SeMA Journal, 74(1), 37–56. doi:10.1007/s40324-016-0079-8
  • Fathy, M. (2021). Legendre-Galerkin method for the nonlinear Volterra-Fredholm integro-differential equations. Journal of Physics: Conference Series, 2128(1), 012036. doi:10.1088/1742-6596/2128/1/012036
  • Fathy, M., & Abdelgaber, K. M. (2021). Semi-analytical solutions of flow and heat transfer of fluid along expandable-stretching horizontal cylinder. Case Studies in Thermal Engineering, 28, 101426. doi:10.1016/j.csite.2021.101426
  • Fathy, M., El-Gamel, M., & El-Azab, M. S. (2014). Legendre–Galerkin method for the linear Fredholm integro-differential equations. Journal of Applied Mathematics and Computing, 243, 789–800. doi:10.1016/j.amc.2014.06.057
  • Hayat, T., Waqas, M., Shehzad, S. A., & Alsaedi, A. (2015). MHD stagnation point flow of Jeffrey fluid by a radially stretching surface with viscous dissipation and Joule heating. Journal of Hydrology and Hydromechanics, 63(4), 311–317. doi:10.1515/johh-2015-0038
  • He, J. H., & Abd Elazem, N. Y. (2021). Insights into partial slips and temperature jumps of a nanofluid flow over a stretched or shrinking surface. Energies, 14(20), 6691. doi:10.3390/en14206691
  • Khidir, A., & Sibanda, P. (2014). Nanofluid flow over a nonlinear stretching sheet in porous media with MHD and viscous dissipation effects. Journal of Porous Media, 17(5), 391–403. doi:10.1615/JPorMedia.v17.i5.20
  • Liu, X. Y., Liu, Y. P., & Wu, Z. W. (2022). Thrmo-dynamics properties of rotating disk electrodes for second order ECE reactions, THERMAL SCIENCE. Thermal Science, 26(3 Part B), 2459–2463. doi:10.2298/TSCI2203459L
  • Makinde, O. D., Mabood, F., Khan, W. A., & Tshehla, M. S. (2016). MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. Journal of Molecular Liquids, 219, 624–630. doi:10.1016/j.molliq.2016.03.078
  • Mustafa, M., Hayat, T., & Alsaedi, A. (2012). Axisymmetric flow of a nanofluid over a radially stretching sheet with convective boundary conditions. Current Nanoscience, 8(3), 328–334. doi:10.2174/157341312800620241
  • Nadeem, M., Feng, G. Q., Islam, A., & He, C. H. (2022). Chemical reaction and radiation on boundary-layer flow of electrically conduction micropolar fluid through a porous shrinking sheet. Thermal Science, 26(3 Part B), 2593–2598. doi:10.2298/TSCI2203593N
  • Ramly, N. A., Sivasankaran, S., & Noor, N. F. M. (2017). Zero and nonzero normal fluxes of thermal radiative boundary layer flow of nanofluid over a radially stretched surface. Scientia Iranica, 24(6), 2895–2903. doi:10.24200/sci.2017.4534
  • Rashid, U., & Ibrahim, A. (2020). Impacts of nanoparticle shape on Al2O3-water nanofluid flow and heat transfer over a non-linear radically stretching sheet. Advances in Nanoparticles, 09(01), 23–39. doi:10.4236/anp.2020.91002
  • Soid, S. K., Ishak, A., & Pop, I. (2018). MHD flow and heat transfer over a radially stretching/shrinking disk. Chinese Journal of Physics, 56(1), 58–66. doi:10.1016/j.cjph.2017.11.022
  • Uddin, M. J., Kabir, M. N., & Alginahi, Y. (2015). Computational investigation of hydromagnetic thermo-solutal nanofluid slip flow in a Darcian porous medium with zero mass flux boundary condition using stretching group transformations. Journal of Porous Media, 18(12), 1187–1200. doi:10.1615/JPorMedia.v18.i12.30
  • Vajravelu, K., & Hadjinicolaou, A. (1993). Heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat generation. The International Communications in Heat and Mass Transfer, 20(3), 417–430. doi:10.1016/0735-1933(93)90026-R