1,788
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus BNKC 19 using agricultural waste products as nutrient source

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 221-230 | Received 03 Oct 2022, Accepted 20 Jan 2023, Published online: 11 Apr 2023

References

  • Almeida, D. M., Prestes, R. A., Fonseca, A. F., Woiciechowski, A. L., & Wosiacki, G. (2013). Minerals consumption by Acetobacter xylinum on cultivation medium on coconut water. Brazilian journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 44(1), 197–206. doi:10.1590/S1517-83822013005000012
  • Ashokkumar, K., Elayabalan, S., Shobana, V. G., Sivakumar, P., & Pandiyan, M. (2018). Nutritional value of cultivars of Banana (Musa spp.) and its future prospects. Journal of Pharmacognosy and Phytochemistry, 7(3), 2972–2977.
  • Aswini, K., Gopal, N. O., & Uthandi, S. (2020). Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC biotechnology, 20(1), 46. doi:10.1186/s12896-020-00639-6
  • Audtarat, S., Hongsachart, P., Dasri, T., Chio-Srichan, S., Soontaranon, S., Wongsinlatam, W., & Sompech, S. (2022). Green synthesis of silver nanoparticles loaded into bacterial cellulose for antimicrobial application. Nanocomposites, 8(1), 34–46. doi:10.1080/20550324.2022.2055375
  • Cacicedo, M. L., Castro, M. C., Servetas, I., Bosnea, L., Boura, K., Tsafrakidou, P., … Castro, G. R. (2016). Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 213, 172–180. doi:10.1016/j.biortech.2016.02.071
  • Castro, C., Zuluaga, R., Putaux, J.-L., Caro, G., Mondragon, I., & Gañán, P. (2011). Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydrate Polymers, 84(1), 96–102. doi:10.1016/j.carbpol.2010.10.072
  • Chen, N., Younis, A., Chu, D., & Li, S. (2019). Controlled fabrication of Pr(OH)3 nanowires for enhanced photocatalytic activities. Journal of Rare Earths, 37(1), 60–67. doi:10.1016/j.jre.2018.03.035
  • Chen, N., Younis, A., Huang, S., Chu, D., & Li, S. (2019). Advanced three-dimensional hierarchical Pr6O11@Ni-Co oxides-based core-shell electrodes for supercapacitance application. Journal of Alloys and Compounds, 783, 772–778. doi:10.1016/j.jallcom.2018.12.247
  • Costa, A. F. S., Almeida, F. C. G., Vinhas, G. M., & Sarubbo, L. A. (2017). Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in Microbiology, 8, 2027. doi:10.3389/fmicb.2017.02027
  • Dasri, T., & Chingsungnoen, A. (2017). Enhancement of the magneto-optical Kerr effect signal using bilayer metallic structures consisting of Co/noble metal. Materials Research Express, 4(12), 126203. doi:10.1088/2053-1591/aa9c8b
  • Emaga, T. H., Andrianaivo, R. H., Wathelet, B., Tchango, J. T., & Paquot, M. (2007). Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chemistry, 103(2), 590–600. doi:10.1016/j.foodchem.2006.09.006
  • Gea, S., Reynolds, C. T., Roohpour, N., & Wirjosentono, B. (2011). Investigation into the structural, morphological, mechanical and thermal behavior of bacterial cellulose after a two-step purification process. Bioresource Technology, 02(19), 9105–9110. doi:10.1016/j.biortech.2011.04.077
  • George, J., Ramana, K. V., Bawa., & A. S., Siddaramaiah. (2011). Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. International Journal of Biological Macromolecules, 48(1), 50–57., doi:10.1016/j.ijbiomac.2010.09.013
  • Harrington, B. J., & Raper, K. B. (1968). Use of a fluorescent brightener to demonstrate cellulose in the cellular slime molds. Applied Microbiology, 16(1), 106–113. doi:10.1128/am.16.1.106-113.1968
  • Hemalatha, R., & Anbuselvi, S. (2013). Physicohemical constituents of pineapple pulp and waste. Journal of Chemical and Pharmaceutical Research, 5(2), 240–242.
  • Itoh, T. (1990). Cellulose synthesizing complexes in some giant marine algae. Journal of Cell Science, 95(2), 309–319. doi:10.1242/jcs.95.2.309
  • Keshk, S. M. (2014). Bacterial cellulose production and its industrial applications. Journal of Bioprocessing & Biotechniques, 4(2), 150. doi:10.4172/2155-9821.1000150
  • Lahiri, D., Nag, M., Dutta, B., Dey, A., Sarkar, T., Pati, S., … Ray, R. R. (2021). Bacterial cellulose: Production, characterization, and application as antimicrobial agent. International Journal of Molecular Sciences, 22(23), 12984. doi:10.3390/ijms222312984
  • Li, Z., Wang, L., Hua, J., Jia, S., Zhang, J., & Liu, H. (2015). Production of nano bacterial cellulose from waste water of candied jujube processing industry using Acetobacter xylinum. Carbohydrate Polymers, 120, 115–119. doi:10.1016/j.carbpol.2014.11.061
  • Li, Y.-Y., Wang, B., Ma, M.-G., & Wang, B. (2018). Review of recent development on preparation, properties, and applications of cellulose-based functional materials. International Journal of Polymer Science, 2018, 8973643. doi:10.1155/2018/8973643
  • Menon, M. P., Selvakumar, R., Kumar, P. S., & Ramakrishna, S. (2017). Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC Advances, 7(68), 42750–42773. doi:10.1039/C7RA06713E
  • Mikkelsen, D., Flanagan, B. M., Dykes, G. A., & Gidley, M. J. (2009). Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. Journal of Applied Microbiology, 107(2), 576–583. doi:10.1111/j.1365-2672.2009.04226.x
  • Mohammadkazemi, F., Azin, M., & Ashori, A. (2015). Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 117, 518–523. doi:10.1016/j.carbpol.2014.10.008
  • Mohite, B. V., Kamalja, K. K., & Patil, S. V. (2012). Statistical optimization of culture conditions for enhanced bacterial cellulose production by Gluconacetobacter hansenii NCIM 2529. Cellulose, 19(5), 1655–1666. doi:10.1007/s10570-012-9760-y
  • Molina-Ramírez, C., Cañas-Gutiérrez, A., Castro, C., Zuluaga, R., & Gañán, P. (2020). Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe banana culture medium. Carbohydrate polymers, 240(2), 116341. doi:10.1016/j.carbpol.2020.116341
  • Molina-Ramírez, C., Castro, C., Zuluaga, R., & Gañán, P. (2018). Physical characterization of bacterial cellulose produced by Komagataeibacter medellinensis using food supply chain waste and agricultural by-products as alternative low-cost feedstocks. Journal of Polymers and the Environment, 26(2), 830–837. doi:10.1007/s10924-017-0993-6
  • Núñez-Carmona, E., Bertuna, A., Abbatangelo, M., Sberveglieri, V., Comini, E. G., & Sberveglieri, G. (2019). BC-MOS: The novel bacterial cellulose based MOS gas sensors. Materials Letters, 237, 69–71. doi:10.1016/j.matlet.2018.11.011
  • Omwango, E. O., Njagi, E. N. M., Orinda, G. O., & Wanjau, R. N. (2013). Nutrient enrichment of pineapple waste using Aspergillus niger and Trichoderma viride by solid state fermentation. African Journal of Biotechnology, 12(43), 6193–6196. doi:10.5897/AJB2013.12992
  • Raghavendran, V., Asare, E., & Roy, I. (2020). Bacterial cellulose: Biosynthesis, production, and applications. Advances in Microbial Physiology, 77, 89–138. doi:10.1016/bs.ampbs.2020.07.002
  • Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., & Shchankin, M. (2018). Cost-effective production of bacterial cellulose using acidic food industry by-products. Biotechnology and Industrial Microbiology, 49(1), 151–159. doi:10.1016/j.bjm.2017.12.012
  • Roman, M., & Winter, W. T. (2004). Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules, 5(5), 1671–1677. doi:10.1021/bm034519+
  • Ross, P., Mayer, R., & Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microbiological Reviews, 55(1), 35–58. doi:10.1128/mr.55.1.35-58.1991
  • Ruka, D. R., Simon, G. P., & Dean, K. M. (2012). Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydrate Polymers, 89(2), 613–622. doi:10.1016/j.carbpol.2012.03.059
  • Sagar, R. U. R., Shabbir, B., Hasnain, S. M., Mahmood, N., Zeb, M. H., Shivananju, B. N., … Younis, A. (2021). Shape-controlled synthesis of cerium oxide nanoparticles for efficient dye photodegradation and antibacterial activities. Applied Organometallic Chemistry, 35(1), e6069. doi:10.1002/aoc.6069
  • Sehar, S.,Naz, I.,Rehman, A.,Sun, W.,Alhewairini, S.S.,Zahid, M.N., &Younis, A. (2021). Shape-controlled synthesis of cerium oxide nanoparticles for efficient dye photodegradation and antibacterial activities. Applied Organometallic Chemistry, 35(1), e6069.
  • Sijabat, E. K., Nuruddin, A., Aditiawati, P., & Sunendar Purwasasmita, B. (2020). Optimization on the synthesis of bacterial nano cellulose (BNC) from banana peel waste for water membrane applications. Materials Research Express, 7(5), 055010. doi:10.1088/2053-1591/ab8df7
  • Soemphol, W., Charee, P., Audtarat, S., Sompech, S., Hongsachart, P., & Dasri, T. (2020). Characterization of a bacterial cellulose-silica nanocomposite prepared from agricultural waste products. Materials Research Express, 7(1), 015085. doi:10.1088/2053-1591/ab6c25
  • Soemphol, W., Hongsachart, P., & Tanamool, V. (2018). Production and characterization of bacterial cellulose produced from agricultural by-product by Gluconacetobacter strains. Materials Today: Proceedings, 5(5), 11159–11168. doi:10.1016/j.matpr.2018.01.036
  • Son, H. J., Kim, H. G., Kim, K. K., Kim, H. S., Kim, Y. G., & Lee, S. J. (2003). Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresource Technology, 86(3), 215–219. doi:10.1016/S0960-8524(02)00176-1
  • Stumpf, T. R., Pértile, R. A. N., Rambo, C. R., & Porto, L. M. (2013). Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes. Materials Science & Engineering C, Materials for Biological Applications, 33(8), 4739–4745. doi:10.1016/j.msec.2013.07.035
  • Sugiyama, J., Persson, J., & Chanzy, H. (1991). Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules, 24(9), 2461–2466. doi:10.1021/ma00009a050
  • Suwannasing, W., Imai, T., & Kaewkannetra, P. (2015). Potential utilization of pineapple waste streams for polyhydroxyalkanoates (PHAs) production via batch fermentation. Journal of Water and Environment Technology, 13(5), 335–347. doi:10.2965/jwet.2015.335
  • Tanamool, V., Chantarangsee, M., & Soemphol, W. (2020). Simultaneous vinegar fermentation from a pineapple by-product using the co-inoculation of yeast and thermotolerant acetic acid bacteria and their physiochemical properties. 3 Biotech, 10(3), 115. doi:10.1007/s13205-020-2119-4
  • Tokoh, C., Takabe, K., Sugiyama, J., & Fujita, M. (2002). CP/MAS 13C NMR and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides. Cellulose, 9(3/4), 351–360. doi:10.1023/A:1021150520953
  • Um, I. C., Ki, C. S., Kweon, H. Y., Lee, K. G., Ihm, D. W., & Park, Y. H. (2004). Wet spinning of silk polymer II. Effect of drawing on the structure characteristics and properties of filament. International journal of Biological Macromolecules, 34(1-2), 107–119. doi:10.1016/j.ijbiomac.2004.03.011
  • Urbina, L., Corcuera, M. A., Gabilondo, N., Eceiza, A., & Retegi, A. (2021). A review of bacterial cellulose: Sustainable production from agricultural waste and applications in various fields. Cellulose, 28(13), 8229–8253. doi:10.1007/s10570-021-04020-4
  • Vazquez, A., Foresti, M. L., Cerrutti, P., & Galvagno, M. (2013). Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. Journal of Polymers and the Environment, 21(2), 545–554. doi:10.1007/s10924-012-0541-3
  • Waleed, A.-K., Taous, K., Mazhar, U.-I., Fazli, W., & Joong, K.-P. (2015). Production, characterization and physicomechanical properties of bacterial cellulose from industrial wastes. Journal of Polymers and the Environment, 23, 45–53.