558
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Corrosion mitigation of carbon steel using triazole Mannich base derivatives: Correlation of electrochemical studies with quantum chemical calculations

, , , , , , & ORCID Icon show all
Pages 496-512 | Received 13 Dec 2022, Accepted 12 Aug 2023, Published online: 28 Aug 2023

References

  • Abd El Rehim, S. S., Sayyah, S. M., El-Deeb, M. M., Kamal, S. M., & Azooz, R. E. (2016). Adsorption and corrosion inhibitive properties of P(2-aminobenzothiazole) on mild steel in hydrochloric acid media. International Journal of Industrial Chemistry, 7(1), 39–52. doi:10.1007/s40090-015-0065-5
  • AitHaddou, B., Chebabe, D., Dermaj, A., Benassaoui, H., Assyry, A., Hajjaji, N., … Srhiri, A. (2016). Comparative study of low carbon steel corrosion inhibition in 1M HCl by 1,2,4-triazole-5-thione derivatives. Journal of Materials and Environmental Science, 7, 2000–2191.
  • Akinbulumo, O. A., Odejobi, O. J., & Odekanle, E. L. (2020). Thermodynamics and adsorption study of the corrosion inhibition of mild steel by Euphorbia heterophylla L. extract in 1.5 M HCl. Results in Materials, 5, 100074. doi:10.1016/j.rinma.2020.100074
  • Akkermans, R. L. C., Spenley, N. A., & Robertson, S. H. (2013). Monte Carlo methods in materials studio. Molecular Simulation, 39(14-15), 1153–1164. doi:10.1080/08927022.2013.843775
  • Al-Amiery, A., Kadhum, A., Alobaidy, A. H., Mohamad, A., & Hoon, P. (2014). Novel corrosion inhibitor for mild steel in HCl. Materials (Basel, Switzerland), 7(2), 662–672. doi:10.3390/ma7020662
  • Al-Amiery, A. A., Mohamad, A. B., Kadhum, A. A. H., Shaker, L. M., Isahak, W. N. R. W., & Takriff, M. S. (2022). Experimental and theoretical study on the corrosion inhibition of mild steel by nonanedioic acid derivative in hydrochloric acid solution. Scientific Reports, 12(1), 4705. doi:10.1038/s41598-022-08146-8
  • Al-Amiery, A., Salman, T. A., Alazawi, K. F., Shaker, L. M., Kadhum, A. A. H., & Takriff, M. S. (2020). Quantum chemical elucidation on corrosion inhibition efficiency of Schiff base: DFT investigations supported by weight loss and SEM techniques. International Journal of Low-Carbon Technologies, 15(2), 202–209. doi:10.1093/ijlct/ctz074
  • Al-Amiery, A., Shaker, L. M., Kadhum, A. A. H., & Takriff, M. S. (2020). Synthesis, characterization and gravimetric studies of novel triazole-based compound. International Journal of Low-Carbon Technologies, 15(2), 164–170. doi:10.1093/ijlct/ctz067
  • Allangawi, A., Sajid, H., Ayub, K., Gilani, M. A., Akhter, M. S., & Mahmood, T. (2023). High drug carrying efficiency of boron-doped Triazine based covalent organic framework toward anti-cancer tegafur; a theoretical perspective. Computational and Theoretical Chemistry, 1220, 113990. doi:10.1016/j.comptc.2022.113990
  • Al-Mobarak, N. A., Khaled, K. F., Hamed, M. N. H., & Abdel-Azim, K. M. (2011). Employing electrochemical frequency modulation for studying corrosion and corrosion inhibition of copper in sodium chloride solutions. Arabian Journal of Chemistry, 4(2), 185–193. doi:10.1016/j.arabjc.2010.06.036
  • Anusuya, N., Sounthari, P., Saranya, J., Parameswari, K., & Chitra, S. (2015). Quantum chemical study on the corrosion inhibition property of some heterocyclic azole derivatives. Oriental Journal of Chemistry, 31(3), 1741–1750. http://www.orientjchem.org/vol31no3/quantum-chemical-study-on-the-corrosion-inhibition-property-of-some-heterocyclic-azole-derivatives/. (accessed October 24, 2022). doi:10.13005/ojc/310355
  • Aoun, S. B. (2017). On the corrosion inhibition of carbon steel in 1 M HCl with a pyridinium-ionic liquid: Chemical, thermodynamic, kinetic and electrochemical studies. RSC Advances, 7, 36688–36696. doi:10.1039/C7RA04084A
  • Bala, S., Sharma, N., Kajal, A., Kamboj, S., & Saini, V. (2014). Mannich bases: An important pharmacophore in present scenario. International Journal of Medicinal Chemistry, 2014, 191072. () doi:10.1155/2014/191072
  • Banik, B. K., Sahoo, B. M., Kumar, B. V. V. R., Panda, K. C., Jena, J., Mahapatra, M. K., & Borah, P. (2021). Green synthetic approach: An efficient eco-friendly tool for synthesis of biologically active oxadiazole derivatives. Molecules, 26, 1163. doi:10.3390/molecules26041163
  • Cui, M., Yu, Y., & Zheng, Y. (2021). Effective corrosion inhibition of carbon steel in hydrochloric acid by dopamine-produced carbon dots. Polymers, 13, 1923. doi:10.3390/polym13121923
  • Ebadi, M., Basirun, W. J., Khaledi, H., & Ali, H. M. (2012). Corrosion inhibition properties of pyrazolylindolenine compounds on copper surface in acidic media. Chemistry Central Journal, 6(1), 163. doi:10.1186/1752-153X-6-163
  • Ech-Chihbi, E., Nahlé, A., Salim, R., Benhiba, F., Moussaif, A., El-Hajjaji, F., … Zarrouk, A. (2020). Computational, MD simulation, SEM/EDX and experimental studies for understanding adsorption of benzimidazole derivatives as corrosion inhibitors in 1.0 M HCl solution. Journal of Alloys and Compounds, 844, 155842. doi:10.1016/j.jallcom.2020.155842
  • El Ouadi, Y., El Fal, M., Hafez, B., Manssouri, M., Ansari, A., Elmsellem, H., … Bendaif, H. (2020). Physisorption and corrosion inhibition of mild steel in 1 M HCl using a new pyrazolic compound: Experimental data & quantum chemical calculations. Materials Today: Proceedings, 27, 3010–3016. doi:10.1016/j.matpr.2020.03.340
  • El-Aziz, A., Fouda, S., Al-Bonayan, A. M., Eissa, M., & Eid, D. M. (2022). Electrochemical and quantum chemical studies on the corrosion inhibition of 1037 carbon steel by different types of surfactants. RSC Advances, 12(6), 3253–3273. doi:10.1039/D1RA07983B
  • Faritov, A. T., Rozhdestvenskii, Y., Yamshchikova, S. A., Minnikhanova, E. R., & Tyusenkov, A. S. (2016). Improvement of the linear polarization resistance method for testing steel corrosion inhibitors. Russian Metallurgy (Metally), 2016(11), 1035–1041. doi:10.1134/S0036029516110070
  • Gad, E. A. M., Azzam, E. M. S., & Halim, S. A. (2018). Theoretical approach for the performance of 4-mercapto-1-alkylpyridin-1-ium bromide as corrosion inhibitors using DFT. Egyptian Journal of Petroleum, 27(4), 695–699. doi:10.1016/j.ejpe.2017.10.005
  • Gadow, H. S., & Fakeeh, M. (2022). Green inhibitor of carbon steel corrosion in 1 M hydrochloric acid: Eruca sativa seed extract (Experimental and theoretical studies. RSC Advances, 12(15), 8953–8986.) doi:10.1039/D2RA01296K
  • Guo, L., Luo, Y., Huang, Y., Yang, W., Zheng, X., Lin, Y., & Marzouki, R. (2022). Imidazolidiny urea as a potential corrosion inhibitor for mild steel in HCl medium: Experimental and density-functional based tight-binding methods. International Journal of Electrochemical Science, 17(7), 220748. doi:10.20964/2022.07.34
  • Hozien, Z. A., EL-Mahdy, A. F. M., Abo Markeb, A., Ali, L. S. A., & El-Sherief, H. A. H. (2020). Synthesis of Schiff and Mannich bases of new s -triazole derivatives and their potential applications for removal of heavy metals from aqueous solution and as antimicrobial agents. RSC Advances, 10(34), 20184–20194. doi:10.1039/D0RA02872J
  • Ibrahim, I. M., Yunus, S., & Hashim, M. A. (2013). Relative performance of isopropylamine, pyrrole and pyridine as corrosion inhibitors for carbon steels in saline water at mildly elevated temperatures. IJSER, 4, 1–12.
  • Idris, M. N., Daud, A. R., & Othman, N. K. (2013). Electrochemical impedance spectroscopy study on corrosion inhibition of benzyltriethylammonium chloride, in. Selangor, Malaysia. 23–28. doi:10.1063/1.4858624
  • Jafari, H., Akbarzade, K., & Danaee, I. (2019). Corrosion inhibition of carbon steel immersed in a 1 M HCl solution using benzothiazole derivatives. Arabian Journal of Chemistry, 12(7), 1387–1394. doi:10.1016/j.arabjc.2014.11.018
  • Ju, H., Ding, L., Sun, C., & Chen, J. (2015). Quantum chemical study on the corrosion inhibition of some oxadiazoles. Advances in Materials Science and Engineering, 2015, 1–5. doi:10.1155/2015/519606
  • Kabanda, M. M., Murulana, L. C., Ozcan, M., Karadag, F., Dehri, I., Obot, I. B., & Ebenso, E. E. (2012). Quantum chemical studies on the corrosion inhibition of mild steel by some triazoles and benzimidazole derivatives in acidic medium. International Journal of Electrochemical Science, 7(6), 5035–5056. doi:10.1016/S1452-3981(23)19602-7
  • Kamble, P. P., & Dubey, R. S. (2021). Effect of 1-acetyl-1H-benzotriazole on corrosion of mild steel in 1M HCl. Journal of Scientific Research, 13(3), 979–988. doi:10.3329/jsr.v13i3.52725
  • Kuriakose, N., Kakkassery, J. T., Raphael, V. P., & Shanmughan, S. K. (2014). Electrochemical impedance spectroscopy and potentiodynamic polarization analysis on anticorrosive activity of thiophene-2-carbaldehyde derivative in acid medium. Indian Journal of Engineering and Materials Science, 20141–6. doi:10.1155/2014/124065
  • Lai, C., Xie, B., Zou, L., Zheng, X., Ma, X., & Zhu, S. (2017). Adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by S-allyl-O,O′-dialkyldithiophosphates. Results in Physics, 7, 3434–3443. doi:10.1016/j.rinp.2017.09.012
  • Li, D., Zhao, X., Liu, Z., Liu, H., Fan, B., Yang, B., … Zou, H. (2021). Synergetic anticorrosion mechanism of main constituents in Chinese yam peel for copper in artificial seawater. ACS Omega, 6(44), 29965–29981. doi:10.1021/acsomega.1c04500
  • Maithili, K., Shetty, P., Kumari, P. P., & Kagatikar, S. (2022). Mannich base as an efficient corrosion inhibitor of AA6061 in 0.5 M HCl: Electrochemical, surface morphological and theoretical investigations. Arabian Journal for Science and Engineering, 47(6), 7053–7067. doi:10.1007/s13369-021-06302-2
  • Manimegalai, S., & Manjula, P. (2015). Thermodynamic and adsorption studies for corrosion inhibition of mild steel in aqueous media by Sargasam swartzii (Brown algae). Journal of Materials and Environmental Science. 6, 1629–1637.
  • Molchan, I. S., Thompson, G. E., Skeldon, P., Lindsay, R., Walton, J., Kouvelos, E., … Schubert, T. J. S. (2015). Microscopic study of the corrosion behaviour of mild steel in ionic liquids for CO 2 capture applications. RSC Advances, 5(44), 35181–35194. doi:10.1039/C5RA01097G
  • Nahlé, A., Salim, R., El Hajjaji, F., Aouad, M. R., Messali, M., Ech-Chihbi, E., … Taleb, M. (2021). Novel triazole derivatives as ecological corrosion inhibitors for mild steel in 1.0 M HCl: Experimental & theoretical approach. RSC Advances, 11(7), 4147–4162. doi:10.1039/D0RA09679B
  • Ouakki, M., Galai, M., Benzekri, Z., Aribou, Z., Ech-Chihbi, E., Guo, L., … Cherkaoui, M. (2021). A detailed investigation on the corrosion inhibition effect of newly synthesized pyran derivative on mild steel in 1.0 M HCl: Experimental, surface morphological (SEM-EDS, DRX& AFM) and computational analysis (DFT & MD simulation. Journal of Molecular Liquids. 344, 117777. doi:10.1016/j.molliq.2021.117777
  • Ouakki, M., Galai, M., Benzekri, Z., Verma, C., Ech-Chihbi, E., Kaya, S., … Cherkaoui, M. (2021). Insights into corrosion inhibition mechanism of mild steel in 1 M HCl solution by quinoxaline derivatives: Electrochemical, SEM/EDAX, UV-visible, FT-IR and theoretical approaches. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 611, 125810. doi:10.1016/j.colsurfa.2020.125810
  • Ouakki, M., Galai, M., Rbaa, M., Abousalem, A. S., Lakhrissi, B., Rifi, E. H., & Cherkaoui, M. (2019). Quantum chemical and experimental evaluation of the inhibitory action of two imidazole derivatives on mild steel corrosion in sulphuric acid medium. Heliyon, 5(11), e02759. doi:10.1016/j.heliyon.2019.e02759
  • Oyeneyin, O., Akerele, D., Ojo, N., & Oderinlo, O. (2021). Corrosion inhibitive potentials of some 2H-1-benzopyran-2-one derivatives- DFT calculations. Biointerface Research in Applied Chemistry, 11, 13968–13981. doi:10.33263/BRIAC116.1396813981
  • Oyeneyin, O. E., Ojo, N. D., Ipinloju, N., Agbaffa, E. B., & Emmanuel, A. V. (2022). Investigation of the corrosion inhibition potentials of some 2-(4-(substituted)arylidene)-1H-indene-1,3-dione derivatives: Density functional theory and molecular dynamics simulation. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 132. doi:10.1186/s43088-022-00313-0
  • Paul, S., & Koley, I. (2016). Corrosion inhibition of carbon steel in acidic environment by papaya seed as green inhibitor. Journal of Bio- and Tribo-Corrosion, 2(2), 6. doi:10.1007/s40735-016-0035-2
  • Phadke Swathi, N., Alva, V. D. P., & Samshuddin, S. (2017). A Review on 1,2,4-triazole derivatives as corrosion inhibitors. Journal of Bio- and Tribo-Corrosion, 3(4), 42. doi:10.1007/s40735-017-0102-3
  • Raghavendra, N., & Ishwara Bhat, J. (2019). Inhibition of Al corrosion in 0.5 M HCl solution by Areca flower extract. JKSUES, 31(3), 202–208. doi:10.1016/j.jksues.2017.06.003
  • Rasheeda, K., Alamri, A. H., Krishnaprasad, P. A., Swathi, N. P., Alva, V. D. P., & Aljohani, T. A. (2022). Efficiency of a pyrimidine derivative for the corrosion inhibition of c1018 carbon steel in aqueous acidic medium: Experimental and theoretical approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 642, 128631. doi:10.1016/j.colsurfa.2022.128631
  • Rasheeda, K., Swathi, N. P., Alva, V. D. P., Aljohani, T. A., Alomari, F. Y., & Alamri, A. H. (2022). Anticorrosive behavior of new pyrimidine derivatives on carbon steel in acidic medium: Experimental, theoretical, and surface studies. Journal of Bio- and Tribo-Corrosion, 8(4), 89. doi:10.1007/s40735-022-00688-8
  • Rehioui, M., Abbout, S., Benzidia, B., Hammouch, H., Erramli, H., Daoud, N. A., … Hajjaji, N. (2021). Corrosion inhibiting effect of a green formulation based on Opuntia dillenii seed oil for iron in acid rain solution. Heliyon, 7(4), e06674. doi:10.1016/j.heliyon.2021.e06674
  • Rodríguez, J. A., Cruz-Borbolla, J., Arizpe-Carreón, P. A., & Gutiérrez, E. (2020). Mathematical models generated for the prediction of corrosion inhibition using different theoretical chemistry simulations. Materials, 13(24), 5656. doi:10.3390/ma13245656
  • Saadouni, M., Galai, M., Aoufir, Y. E., Skal, S., Boukhris, S., Hassikouz, A., … Souizi, A. (2018). Experimental, quantum chemical and Monte Carlo simulations studies on the corrosion inhibition of mild steel in 1 M HCl by two benzothiazine derivatives. Journal of Materials and Environmental Science, 9, 2493–2504.
  • Sasikumar, Y., Adekunle, A. S., Olasunkanmi, L. O., Bahadur, I., Baskar, R., Kabanda, M. M., … Ebenso, E. E. (2015). Experimental, quantum chemical and Monte Carlo simulation studies on the corrosion inhibition of some alkyl imidazolium ionic liquids containing tetrafluoroborate anion on mild steel in acidic medium. Journal of Molecular Liquids, 211, 105–118. doi:10.1016/j.molliq.2015.06.052
  • Shahzad, K., Sliem, M. H., Shakoor, R. A., Radwan, A. B., Kahraman, R., Umer, M. A., … Abdullah, A. M. (2020). Electrochemical and thermodynamic study on the corrosion performance of API X120 steel in 3.5% NaCl solution. Scientific Reports, 10(1), 4314. doi:10.1038/s41598-020-61139-3
  • Sharma, P., Upadhyay, R. K., & Chaturvedi, A. (2014). Efficiency of some newly synthesized Mannich bases as corrosion inhibitor for mild steel in HNO3 solution. Asian Journal of Advance Basic Science, 3, 67–73.
  • Shenoy, V. K., Venugopal, P. P., Reena Kumari, P. D., & Chakraborty, D. (2022). Anti-corrosion investigation of a new nitro veratraldehyde substituted imidazopyridine derivative Schiff base on mild steel surface in hydrochloric acid medium: Experimental, computational, surface morphological analysis. Materials Chemistry and Physics. 281, 125855. doi:10.1016/j.matchemphys.2022.125855
  • Singh, P., Ebenso, E. E., Olasunkanmi, L. O., Obot, I. B., & Quraishi, M. A. (2016). Electrochemical, theoretical, and surface morphological studies of corrosion inhibition effect of green naphthyridine derivatives on mild steel in hydrochloric acid. The Journal of Physical Chemistry C, 120(6), 3408–3419. doi:10.1021/acs.jpcc.5b11901
  • Singh, A., Ebenso, E. E., & Quraishi, M. A. (2012). Corrosion inhibition of carbon steel in HCl solution by some plant extracts. International Journal of Corrosion. 2012, 1–20. doi:10.1155/2012/897430
  • Sliem, M. H., El Basiony, N. M., Zaki, E. G., Sharaf, M. A., & Abdullah, A. M. (2020). Corrosion inhibition of mild steel in sulfuric acid by a newly synthesized schiff base: An electrochemical, DFT, and Monte Carlo Simulation study. Electroanalysis, 32(12), 3145–3158. doi:10.1002/elan.202060461
  • Sun, H. (1998). COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. The Journal of Physical Chemistry B, 102(38), 7338–7364. doi:10.1021/jp980939v
  • Swathi, N. P., Samshuddin, S., Alamri, A. H., Rasheeda, K., Alva, V. D. P., & Aljohani, T. A. (2022). Experimental and theoretical investigation of a new triazole derivative for the corrosion inhibition of carbon steel in acid medium. Egyptian Journal of Petroleum. 31(2), 15–21. doi:10.1016/j.ejpe.2022.04.002
  • Swathi, N. P., Samshuddin, S., Aljohani, T. A., Rasheeda, K., Alva, V. D. P., Alomari, F. Y., & Alamri, A. H. (2022). A new 1,2,4-triazole derivative as an excellent corrosion inhibitor: Electrochemical experiments with theoretical validation. Materials Chemistry and Physics. 291, 126677. doi:10.1016/j.matchemphys.2022.126677
  • Tüzün, B., & Bhawsar, J. (2021). Quantum chemical study of thiaozole derivatives as corrosion inhibitors based on density functional theory. Arabian Journal of Chemistry, 14(2), 102927. doi:10.1016/j.arabjc.2020.102927
  • Visser, P., Terryn, H., & Mol, J. M. C. (2019). Active corrosion protection of various aluminium alloys by lithium‐leaching coatings. Surface and Interface Analysis, 51(12), 1276–1287. doi:10.1002/sia.6638
  • Xavier Stango, S. A., & Vijayalakshmi, U. (2018). Studies on corrosion inhibitory effect and adsorption behavior of waste materials on mild steel in acidic medium. Journal of Asian Ceramic Societies, 6(1), 20–29. doi:10.1080/21870764.2018.1439608
  • Zhang, X., Zhang, Y., Su, Y., Wang, X., & Lv, R. (2022). Synthesis and corrosion inhibition performance of Mannich bases on mild steel in lactic acid media. ACS Omega, 7(36), 32208–32224. doi:10.1021/acsomega.2c03545
  • Zulfareen, N., Venugopal, T., & Kannan, K. (2018). Experimental and theoretical studies on the corrosion inhibition of brass in hydrochloric acid by n-(4-((4-benzhydryl piperazin-1-yl) methyl carbamoyl) phenyl) furan-2-carboxamide. International Journal of Corrosion, 2018, e9372804–18. doi:10.1155/2018/9372804