856
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chronic caffeine intake alters collagen deposition in long bones: an experimental preliminary study

ORCID Icon
Pages 626-635 | Received 12 Apr 2023, Accepted 19 Oct 2023, Published online: 25 Oct 2023

References

  • Alsufyani, H. A., & Docherty, J. R. (2017). Gender differences in the effects of cathinone and the interaction with caffeine on temperature and locomotor activity in the rat. European Journal of Pharmacology, 809, 203–208. doi:10.1016/j.ejphar.2017.05.028
  • Asoudeh, F., Bagheri, A., Larijani, B., & Esmaillzadeh, A. (2022). Coffee consumption and caffeine intake in relation to risk of fractures: A systematic review and dose-response meta-analysis of observational studies. Critical Reviews in Food Science and Nutrition, 27, 1–13. doi:10.1080/10408398.2022.2067114
  • Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J. R., Maciejewski, A., & Wishart, D. S. (2016). Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Research, 44(W1), W147–53. doi:10.1093/nar/gkw419
  • Bergh, C., Wennergren, D., Möller, M., & Brisby, H. (2020). Fracture incidence in adults in relation to age and gender: A study of 27,169 fractures in the Swedish Fracture Register in a well-defined catchment area. PloS One, 15(12), e0244291. doi:10.1371/journal.pone.0244291
  • Berman, N. K., Honig, S., Cronstein, B. N., & Pillinger, M. H. (2022). The effects of caffeine on bone mineral density and fracture risk. Osteoporosis International: A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 33(6), 1235–1241. doi:10.1007/s00198-021-05972-w
  • Bezerra, J. P., de Siqueira, A., Pires, A. G., Marques, M. R., Duarte, P. M., & Bastos, M. F. (2013). Effects of estrogen deficiency and/or caffeine intake on alveolar bone loss, density, and healing: A study in rats. Journal of Periodontology, 84(6), 839–849. doi:10.1902/jop.2012.120192
  • Cawthon, P. M. (2011). Gender differences in osteoporosis and fractures. Clinical Orthopaedics and Related Research, 469(7), 1900–1905. doi:10.1007/s11999-011-1780-7
  • Chen, X., Li, N., Liu, J., Chen, J., & Liu, H. Expression of collagen I, collagen III and MMP-1 on the tension side of distracted tooth using periodontal ligament distraction osteogenesis in beagle dogs. Archives of Oral Biology, 2014, 59(11), 1217–1225. doi:10.1016/j.archoralbio.2014.07.011
  • Choi, H., Choi, Y., Kim, J., Bae, J., & Roh, J. (2017). Longitudinal bone growth is impaired by direct involvement of caffeine with chondrocyte differentiation in the growth plate. Journal of Anatomy, 230(1), 117–127. doi:10.1111/joa.12530
  • Choi, Y.-Y., Choi, Y., Kim, J., Choi, H., Shin, J., & Roh, J. (2016). Peripubertal caffeine exposure impairs longitudinal bone growth in immature male rats in a dose- and time-dependent manner. Journal of Medicinal Food, 19(1), 73–84. doi:10.1089/jmf.2015.3467
  • Dal-Fabbro, R., Cosme-Silva, L., Capalbo, L. C., Chaves-Neto, A. H., Ervolino, E., Cintra, L. T. A., & Gomes-Filho, J. E. (2021). Excessive caffeine intake increases bone resorption associated with periapical periodontitis in rats. International Endodontic Journal, 54(10), 1861–1870. doi:10.1111/iej.13578
  • Dillon, P., Kelpin, S., Kendler, K., Thacker, L., Dick, D., & Svikis, D. (2019). Gender differences in any-source caffeine and energy drink use and associated adverse health behaviors. Journal of Caffeine and Adenosine Research, 9(1), 12–19. doi:10.1089/caff.2018.0008
  • Duarte, P. M., Marques, M. R., Bezerra, J. P., & Bastos, M. F. (2009). The effects of caffeine administration on the early stage of bone healing and bone density A histometric study in rats. Archives of Oral Biology, 54(8), 717–722. doi:10.1016/j.archoralbio.2009.05.001
  • Elango, J., Robinson, J., Zhang, J., Bao, B., Ma, N., de Val, J. E. M. S., & Wu, W. (2019). Collagen peptide upregulates osteoblastogenesis from bone marrow mesenchymal stem cells through MAPK- Runx2. Cells, 8(5), 446. doi:10.3390/cells8050446
  • Eyüboğlu, F., Sayaca, Ç., Çalik, M., Korkem, D., Tascilar, L. N., & Kaya, D. (2020). Chapter 21 - Kinesiology of the hip. In S. Angin & I. E. Şimşek (Eds.), Comparative kinesiology of the human body (pp. 375–392). Cambridge, MA: Academic Press.
  • FDA. (2018). Spilling the beans: How much caffeine is too much? Retrieved from https://www.fda.gov/consumers/consumer-updates/spilling-beans-how-much-caffeine-too-much.
  • Ferreira Bastos, M., Barreto Menezes, D. J., Pinho Bezerra, J., Craneck Braz, C. K., Silva Fonseca, P. F., Arana-Chavez, V. E., … Mendes Duarte, P. (2014). Impact of caffeine and/or estrogen deficiency on trabecular bone area and healing: A study in rats. The International Journal of Oral & Maxillofacial Implants, 29(1), 221–231.
  • Kamagata-Kiyoura, Y., Ohta, M., Cheuk, G., Yazdani, M., Saltzman, M. J., & Nakamoto, T. (1999). Combined effects of caffeine and prostaglandin E2 on the proliferation of osteoblast-like cells (UMR106-01). Journal of Periodontology, 70(3), 283–288. doi:10.1902/jop.1999.70.3.283
  • Lacerda, S. A., Matuoka, R. I., Macedo, R. M., Petenusci, S. O., Campos, A. A., & Brentegani, L. G. (2010). Bone quality associated with daily intake of coffee: A biochemical, radiographic and histometric study. Brazilian Dental Journal, 21(3), 199–204. doi:10.1590/s0103-64402010000300004
  • Licini, C., Notarstefano, V., Marchi, S., Cerqueni, G., Ciapetti, G., Vitale-Brovarone, C., … Mattioli-Belmonte, M. (2022). Altered type I collagen networking in osteoporotic human femoral head revealed by histomorphometric and Fourier transform infrared imaging correlated analyses. BioFactors (Oxford, England), 48(5), 1089–1110. doi:10.1002/biof.1870
  • Lin, X., Patil, S., Gao, Y.-G., & Qian, A. (2020). The bone extracellular matrix in bone formation and regeneration. Frontiers in Pharmacology, 11, 757. doi:10.3389/fphar.2020.00757
  • Liu, H., Yao, K., Zhang, W., Zhou, J., Wu, T., & He, C. (2012). Coffee consumption and risk of fractures: A meta-analysis. Archives of Medical Science: AMS, 8(5), 776–783. doi:10.5114/aoms.2012.31612
  • Macedo, R. M., Brentegani, L. G., & Lacerda, S. A. (2015). Effects of coffee intake and intraperitoneal caffeine on bone repair process–a histologic and histometric study. Brazilian Dental Journal, 26(2), 175–180. doi:10.1590/0103-6440201300219
  • Maehata, Y., Takamizawa, S., Ozawa, S., Izukuri, K., Kato, Y., Sato, S., … Hata, R.-I. (2007). Type III collagen is essential for growth acceleration of human osteoblastic cells by ascorbic acid 2-phosphate, a long-acting vitamin C derivative. Matrix Biology: Journal of the International Society for Matrix Biology, 26(5), 371–381. doi:10.1016/j.matbio.2007.01.005
  • Maia, C., Pinheiro, B. G., Soares da Silva, C. C., Cunha, R. A., Souza-Monteiro, D., Martins Ferreira, M. K., … Lima, R. R. (2020). Prolonged caffeine intake decreases alveolar bone damage induced by binge-like ethanol consumption in adolescent female rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 130, 110608. doi:10.1016/j.biopha.2020.110608
  • Martinez, M., Rossetto, I. M. U., Neto, F. S. L., Tirapelli, L. F., Tirapelli, D. P. C., Chuffa, L. G. A., … Martinez, F. E. (2018). Interactions of ethanol and caffeine on apoptosis in the rat cerebellum (voluntary ethanol consumers). Cell Biology International, 42(11), 1575–1583. doi:10.1002/cbin.11054
  • Olchowik, G., Chadaj-Polberg, E., Tomaszewski, M., Polberg, M., & Tomaszewska, M. (2011). The influence of caffeine on the biomechanical properties of bone tissue during pregnancy in a population of rats. Folia Histochemica et Cytobiologica, 49(3), 504–511. doi:10.5603/fhc.2011.0071
  • Rapuri, P. B., Gallagher, J. C., & Nawaz, Z. (2007). Caffeine decreases vitamin D receptor protein expression and 1,25(OH)2D3 stimulated alkaline phosphatase activity in human osteoblast cells. The Journal of Steroid Biochemistry and Molecular Biology, 103(3–5), 368–371. doi:10.1016/j.jsbmb.2006.12.037
  • Reis, A. M. S., Ocarino, N. d M., Boeloni, J. N., Gomes, D. A., Goes, A. M., Ferreira, A. d F., & Serakides, R. (2016). Inhibition of the osteogenic differentiation of mesenchymal stem cells derived from the offspring of rats treated with caffeine during pregnancy and lactation. Connective Tissue Research, 57(2), 131–142. doi:10.3109/03008207.2015.1117075
  • Reis, A. M. S., Oliveira, K. P., de Paula, I. H. F., da Silva, A. P., Tarragô, J. F., de Melo Ocarino, N., & Serakides, R. (2018). Nonlinear effects of caffeine on the viability, synthesis and gene expression of chondrocytes from the offspring of rats treated during pregnancy. Acta Histochemica, 120(6), 505–512. doi:10.1016/j.acthis.2018.06.001
  • Reis, A. M. S., Ribeiro, L. G. R., Ocarino, N. d M., Goes, A. M., & Serakides, R. (2015). Osteogenic potential of osteoblasts from neonatal rats born to mothers treated with caffeine throughout pregnancy. BMC Musculoskeletal Disorders, 16(1), 10. doi:10.1186/s12891-015-0467-8
  • Sasso, G. R. D. S., Florencio-Silva, R., Santos, M. A., Teixeira, C. D. P., Simões, M. D. J., Katchburian, E., & Reginato, R. D. (2015). Effects of early and late treatments of low-intensity, high-frequency mechanical vibration on bone parameters in rats. Gynecological Endocrinology: The Official Journal of the International Society of Gynecological Endocrinology, 31(12), 980–986. doi:10.3109/09513590.2015.1075198
  • Su, S.-J., Chang, K.-L., Su, S.-H., Yeh, Y.-T., Shyu, H.-W., & Chen, K.-M. (2013). Caffeine regulates osteogenic differentiation and mineralization of primary adipose-derived stem cells and a bone marrow stromal cell line. International Journal of Food Sciences and Nutrition, 64(4), 429–436. doi:10.3109/09637486.2012.759184
  • Tassinari, M. S., Gerstenfeld, L. C., Stein, G. S., & Lian, J. B. (1991). Effect of caffeine on parameters of osteoblast growth and differentiation of a mineralized extracellular matrix in vitro. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 6(10), 1029–1036. doi:10.1002/jbmr.5650061003
  • Tatler, A. L., Barnes, J., Habgood, A., Goodwin, A., McAnulty, R. J., & Jenkins, G. (2016). Caffeine inhibits TGFβ activation in epithelial cells, interrupts fibroblast responses to TGFβ, and reduces established fibrosis in ex vivo precision-cut lung slices. Thorax, 71(6), 565–567. doi:10.1136/thoraxjnl-2015-208215
  • Vargas-Pozada, E. E., Ramos-Tovar, E., Acero-Hernández, C., Cardoso-Lezama, I., Galindo-Gómez, S., Tsutsumi, V., & Muriel, P. (2022). Caffeine mitigates experimental nonalcoholic steatohepatitis and the progression of thioacetamide-induced liver fibrosis by blocking the MAPK and TGF-β/Smad3 signaling pathways. Annals of Hepatology, 27(2), 100671. doi:10.1016/j.aohep.2022.100671
  • Viguet-Carrin, S., Garnero, P., & Delmas, P. D. (2006). The role of collagen in bone strength. Osteoporosis International: A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 17(3), 319–336. doi:10.1007/s00198-005-2035-9
  • Volk, S. W., Shah, S. R., Cohen, A. J., Wang, Y., Brisson, B. K., Vogel, L. K., … Adams, S. L. (2014). Type III collagen regulates osteoblastogenesis and the quantity of trabecular bone. Calcified Tissue International, 94(6), 621–631. doi:10.1007/s00223-014-9843-x
  • Wang, Q., Dai, X., Yang, W., Wang, H., Zhao, H., Yang, F., … Lv, X. (2015). Caffeine protects against alcohol-induced liver fibrosis by dampening the cAMP/PKA/CREB pathway in rat hepatic stellate cells. International Immunopharmacology, 25(2), 340–352. doi:10.1016/j.intimp.2015.02.012
  • White, J. R., Padowski, J. M., Zhong, Y., Chen, G., Luo, S., Lazarus, P., … McPherson, S., Jr. (2016). Pharmacokinetic analysis and comparison of caffeine administered rapidly or slowly in coffee chilled or hot versus chilled energy drink in healthy young adults. Clinical Toxicology (Philadelphia, Pa.), 54(4), 308–312. doi:10.3109/15563650.2016.1146740
  • Zhou, Y., Guan, X. X., Zhu, Z. L., Guo, J., Huang, Y. C., Hou, W. W., & Yu, H. Y. (2010). Caffeine inhibits the viability and osteogenic differentiation of rat bone marrow-derived mesenchymal stromal cells. British Journal of Pharmacology, 161(7), 1542–1552. doi:10.1111/j.1476-5381.2010.00998.x