285
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A numerical comparative analysis of methods for solving fractional differential equations

ORCID Icon, , ORCID Icon &
Pages 154-164 | Received 15 Oct 2023, Accepted 01 Feb 2024, Published online: 15 Feb 2024

References

  • Abdul Karim, S. A., Khan, F., & Basit, M. (2022). Symmetric Bernstein polynomial approach for the system of Volterra integral equations on arbitrary interval and its convergence analysis. Symmetry, 14(7), 1343. doi:10.3390/sym14071343
  • Ain, Q. T., Anjum, N., & He, C. H. (2021). An analysis of time-fractional heat transfer problem using two-scale approach. GEM-International Journal on Geomathematics, 12, 1–10.
  • Ain, Q. T., Anjum, N., Din, A., Zeb, A., Djilali, S., & Khan, Z. A. (2022). On the analysis of Caputo fractional order dynamics of Middle East Lungs Coronavirus (MERS-CoV) model. Alexandria Engineering Journal, 61(7), 5123–5131. doi:10.1016/j.aej.2021.10.016
  • Anjum, N., Ain, Q. T., & Li, X. X. (2021). Two-scale mathematical model for tsunami wave. GEM-International Journal on Geomathematics, 12, 1–10.
  • Arikoglu, A., & Ozkol, I. (2007). Solution of fractional differential equations by using differential transform method. Chaos, Solitons & Fractals, 34(5), 1473–1481. doi:10.1016/j.chaos.2006.09.004
  • Ejaz, S. T., & Mustafa, G. (2016). A subdivision based iterative collocation algorithm for nonlinear third-order boundary value problems. Advances in Mathematical Physics, 2016, 1–14. doi:10.1155/2016/5026504
  • Ejaz, S. T., Baleanu, D., Mustafa, G., Malik, S., & Chu, Y. M. (2020). The numerical solution of fourth order nonlinear singularly perturbed boundary value problems via 10-point subdivision scheme based numerical algorithm. AIP Advances, 10(9), 095322 . doi:10.1063/5.0017884
  • He, C. H., Shen, Y. U. E., Ji, F. Y., & He, J. H. (2020). Taylor series solution for fractal Bratu-type equation arising in electrospinning process. Fractals, 28(01), 2050011. doi:10.1142/S0218348X20500115
  • HosseinNia, S. H., Ranjbar, A., & Momani, S. (2008). Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part. Computers & Mathematics with Applications, 56(12), 3138–3149. doi:10.1016/j.camwa.2008.07.002
  • Jasim, S. M., & Ibraheem, G. H. (2023). The Operational Matrices Methods For Solving The Fractional Bagley-Torvik Equations. Journal of Applied Science and Engineering, 26(9), 1327–1335.
  • Karaaslan, M. F., Celiker, F., & Kurulay, M. (2016). Approximate solution of the Bagley-Torvik equation by hybridizable discontinuous Galerkin methods. Applied Mathematics and Computation, 285, 51–58. doi:10.1016/j.amc.2016.03.024
  • Khan, F., Mustafa, G., Omar, M., & Komal, H. (2017). Numerical approach based on Bernstein polynomials for solving mixed Volterra-Fredholm integral equations. AIP Advances, 7(12), 125123. doi:10.1063/1.5008818
  • Lu, J. F., & Ma, L. (2023). Numerical analysis of space-time fractional Benjamin-Bona-Mahony equation. Thermal Science, 27(3 Part A), 1755–1762. doi:10.2298/TSCI2303755L
  • Lu, J., & Chen, L. (2022). Numerical analysis of a fractal modification of YaoCheng oscillator. Results in Physics, 38, 105602. doi:10.1016/j.rinp.2022.105602
  • Lu, J., & Ma, L. (2022). Numerical analysis of a fractional nonlinear oscillator with coordinate-dependent mass. Results in Physics, 43, 106108. doi:10.1016/j.rinp.2022.106108
  • Lu, J., & Sun, Y. (2021). Numerical approaches to time fractional boussinesq-burgers equations. Fractals, 29(08), 2150244. doi:10.1142/S0218348X21502443
  • Lu, J., & Sun, Y. (2023). Analysis of the fractional oscillator for a mass attached to a stretched elastic wire. Journal of Low Frequency Noise, Vibration and Active Control, 42(4), 1733–1742. doi:10.1177/14613484231181451
  • Mohammadi, F. (2014). Numerical solution of Bagley-Torvik equation using Chebyshev wavelet operational matrix of fractional derivative. International Journal of Advances in Applied Mathematics, 2(1), 83–91.
  • Mokhtary, P. (2016). Numerical treatment of a well-posed Chebyshev Tau method for Bagley-Torvik equation with high-order of accuracy. Numerical Algorithms, 72(4), 875–891. doi:10.1007/s11075-015-0072-9
  • Momani, S., & Odibat, Z. (2007). Numerical comparison of methods for solving linear differential equations of fractional order. Chaos, Solitons & Fractals, 31(5), 1248–1255. doi:10.1016/j.chaos.2005.10.068
  • Momani, S., & Shawagfeh, N. (2006). Decomposition method for solving fractional Riccati differential equations. Applied Mathematics and Computation, 182(2), 1083–1092. doi:10.1016/j.amc.2006.05.008
  • Mustafa, G., Abbas, M., Ejaz, S. T., Ismail, A. I. M., & Khan, F. (2017). A numerical approach based on subdivision schemes for solving non-linear fourth order boundary value problems. Journal of Computational Analysis and Applications, 23(4), 607–623.
  • Mustafa, G., Ejaz, S. T., Kouser, S., Ali, S., & Aslam, M. (2021). Subdivision collocation method for one-dimensional Bratus problem. Journal of Mathematics, 2021, 1–8. doi:10.1155/2021/3497017
  • Qu, R., & Agarwal, R. P. (1996). Solving two point boundary value problems by interpolatory subdivision algorithms. International Journal of Computer Mathematics, 60(3–4), 279–294. doi:10.1080/00207169608804492
  • Ray, S. S. (2012). On Haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation. Applied Mathematics and Computation, 218(9), 5239–5248.
  • Ray, S. S., & Bera, R. K. (2005). Analytical solution of the Bagley Torvik equation by Adomian decomposition method. Applied Mathematics and Computation, 168(1), 398–410. doi:10.1016/j.amc.2004.09.006
  • Shloof, A. M., & Gewily, A. (2021). Fractional B-spline collection method for solving fractal-differential equations. International Journal of Nonlinear Analysis and Applications, 12, 745–754.
  • Shloof, A. M., Senu, N., Ahmadian, A., & Salahshour, S. (2021). An efficient operation matrix method for solving fractal-fractional differential equations with generalized Caputo-type fractional-fractal derivative. Mathematics and Computers in Simulation, 188, 415–435. doi:10.1016/j.matcom.2021.04.019
  • Tao, H., Anjum, N., & Yang, Y. J. (2023). The Aboodh transformation-based homotopy perturbation method: New hope for fractional calculus. Frontiers in Physics, 11, 310. doi:10.3389/fphy.2023.1168795
  • Yzbasi, S. (2013). Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials. Applied Mathematics and Computation, 219(11), 6328–6343.
  • Zahra, W. K., & Elkholy, S. M. (2013). Cubic spline solution of fractional Bagley-Torvik equation. Electronic Journal of Mathematical Analysis and Applications, 1(2), 230–241.