244
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Mathematical analysis of the role of host-to-host transmission of Maize Streak Virus Disease with Atangana-Baleanu derivative

ORCID Icon
Pages 213-224 | Received 10 Oct 2022, Accepted 03 Mar 2024, Published online: 20 Mar 2024

References

  • Ahmad, H., Akgül, A., Khan, T. A., Stanimirović, P. S., & Chu, Y.-M. (2020). New perspective on the conventional solutions of the nonlinear time-fractional partial differential equations. Complexity, 2020, 1–10. doi:10.1155/2020/8829017
  • Ahmad, H., Khan T. A., & Cesarano, C. (2019). Numerical solutions of coupled burgers’ equations. Axioms, 8(4):119. doi:10.3390/axioms8040119
  • Ain, Q. T., Anjum, N., Din, A., Zeb, A., Djilali, S., & Khan, Z. A. (2022). On the analysis of Caputo fractional order dynamics of Middle East Lungs Coronavirus (MERS-CoV) model. Alexandria Engineering Journal, 61(7), 5123–5131. doi:10.1016/j.aej.2021.10.016
  • Alemneh, H. T., Kassa, A. S., & Godana, A. A. (2021). An optimal control model with cost effectiveness analysis of Maize Streak Virus Disease in maize plant. Infectious Disease Modelling, 6, 169–182. doi:10.1016/j.idm.2020.12.001
  • Alemneh, H. T., Makinde, O. D., & Mwangi Theuri, D. (2019). Ecoepidemiological model and analysis of MSV disease transmission dynamics in maize plant. International Journal of Mathematics and Mathematical Sciences, 2019, 1–14. doi:10.1155/2019/7965232
  • Alemneh, H. T., Makinde, O. D., & Theuri, D. M. (2020). Optimal control model and cost effectiveness analysis of maize streak virus pathogen interaction with pest invasion in maize plant. Egyptian Journal of Basic and Applied Sciences, 7(1), 180–193. doi:10.1080/2314808X.2020.1769303
  • Aloyce, W., & Kuznetsov, D. (2017). A mathematical model for the MLND dynamics and sensitivity analysis in a maize population. Asian Journal of Mathematics and Applications, 2017, 1–19.
  • Ameen, I. G., Baleanu, D., & Ali, H. M. (2022). Different strategies to confront maize streak disease based on fractional optimal control formulation. Chaos, Solitons & Fractals, 164, 112699. doi:10.1016/j.chaos.2022.112699
  • Atangana, A. (2018). Chapter 5 - fractional operators and their applications. In A. Atangana (Ed.), Fractional operators with constant and variable order with application to geo-hydrology (pp. 79–112). Cambridge, Massachusetts: Academic Press.
  • Atangana, A., & Baleanu, D. (2016). New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. arXiv Preprint arXiv, 1602.03408.
  • Ayembillah, A.-F O., Seidu, B., & Bornaa, C. S. (2022). Mathematical modeling of the dynamics of Maize Streak Virus Disease (MSVD). Mathematical Modelling and Control, 2(4), 153–164. doi:10.3934/mmc.2022016
  • Baloba, E. B., Seidu, B., & Bornaa, C. S. (2020). Mathematical analysis of the effects of controls on the transmission dynamics of anthrax in both animal and human populations. Computational and Mathematical Methods in Medicine, 2020, 1–14. doi:10.1155/2020/1581358
  • Castillo-Chavez, B., & Song, C. (2004). Dynamical models of tuberculosis and their applications. Mathematical Biosciences and Engineering: MBE, 1(2), 361–404. doi:10.3934/mbe.2004.1.361
  • Castillo-Chavez, C., Feng, Z., & Huang, W. (2002). On the computation of R0 and its role on. In Willard Miller, Jr. (Ed.), Mathematical approaches for emerging and reemerging infectious diseases: An introduction (Vol. 1, p. 229). New York: Springer-Verlag.
  • Collins, O. C., & Duffy, K. J. (2016). Optimal control of maize foliar diseases using the plants population dynamics. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 66(1), 20–26. doi:10.1080/09064710.2015.1061588
  • Food and Agriculture Organization. (2016). Crops and livestock products. Rome, Italy: Food and Agriculture Organization.
  • Food and Agriculture Organization. (2021). International year of plant health – Final report. Rome, Italy: Food and Agriculture Organization.
  • Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations (Vol. 204). North-Holland Mathematics Studies, North-Holland: Elsevier.
  • Kinene, T., Luboobi, L. S., Nannyonga, B., & Mwanga, G. G. (2015). A mathematical model for the dynamics and cost effectiveness of the current controls of cassava brown streak disease in Uganda. Journal of Mathematics and Computer Science, 5(4), 567–600.
  • Kumar, P., Erturk, V. S., Vellappandi, M., Trinh, H., & Govindaraj, V. (2022). A study on the maize streak virus epidemic model by using optimized linearization-based predictor-corrector method in Caputo sense. Chaos, Solitons & Fractals, 158, 112067. doi:10.1016/j.chaos.2022.112067
  • Pratt, R. C., & Gordon, S. G. (2010, June). Breeding for resistance to maize foliar pathogens. In Jules Janick (Ed.), Plant breeding reviews (pp. 119–173). John Wiley. https://doi.org/10.1002/9780470650349.ch3
  • Ritchie, H., & Roser, M. (2013). Crop yields. Our World in Data. Retrieved from: 'https://ourworldindata.org/crop-yields' [Online Resource].
  • Seidu, B. (2020). Optimal strategies for control of COVID-19: A mathematical perspective. Scientifica, 2020, 4676274–4676212. doi:10.1155/2020/4676274
  • Seidu, B., Asamoah, J. K. K., Wiah, E. N., & Ackora-Prah, J. (2022). A comprehensive cost-effectiveness analysis of control of Maize Streak Virus Disease with Holling’s Type II predation form and standard incidence. Results in Physics, 40, 105862. doi:10.1016/j.rinp.2022.105862
  • Seidu, B., & Makinde, O. D. (2014). Optimal control of HIV/AIDS in the workplace in the presence of careless individuals. Computational and Mathematical Methods in Medicine, 2014, 831506–831519. doi:10.1155/2014/831506
  • Toufik, M., & Atangana, A. (2017). New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models. The European Physical Journal Plus, 132(10), 1–16. doi:10.1140/epjp/i2017-11717-0
  • Van den Driessche, P., & Watmough, J. (2008). Further notes on the basic reproduction number. In Mathematical epidemiology (pp. 159–178). Springer.
  • van Maanen, A., & Xu, X.-M. (2003). Modelling plant disease epidemics. European Journal of Plant Pathology, 109(7), 669–682. doi:10.1023/A:1026018005613