1,106
Views
1
CrossRef citations to date
0
Altmetric
Brief Report

Characterization and source apportionment of oxidative potential of ambient PM2.5 in Nanjing, a megacity of Eastern China

, ORCID Icon, , &
Article: 2175728 | Received 14 Dec 2022, Accepted 29 Jan 2023, Published online: 15 Feb 2023

References

  • Delfino RJ, Staimer N, Tjoa T, et al. Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel[J]. J Expo Sci Environ Epidemiol. 2013;23(5):466–10.
  • Janssen NAH, Strak M, Yang A, et al. Associations between three specific a-cellular measures of the oxidative potential of particulate matter and markers of acute airway and nasal inflammation in healthy volunteers[J]. Occup Environ Med. 2015;72(1):49–56.
  • Bates JT, Weber RJ, Abrams J, et al. Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects[J]. Environ Sci Technol. 2015;49(22):13605–13612.
  • Leni Z, Kunzi L, Geiser M. Air pollution causing oxidative stress[J]. Curr Opin Toxicol. 2020;20-21:1–8.
  • Lim CC, Thurston GD. Air pollution, oxidative stress, and diabetes: a life course epidemiologic perspective[J]. Curr Diab Rep. 2019;19(8):58.
  • Vo TTT, Wu C-Z, Lee IT. Potential effects of noxious chemical-containing fine particulate matter on oral health through reactive oxygen species-mediated oxidative stress: promising clues[J]. Biochem Pharmacol. 2020;182:114286.
  • Yang L, Hou X-Y, Wei Y, et al. Biomarkers of the health outcomes associated with ambient particulate matter exposure[J]. Sci Total Environ. 2017;579:1446–1459.
  • Lee C-W, Vo TTT, Wu C-Z, et al. The inducible role of ambient particulate matter in cancer progression via oxidative stress-mediated reactive oxygen species pathways: a recent perception[J]. Cancers (Basel). 2020;12(9):2505.
  • EPA US. National primary and secondary ambient air quality standards[S]. Washington DC: United States Environmental Protection Agency; 2015.
  • MEEC, GAQSIQC. Ambient air quality standards (GB 3095-2012)[S]. Beijing: Ministry of environment protection of China (MEEC), General administration of quality supervision, inspection and quarantine of China (GAQSIQC). 2012 (In Chinese) .
  • WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Licence: CC BY-NC-SA 3.0 IGO. World Health Organization: Geneva, Switzerland. 2021.
  • Gao D, Ripley S, Weichenthal S, et al. Ambient particulate matter oxidative potential: chemical determinants, associated health effects, and strategies for risk management[J]. Free Radical Bio Med. 2020;151:7–25.
  • Rao LF, Zhang LY, Wang XZ, et al. Oxidative potential induced by ambient particulate matters with acellular assays: a review[J]. Processes. 2020;8(11):1410
  • Guo X, Zhang N, Hu X, et al. Characteristics and potential inhalation exposure risks of PM2.5–bound environmental persistent free radicals in Nanjing, a mega–city in China[J]. Atmos Environ. 2020;224. 117355.
  • Dong H, Xu D, Hu L, et al. Evaluation of N-acetyl-cysteine against tetrachlorobenzoquinone-induced genotoxicity and oxidative stress in HepG2 cells[J]. Food Chem Toxicol. 2014;64:291–297.
  • Saed GM, Jiang ZL, Fletcher NM, et al. Exposure to polychlorinated biphenyls enhances lipid peroxidation in human normal peritoneal and adhesion fibroblasts: a potential role for myeloperoxidase[J]. Free Radical Bio Med. 2010;48(6):845–850.
  • Zhang S, Yang T, Xu X, et al. Oxidative stress and nitric oxide signaling related biomarkers in patients with pulmonary hypertension: a case control study[J]. BMC Pulm Med. 2015;15(1):50.
  • Dong H, Shi Q, Song X, et al. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: the activations of NHEJ, BER and NER via ATM-p53 signaling axis[J]. Toxicol Appl Pharm. 2015;286(1):10–16.
  • Saffari A, Daher N, Shafer MM, et al. Seasonal and spatial variation in dithiothreitol (DTT) activity of quasi-ultrafine particles in the Los Angeles Basin and its association with chemical species[J]. J Environ Sci Heal A. 2014;49(4):441–451.
  • Guo HB, Li M, Lyu Y, et al. Size-resolved particle oxidative potential in the office, laboratory, and home: evidence for the importance of water-soluble transition metals[J]. Environ Pollut. 2019;246:704–709.
  • Samake A, Uzu G, Martins JMF, et al. The unexpected role of bioaerosols in the oxidative potential of PM[J]. Sci Rep-UK. 2017;7(1):10978.
  • Fang T, Zeng L, Gao D, et al. Ambient size distributions and lung deposition of aerosol dithiothreitol-measured oxidative potential: contrast between soluble and insoluble particles[J]. Environ Sci Technol. 2017;51(12):6802–6811.
  • Bates JT, Fang T, Verma V, et al. Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects[J]. Environ Sci Technol. 2019;53(8):4003–4019.
  • Calas A, Uzu G, Kelly FJ, et al. Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM10 samples from the city of Chamonix (France)[J]. Atmos Chem Phys. 2018;18(11):7863–7875.
  • Visentin M, Pagnoni A, Sarti E, et al. Urban PM2.5 oxidative potential: importance of chemical species and comparison of two spectrophotometric cell-free assays[J]. Environ Pollut. 2016;219:72–79.
  • Vreeland H, Weber R, Bergin M, et al. Oxidative potential of PM2.5 during Atlanta rush hour: measurements of in-vehicle dithiothreitol (DTT) activity[J]. Atmos Environ. 2017;165. 169–178.
  • Janssen NAH, Yang A, Strak M, et al. Oxidative potential of particulate matter collected at sites with different source characteristics[J]. Sci Total Environ. 2014;472:572–581.
  • Fang T, Verma V, Bates JT, et al. Oxidative potential of ambient water-soluble PM2.5 in the Southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays[J]. Atmos Chem Phys. 2016;16(6):3865–3879.
  • Wu L, Luo X-S, Li H, et al. Seasonal levels, sources, and health risks of heavy metals in atmospheric PM2.5 from four functional areas of Nanjing city, Eastern China[J]. Atmosphere. 2019;10(7):419.
  • Zheng H, Yi W, Ding Z, et al. Evaluation of life expectancy loss associated with submicron and fine particulate matter (PM1 and PM2.5) air pollution in Nanjing, China[J]. Environ Sci Pollut R. 2021;28(48):68134–68143.
  • Cho AK, Sioutas C, Miguel AH, et al. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin[J]. Environ Res. 2005;99(1):40–47.
  • Gao D, Fang T, Verma V, et al. A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP[J]. Atmos Meas Tech. 2017;10(8):2821–2835.
  • Pietrogrande MC, Bertoli I, Manarini F, et al. Ascorbate assay as a measure of oxidative potential for ambient particles: evidence for the importance of cell-free surrogate lung fluid composition[J]. Atmos Environ. 2019;211. 103–112.
  • Laurent YA, Laure L, Esperanza P, et al. PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone[J]. Atmos res. 2010;96(4): 612–625
  • Hu X, Ding Z, Zhang Y, et al. Size distribution and source apportionment of airborne metallic elements in Nanjing, China[J]. Aerosol Air Qual Res. 2013;13:1796–1806.
  • Brehmer C, Lai A, Clark S, et al. The oxidative potential of personal and household PM2.5 in a rural setting in Southwestern China[J]. Environ Sci Technol. 2019;53(5):2788–2798.
  • Liu Q, Baumgartner J, Zhang Y, et al. Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing[J]. Environ Sci Technol. 2014;48(21):12920–12929.
  • Puthussery JV, Singh A, Rai P, et al. Real-time measurements of PM2.5 oxidative potential using a dithiothreitol assay in Delhi, India[J]. Environ Sci Tech Let. 2020;7(7):504–510.
  • Chen Q, Wang M, Wang Y, et al. Oxidative potential of water-soluble matter associated with chromophoric substances in PM2.5 over Xi’an, China[J]. Environ Sci Technol. 2019;53(15):8574–8584.
  • Weichenthal S, Shekarrizfard M, Traub A, et al. Within-city spatial variations in multiple measures of PM2.5 oxidative potential in Toronto, Canada[J]. Environ Sci Technol. 2019;53(5):2799–2810.
  • Pietrogrande MC, Dalpiaz C, Dell’anna R, et al. Chemical composition and oxidative potential of atmospheric coarse particles at an industrial and urban background site in the alpine region of northern Italy[J]. Atmos Environ. 2018;191. 340–350.
  • Chirizzi D, Cesari D, Guascito MR, et al. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10[J]. Atmos Environ. 2017;163. 1–8.
  • Paraskevopoulou D, Bougiatioti A, Stavroulas I, et al. Yearlong variability of oxidative potential of particulate matter in an urban Mediterranean environment[J]. Atmos Environ. 2019;206. 183–196.
  • Patel A, Rastogi N. Oxidative potential of ambient fine aerosol over a semi-urban site in the Indo-Gangetic Plain[J]. Atmos Environ. 2018;175:127–134.
  • Fang T, Guo H, Zeng L, et al. Highly acidic ambient particles, soluble metals, and oxidative potential: a link between sulfate and aerosol toxicity[J]. Environ Sci Technol. 2017;51(5):2611–2620.
  • Romano S, Becagli S, Lucarelli F, et al. Oxidative potential sensitivity to metals, Br, P, S, and Se in PM10 samples: new insights from a monitoring campaign in Southeastern Italy[J]. Atmosphere. 2020;(2020(11):367.
  • Cheng Y, Engling G, He KB, et al. Biomass burning contribution to Beijing aerosol[J]. Atmos Chem Phys. 2013;13(15):7765–7781.
  • Boreddy SKR, Kawamura K, Okuzawa K, et al. <atl>Temporal and diurnal variations of carbonaceous aerosols and major ions in biomass burning influenced aerosols over Mt. Atmos Environ. 2017;154. 106–117.
  • Chuang MT, Chou CCK, Sopajaree K, et al. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment[J]. Atmos Environ. 2013;78. 72–81.
  • Yang A, Jedynska A, Hellack B, et al. Measurement of the oxidative potential of PM2.5 and its constituents: the effect of extraction solvent and filter type[J]. Atmos Environ. 2014;83. 35–42.
  • Fang GC, Huang YL, Huang JH. Study of atmospheric metallic elements pollution in Asia during 2000–2007[J]. J Hazard Mater. 2010;180(1–3):115–121.
  • Hjortenkrans DST, Bergb€ack BG, H€aggerud AV. Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005[J]. Environ Sci Technol. 2007;41(15):5224–5230.
  • Pant P, Baker SJ, Shukla A, et al. The PM10 fraction of road dust in the UK and India: characterization, source profiles and oxidative potential[J]. Sci Total Environ. 2015;530-531. 445–452.
  • Verma SK, Masto RE, Gautam S, et al. Investigations on PAHs and trace elements in coal and its combustion residues from a power plant[J]. Fuel. 2015;162:138–147.
  • Xu B, Song Y, Tian Y, et al. Sulfur content in coal formed during different geologic periods in the Guangxi Province and the relationship with the depositional environment[J]. Arab J Geosci. 2020;13(7):294.
  • Chu VT, Ristovski Z, Surawski N, et al. Effect of sulphur and vanadium spiked fuels on particle characteristics and engine performance of auxiliary diesel engines[J]. Environ Pollut. 2018;243:1943–1951.
  • Winnes H, Moldanová J, Anderson M, et al. On-board measurements of particle emissions from marine engines using fuels with different sulphur content[J]. P I Mech Eng M-J Eng. 2016;230(1): 45–54
  • Kunli L, Xinmin Z, Changhe C, et al. Estimate of arsenic emission amount from the coal power stations in China[J]. Chin Sci Bull. 2004;49:2183–2189.
  • Tian HZ, Wang Y, Xue ZG, et al. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007[J]. Atmos Chem Phys. 2010;10:11905–11919.
  • Harrison RM, Jones AM, Gietl J, et al. Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements[J]. Environ Sci Technol. 2012;46(12):6523–6529.