665
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of nano-functionalized cellulosic paper for selective estimation of Cr (VI) using diffuse reflectance spectroscopy

, , , , &
Article: 2215944 | Received 14 Apr 2023, Accepted 15 May 2023, Published online: 01 Jun 2023

References

  • Banerjee S, Kamila B, Barman S, et al. Interlining Cr(VI) remediation mechanism by a novel bacterium Pseudomonas brenneri isolated from coalmine wastewater. J Environ Manage. 2019;233:271–12.
  • Deng Z, Deng Q, Wang L, et al. Modifying coconut shell activated carbon for improved purification of benzene from volatile organic waste gas. Adv Compos Hybrid Mater. 2021;4(3):751–760.
  • Jansone-Popova S, Moinel A, Schott JA, et al. Guanidinium-based ionic covalent organic framework for rapid and selective removal of toxic Cr(VI) oxoanions from water. Environ Sci Technol. 2019;53(2):878–883.
  • Si Y, Li J, Cui B, et al. Janus phenol–formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. Adv Compos Hybrid Mater. 2022;5(2):1180–1195.
  • Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6(9):e04691.
  • Pushkar B, Sevak P, Parab S, et al. Chromium pollution and its bioremediation mechanisms in bacteria: a review. J Environ Manage. 2021;287:112279.
  • Prasad S, Yadav KK, Kumar S, et al. Chromium contamination and effect on environmental health and its remediation: a sustainable approaches. J Environ Manage. 2021;285:112174.
  • Norton SB, Cormier SM, Suter GW, et al. CADDIS: the causal analysis/diagnosis decision information system. In: Marcomini A, Suter II G, Critto A, editors. Decision support systems for risk-based management of contaminated sites. Boston, MA: Springer US; 2008. pp. 1–24.
  • Ilieva D, Surleva A, Murariu M, et al. Evaluation of ICP-OES method for heavy metal and metalloids determination in sterile dump material. Solid State Phenom. 2018;273:159–166.
  • Aragay G, Pons J, Merkoci A. Recent trends in macro-, micro-, and nanomaterials-based tools and strategies for heavy-metal detection. Chem Rev. 2011;111(5):3433–3458.
  • Gallardo-Gonzalez J, Baraket A, Boudjaoui S, et al. A fully integrated passive microfluidic Lab-on-a-Chip for real-time electrochemical detection of ammonium: sewage applications. Sci Total Environ. 2019;653:1223–1230.
  • Manjari G, Saran S, Radhakrishanan S, et al. Facile green synthesis of Ag-Cu decorated ZnO nanocomposite for effective removal of toxic organic compounds and an efficient detection of nitrite ions. J Environ Manage. 2020;262:110282.
  • Yu Q, Guo J, Muhammad Y, et al. Mechanisms of enhanced hexavalent chromium removal from groundwater by sodium carboxymethyl cellulose stabilized zerovalent iron nanoparticles. J Environ Manage. 2020;276:111245.
  • Guo JF, Huo DQ, Yang M, et al. Colorimetric detection of Cr (VI) based on the leaching of gold nanoparticles using a paper-based sensor. Talanta. 2016;161:819–825.
  • Wu B, Wang M, Sun Y, et al. Near-infrared chirality of plasmonic metasurfaces with gold rectangular holes. Adv Compos Hybrid Mater. 2022;5(3):2527–2535.
  • Yuan M, Feng X, Yan TH, et al. Superparamagnetic iron oxide-enclosed hollow gold nanostructure with tunable surface plasmon resonances to promote near-infrared photothermal conversion. Adv Compos Hybrid Mater. 2022;5(3):2387–2398.
  • Kahandal AW, Sharma L, Sirdeshmukh V, et al. A sensitive image-based optical detection of heavy metal ions using green synthesized silver nanoparticles. Int J Environ Sci Technol. 2022;1–12. DOI:10.1007/s13762-022-04539-4
  • Shrivas K, Kant T, Patel S, et al. Inkjet-printed paper-based colorimetric sensor coupled with smartphone for determination of mercury (Hg2+). J Hazard Mater. 2021;414:125440.
  • Swain KK, Balasubramaniam R, Bhand S. A portable microfluidic device-based Fe3O4-urease nanoprobe-enhanced colorimetric sensor for the detection of heavy metals in fish tissue. Prep Biochem Biotechnol. 2020;50(10):1000–1013.
  • Chen W, Lin H, Wu Y, et al. Fluorescent probe of nitrogen-doped carbon dots derived from biomass for the sensing of MnO4− in polluted water based on inner filter effect. Adv Compos Hybrid Mater. 2022;5(3):2378–2386.
  • Yuan H, Peng J, Ren T, et al. Novel fluorescent lignin-based hydrogel with cellulose nanofibers and carbon dots for highly efficient adsorption and detection of Cr(VI). Sci Total Environ. 2021;760:143395.
  • Song Y, Qi N, Li K, et al. Green fluorescent nanomaterials for rapid detection of chromium and iron ions: wool keratin-based carbon quantum dots. RSC Adv. 2022;12(13):8108–8118.
  • Kumar R, Umar A, Kumar R, et al. Spindle-like Co3O4-ZnO nanocomposites scaffold for hydrazine sensing and photocatalytic degradation of rhodamine B dye. Eng Sci. 2021;16:288–300.
  • Wu M, Jing T, Tian J, et al. Synergistic effect of silver plasmon resonance and pn heterojunction enhanced photoelectrochemical aptasensing platform for detecting chloramphenicol. Adv Compos Hybrid Mater. 2022;5(3):2247–2259.
  • Guo L, Zhang Y, Zheng J, et al. Synthesis and characterization of ZnNiCr-layered double hydroxides with high adsorption activities for Cr(VI). Adv Compos Hybrid Mater. 2021;4(3):819–829.
  • Wu Q, Gao L, Huang M, et al. Aminated lignin by ultrasonic method with enhanced arsenic (V) adsorption from polluted water. Adv Compos Hybrid Mater. 2022;5(2):1044–1053.
  • Xie X, Gao H, Luo X, et al. Polyethyleneimine-modified magnetic starch microspheres for Cd (II) adsorption in aqueous solutions. Adv Compos Hybrid Mater. 2022;5(4):2772–2786.
  • Yin C, Wang C, Hu Q. Selective removal of as (V) from wastewater with high efficiency by glycine-modified Fe/Zn-layered double hydroxides. Adv Compos Hybrid Mater. 2021;4(2):360–370.
  • Yin H, Zhong W, Yin M, et al. Carboxyl-functionalized poly (arylene ether nitrile)-based rare earth coordination polymer nanofibrous membrane for highly sensitive and selective sensing of Fe3+ ions. Adv Compos Hybrid Mater. 2022;5(3):2031–2041.
  • Ding R, Cheong YH, Ahamed A, et al. Heavy metals detection with paper-based electrochemical sensors. Anal Chem. 2021;93(4):1880–1888.
  • Kuswandi B, Hidayat MA, Noviana E. Paper-based sensors for rapid important biomarkers detection. Biosens Bioelectron: X. 2022;12:100246.
  • Peixoto S, Machado A, Oliveira HP, et al. Paper-based biosensors for analysis of water. IntechOpen. 2019. DOI:10.5772/intechopen.84131
  • Yao Z, Coatsworth P, Shi X, et al. Based sensors for diagnostics, human activity monitoring, food safety and environmental detection. Sens Diagn. 2022;1(3):312–342.
  • Devadhasan JP, Kim J. A chemically functionalized paper-based microfluidic platform for multiplex heavy metal detection. Sensors And Actuat B Chem. 2018;273:18–24.
  • Deshpande P, Alset U, Mehta H, et al. 2021July. Detection of hexavalent chromium concentration in aqueous solution using lab developed colorimeter. International journal of physics: conference series, (Vol. 19643)p. 032005. IOP Publishing. DOI:10.1088/1742-6596/1964/3/032005
  • Ferreira F, Luxardi G, Reid B, et al. Real-time physiological measurements of oxygen using a non-invasive self-referencing optical fiber microsensor. Nat Protoc. 2020;15(2):207.
  • Lewińska I, Speichert M, Granica M, et al. Colorimetric point-of-care paper-based sensors for urinary creatinine with smartphone readout. Sensors And Actuat B Chem. 2021;340:129915.
  • Gong X, Liu Y, Yang Z, et al. An “on-off-on” fluorescent nanoprobe for recognition of chromium(VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Anal Chim Acta. 2017;968:85–96.
  • Salimi F, Kiani M, Karami C, et al. Colorimetric sensor of detection of Cr (III) and Fe (II) ions in aqueous solutions using gold nanoparticles modified with methylene blue. Optik. 2018;158:813–825.
  • Venketeswaran A, Lalam N, Wuenschell J, et al. Recent advances in machine learning for fiber optic sensor applications. Adv Intell Syst. 2022;4(1):2100067.
  • Aliyana AK, Naveen Kumar SK, Marimuthu P, et al. Machine learning-assisted ammonium detection using zinc oxide/multi-walled carbon nanotube composite based impedance sensors. Sci Rep. 2021;11(1):24321.
  • Pyo J, Hong SM, Kwon YS, et al. Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil. Sci Total Environ. 2020;741:140162.
  • Sang L, Wang Y, Zong C, et al. Machine learning for evaluating the cytotoxicity of mixtures of nano-TiO2 and heavy metals: qSAR model apply random forest algorithm after clustering analysis. Molecules. 2022;27(18):6125. DOI:10.3390/molecules27186125
  • Zhou W, Yang H, Xie L, et al. Hyperspectral inversion of soil heavy metals in three-river source region based on random forest model. Catena. 2021;202:105222.
  • Sunatkari AL, Talwatkar SS, Tamgadge YS, et al. Surfactant-dependent thermally induced nonlinear optical properties of l-ascorbic acid-stabilized colloidal GNPs and GNP–PVP thin films. RSC Adv. 2019;9(27):15502–15512.
  • Liu L, Leng Y, Lin H. Photometric and visual detection of Cr(VI) using gold nanoparticles modified with 1,5-diphenylcarbazide. Mikrochim Acta. 2016;183(4):1367–1373.
  • Guo X, Huang J, Wei Y, et al. Fast and selective detection of mercury ions in environmental water by paper-based fluorescent sensor using boronic acid functionalized MoS2 quantum dots. J Hazard Mater. 2020;381:120969.
  • Mukherjee S, Bhattacharyya S, Ghosh K, et al. Sensory development for heavy metal detection: a review on translation from conventional analysis to field-portable sensor. Trends Food Sci Technol. 2021;109:674–689.
  • Dong J, Carpinone PL, Pyrgiotakis G, et al. Synthesis of precision gold nanoparticles using Turkevich method. Kona: Powder Sci Technol In Japan. 2020;37(0):224.
  • Chen R, Shi J, Liu C, et al. In situ self-assembly of gold nanorods with thermal-responsive microgel for multi-synergistic remote drug delivery. Adv Compos Hybrid Mater. 2021;5(3):2223–2234.
  • Ali Dheyab M, Abdul Aziz A, Jameel MS, et al. Rapid sonochemically-assisted synthesis of highly stable gold nanoparticles as computed tomography contrast agents. Appl Sci. 2020;10(20):7020.
  • Botteon CEA, Silva LB, Ccana-Ccapatinta GV, et al. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci Rep. 2021;11(1):1974.
  • Clayton KN, Salameh JW, Wereley ST, et al. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics. 2016;10(5):054107.
  • Hospodárova V, Singovszka E, Stevulova N. Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. American J Anal Chem. 2018;09(06):303–310.
  • Panggabean AS, Yusuf B. Determination of Chromium (VI) by using chitosan-1, 5-diphenyl carbazide resin modified at the preconcentration system with column method. Int J Pharm Biol Sci. 2015;6(3):101–111.
  • Faham S, Khayatian G, Golmohammadi H, et al. A paper-based optical probe for chromium by using gold nanoparticles modified with 2,2’-thiodiacetic acid and smartphone camera readout. Mikrochim Acta. 2018;185(8):374.
  • Ricardo S, Castro Carneiroa M, Inês Couto Monteiro M, et al. Simultaneous speciation of chromium by spectrophotometry and multicomponent analysis. Chem Speciat Bioavailab. 2009;21(3):153–160.
  • Apostol I, Krull I, Kelner D. Analytical method validation for biopharmaceuticals. Anal Chem. 2012. DOI:10.5772/52561. IntechOpen.
  • Chen W, Fang X, Li H, et al. A simple paper-based colorimetric device for rapid mercury (II) assay. Sci Rep. 2016;6(1):1–7.
  • Han J, Kamber M, Pei J. Chapter 3-data preprocessing. Data Mining Third Edition ed. United States: Morgan Kaufmann, Elsevier; 2012. pp. 83–124.