2,795
Views
0
CrossRef citations to date
0
Altmetric
Research Article

UiO-66 (Zr-MOF): Synthesis, Characterization, and Application for the Removal of Malathion and 2, 4-D from Aqueous Solution

, & ORCID Icon
Article: 2222910 | Received 30 Mar 2023, Accepted 02 Jun 2023, Published online: 15 Jun 2023

References

  • Zhang KD, Tsai FC, Ma N, et al. Adsorption behavior of high stable Zr-based MOFs for the removal of acid organic dye from water. Materials. 2017;10(2):10. doi: 10.3390/ma10020205.
  • Teju E, Tadesse B, Megersa N. Salting-out-assisted liquid–liquid extraction for the preconcentration and quantitative determination of eight herbicide residues simultaneously in different water samples with high-performance liquid chromatography. Sep Sci Technol. 2021;56(4):719–293. doi: 10.1080/01496395.2016.1276596.
  • Jung BK, Hasan Z, Jhung SH. Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metal–organic framework. Chem Eng J. 2013;234:99–105. doi: 10.1016/j.cej.2013.08.110
  • Kumar P, Singh H, Kapur M, et al. Comparative study of malathion removal from aqueous solution by agricultural and commercial adsorbents. Water Proc Eng. 2014;3:67–73. doi: 10.1016/j.jwpe.2014.05.010
  • Venugopal N, Sumalatha B. Spectrophotometric determination of malathion in environmental samples. E-J Chem. 2012;9(2):857–862. doi: 10.1155/2012/390517.
  • Nair AS, Pradeep T. Extraction of chlorpyrifos and malathion from water by metal nanoparticles. J Nanosci Nanotechnol. 2007;7(6):1871–1877. doi: 10.1166/jnn.2007.733.
  • Silva-Madera RJ, Salazar-Flores J, Peregrina-Lucano AA, et al. Pesticide contamination in drinking and surface water in the Cienega, Jalisco, Mexico. Water Air Soil Pollut. 2021;232(2):43. doi: 10.1007/s11270-021-04990-y.
  • Mekonen S, Argaw R, Simanesew A, et al. Pesticide residues in drinking water and associated risk to consumers in Ethiopia. Chemosphere. 2016;162:252–260. doi: 10.1016/j.chemosphere.2016.07.096
  • Dehghani M, Nasseri S, Karamimanesh M. Removal of 2,4-Dichlorophenolyxacetic acid (2,4-D) herbicide in the aqueous phase using modified granular activated carbon. J Environ Health Sci Eng. 2014;12(1):28–35. doi: 10.1186/2052-336X-12-28.
  • Sandoval-Carrasco CA, Ahuatzi-Chacón D, Galíndez-Mayer J, et al. Biodegradation of a mixture of the herbicides ametryn, and 2,4-dichlorophenoxyacetic acid (2,4-D) in a compartmentalized biofilm reactor. Biores Technol. 2013;145:33–36. doi: 10.1016/j.biortech.2013.02.068
  • Gupta VK, Jain CK, Ali I, et al. Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste. Water Res. 2002;36(10):2483–2490. doi: 10.1016/S0043-1354(01)00474-2.
  • Al-Qodah Z, Shawaqfeh AT, Lafi WK. Adsorption of pesticides from aqueous solutions using oil shale ash. Desalination. 2007;208(1–3):294–305. doi: 10.1016/j.desal.2006.06.019.
  • Hameed BH, Salman JM, Ahmad AL. Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. J Hazard Mater. 2009;163(1):121–126. doi: 10.1016/j.jhazmat.2008.06.069.
  • Pal OR, Vanjara AK. Removal of malathion and butachlor from aqueous solution by clays and organoclays. Sep Purif Technol. 2001;24(1–2):167–172. doi: 10.1016/S1383-5866(00)00226-4.
  • Salman JM, Njoku VO, Hameed BH. Adsorption of pesticides from aqueous solution onto banana stalk activated carbon. Chem Eng J. 2011;174(1):41–48. doi: 10.1016/j.cej.2011.08.026.
  • El Harmoudi H, El Gaini L, Daoudi E, et al. Removal of 2,4-D from aqueous solutions by adsorption processes using two biopolymers: chitin and chitosan and their optical properties. Opt Mater. 2014;36(9):1471–1477. doi: 10.1016/j.optmat.2014.03.040
  • Kearns JP, Wellborn LS, Summers RS, et al. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data. Water Res. 2014;62:20–28. doi: 10.1016/j.watres.2014.05.023
  • Naushad M, Alothman ZA, Khan MR. Removal of malathion from aqueous solution using De-Acidite FF-IP resin and determination by UPLC–MS/MS: equilibrium, kinetics and thermodynamics studies. Talanta. 2013;115:15–23. doi: 10.1016/j.talanta.2013.04.015
  • Zhang S, Zeng M, Li J, et al. Porous magnetic carbon sheets from biomass as an adsorbent for the fast removal of organic pollutants from aqueous solution. J Mater Chem A. 2014;2(12):4391–4397. doi: 10.1039/C3TA14604A.
  • Chen T, Zhang C, Qin Y, et al. Preparation of Cationic MOFs with mobile anions by anion stripping to remove 2,4-D from water. Materials. 2017;10(8):10. doi: 10.3390/ma10080879.
  • Rostami S, Nakhaei Pour A, Salimi A, et al. Hydrogen adsorption in metal- organic frameworks (MOFs): effects of adsorbent architecture. Int J Hydrogen Energy. 2018;43(14):7072–7080. doi: 10.1016/j.ijhydene.2018.02.160.
  • Zhang J, Chen Z. Metal-organic frameworks as stationary phase for application in chromatographic separation. J Chromatogr A. 2017;1530:1–18. doi: 10.1016/j.chroma.2017.10.065
  • Zhang Y, Yang X, Zhou H-C. Synthesis of MOFs for heterogeneous catalysis via linker design. Polyhedron. 2018;154:189–201. doi: 10.1016/j.poly.2018.07.021
  • Li C, Huang J, Zhu H, et al. Dual-emitting fluorescence of Eu/Zr-MOF for ratiometric sensing formaldehyde. Sensors And Actuat B Chem. 2017;253:275–282. doi: 10.1016/j.snb.2017.06.064
  • Farha OK, Özgür Yazaydın A, Eryazici I, et al. De Novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem. 2010;2(11):944–948. doi: 10.1038/nchem.834.
  • Furukawa H, Ko N, Go YB, et al. Ultrahigh Porosity in metal-organic frameworks. Science. 2010;329(5990):424–428. doi: 10.1126/science.1192160.
  • He Y, Tang YP, Ma D, et al. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal. J Membr Sci. 2017;541:262–270. doi: 10.1016/j.memsci.2017.06.061
  • Gomes Silva C, Luz I, Llabres i Xamena FX, et al. Water stable Zr-Benzenedicarboxylate Metal-Organic frameworks as Photocatalysts for hydrogen generation. Chem: Eur J. 2010;16(36):11133–11138. doi: 10.1002/chem.200903526.
  • Jing H-P, Wang C-C, Zhang Y-W, et al. Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv. 2014;4(97):54454–54462. doi: 10.1039/C4RA08820D
  • Valenzano L, Civalleri B, Chavan S, et al. Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem Mater. 2011;23(7):1700–1718. doi: 10.1021/cm1022882.
  • Azhar MR, Abid HR, Sun H, et al. One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants. J Colloid Interface Sci. 2017;490:685–694. doi: 10.1016/j.jcis.2016.11.100
  • Ma D, Peh SB, Han G, et al. Thin-Film Nanocomposite (TFN) membranes incorporated with super-Hydrophilic Metal–Organic Framework (MOF) UiO-66: toward enhancement of water flux and salt rejection. ACS Appl Mater Inter. 2017;9(8):7523–7534. doi: 10.1021/acsami.6b14223
  • Bunaciu AA, Udriştioiu EG, Aboul-Enein HY. X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem. 2015;45(4):289–299. doi: 10.1080/10408347.2014.949616.
  • Kim S-N, Lee Y-R, Hong S-H, et al. Pilot-scale synthesis of a zirconium-benzenedicarboxylate UiO-66 for CO2 adsorption and catalysis. CatalToday. 2015;245:54–60. doi: 10.1016/j.cattod.2014.05.041
  • Li J-R, Sculley J, Zhou H-C. Metal–Organic Frameworks for separations. Chem Rev. 2012;112(2):869–932. doi: 10.1021/cr200190s.
  • Bedadeep D, Shahnaz T, Manu Sankar V, et al. Organic polymer doped graphene-based composite for the effective elimination of diclofenac: a detailed study with phytotoxic assessments. J Environ Chem Eng. 2023;11(1):109223. doi: 10.1016/j.jece.2022.109223
  • Azhar MR, Abid HR, Periasamy V, et al. Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment. J Colloid Interface Sci. 2017;500:88–95. doi: 10.1016/j.jcis.2017.04.001
  • Priyan, V. V., Kumar N, Rajendran HK, et al. Sequestration and toxicological assessment of emerging contaminants with polypyrrole modified carboxymethyl cellulose (CMC/PPY): case of ibuprofen pharmaceutical drug. Int j biol macromol. 2022;221:547–557. doi: 10.1016/j.ijbiomac.2022.09.046
  • Nejati K, Davary S, Saati M. Study of 2,4-dichlorophenoxyacetic acid (2,4-D) removal by Cu-Fe-layered double hydroxide from aqueous solution. Appl Surface Sci. 2013;280:67–73. doi: 10.1016/j.apsusc.2013.04.086
  • Dehghani MH, Niasar ZS, Mehrnia MR, et al. Optimizing the removal of organophosphorus pesticide malathion from water using multi-walled carbon nanotubes. Chem Eng J. 2017;310:22–32. doi: 10.1016/j.cej.2016.10.057
  • Kuśmierek K, Świątkowski A. The influence of different agitation techniques on the adsorption kinetics of 4-chlorophenol on granular activated carbon, reaction kinetics. Reac Kinet Mech Cat. 2015;116(1):261–271. doi: 10.1007/s11144-015-0889-1.
  • Alka T, Anita B. Effective removal of pesticide (dichlorvos) by adsorption onto super paramagnetic poly (styrene-co-acrylic acid) hydrogel from water. Int Res J Environ Sci. 2014;3:41–46.
  • Wanjeri VWO, Sheppard CJ, Prinsloo ARE, et al. Isotherm and kinetic investigations on the adsorption of organophosphorus pesticides on graphene oxide based silica coated magnetic nanoparticles functionalized with 2-phenylethylamine. J Environ Chem Eng. 2018;6(1):1333–1346. doi: 10.1016/j.jece.2018.01.064
  • Bakhtiary S, Shirvani M, Shariatmadari H. Adsorption–desorption behavior of 2,4-D on NCP-modified bentonite and zeolite: implications for slow-release herbicide formulations. Chemosphere. 2013;90(2):699–705. doi: 10.1016/j.chemosphere.2012.09.052.
  • Chen C, Zhang M, Guan Q, et al. Kinetic and thermodynamic studies on the adsorption of xylenol orange onto MIL-101(Cr. Chem Eng J. 2012;183:60–67. doi: 10.1016/j.cej.2011.12.021
  • Chandrasekar R, Rajendran HK, Priyan V, et al. Valorization of sawdust by mineral acid assisted hydrothermal carbonization for the adsorptive removal of bisphenol A: a greener approach. Chemosphere. 2022;303:135171. doi: 10.1016/j.chemosphere.2022.135171
  • Evy Alice Abigail M, Chidambaram R. Rice husk as a low cost nanosorbent for 2,4-dichlorophenoxyacetic acid removal from aqueous solutions. Ecol Eng. 2016;92:97–105. doi: 10.1016/j.ecoleng.2016.03.020
  • Muthukumaran C, Sivakumar VM, Thirumarimurugan M. Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. J Taiwan Inst Chem Eng. 2016;63:354–362. doi: 10.1016/j.jtice.2016.03.034
  • Patra C, Narayanasamy S. Polypyrrole complexation on biomass-derived powdered carbon for adsorptive elimination of emerging pharmaceutical contaminant Sulfamethoxazole: a comprehensive insight. J Clean Prod. 2022;370:133565. doi: 10.1016/j.jclepro.2022.133565
  • Fairooz NE, Jwad ZA, Zahra M. Adsorption isotherms and thermodynamic data for removal pesticides from aqueous solution on pomegranate peel surface. Am J Appl Chem. 2015;3(4):147–152. doi: 10.11648/j.ajac.20150304.11.
  • Lin K-YA, Chen S-Y, Jochems AP. Zirconium-based metal organic frameworks: highly selective adsorbents for removal of phosphate from water and urine. Materials Chemistry & Physics. 2015;160:168–176. doi: 10.1016/j.matchemphys.2015.04.021
  • Pizzutti IR, Dias JV, Kok AD, et al. Pesticide residues method validation by UPLC-MS/MS for accreditation purposes. J Braz Chem Soc. 2016;27:1165–1176. doi: 10.5935/0103-5053.20160012