1,042
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Heavy metal and metalloid concentrations in agricultural communities around steel and iron industries in Uganda: implications for future food systems

, &
Article: 2226344 | Received 11 Apr 2023, Accepted 12 Jun 2023, Published online: 19 Jun 2023

References

  • Leipziger D, Manwaring P. Uganda’s industrialisation strategy: challenges, opportunities, and lessons of experience. In: Policy Note: April 2020: University of Oxford: International Growth Centre; 2020.
  • Cooper R 2018. Current and projected impacts of renewable natural resources degradation on economic development in Uganda. K4D emerging issues report. Brighton, UK: Institute of Development Studies.
  • National Planning Authority. Third National development plan (NDPIII) 2020/21 –2024/25. Kampala Uganda: National Planning Authority; 2020. p. 341.
  • Muwanguzi AJB, Olowo P, Sebukeera H, et al. Modeling the growth trend of the iron and steel industry: case for Uganda. American J Ind Business Manage. 2020;10(2020):1640–315. doi:10.4236/ajibm.2020.109104.
  • Calabrese L, Golooba-Mutebi F, Mendez-Parra M. Industrial development in Uganda: an assessment of the policy framework. London: ODI; 2019.
  • Behuria P. The political economy of reviving industrial policy in Uganda. Oxford Dev Stud. 2021; 49(4):368–385. doi: 10.1080/13600818.2021.1960296
  • Muwanguzi AJB, Olowo P, Guloba A, et al. Industrialisation as a Vehicle for Uganda to achieve a 1st World Economy by 2040: a review of Uganda’s Industrialisation efforts. American J Ind Business Manage. 2018;8(2018):496–513. doi:10.4236/ajibm.2018.83033.
  • Angiro C, Abila PP, Omara T. Effects of industrial effluents on the quality of water in Namanve stream, Kampala Industrial and business park, Uganda. BMC Res Notes. 2020;13(220):1–6. doi:10.1186/s13104-020-05061-x.
  • Bakyayita GK, Norrstrom AC, Kulabako RN. Assessment of levels, speciation, and toxicity of trace metal contaminants in selected shallow groundwater sources, surface runoff, wastewater, and surface water from designated streams in Lake Victoria Basin, Uganda. J Environ Public Health. 2019;2019:6734017. doi: 10.1155/2019/6734017
  • Edogbo B, Okolocha E, Maikai B, et al. Risk analysis of heavy metal contamination in soil, vegetables and fish around Challawa area in Kano State, Nigeria. Sci African. 2020; 7(2020):e00281. doi: 10.1016/j.sciaf.2020.e00281
  • Zhang X, Yang H, Sun R, et al. Evaluation and analysis of heavy metals in iron and steel industrial area. Environ DevelopmentSustain. 2021;24(2022):10997–11010. doi:10.1007/s10668-021-01893-0.
  • Kasozi KI, Otim EO, Ninsiima HI, et al. An analysis of heavy metals contamination and estimating the daily intakes of vegetables from Uganda. Toxicol Res Application. 2021; 5(2021):1–15. doi: 10.1177/2397847320985255
  • Affum AO, Osae SD, Kwaansa-Ansah EE, et al. Quality assessment and potential health risk of heavy metals in leafy and non-leafy vegetables irrigated with groundwater and municipal-waste-dominated stream in the Western Region, Ghana. Heliyon. 2020;6(2020):e05829. doi:10.1016/j.heliyon.2020.e05829.
  • Awino FB, Maher W, Lynch AJJ, et al. Comparison of metal bioaccumulation in crop types and consumable parts between two growth periods. Integr Environ Assess Manage. 2021;2021:1–16. doi: 10.1002/ieam.4513
  • Chaoua S, Boussaa S, Gharmali AE, et al. Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J Saudi Soc Agri Sci. 2019; 18(2019):429–436. doi: 10.1016/j.jssas.2018.02.003
  • Baby J, Raj JS, Biby ET, et al. Toxic effect of heavy metals on aquatic environment. Int J Biol Chem Sci. 2010;4(4):939–952. doi:10.4314/ijbcs.v4i4.62976.
  • Izah SC, Angaye TC. Heavy metal concentration in fishes from surface water in Nigeria: potential sources of pollutants and mitigation measures. Sky J Biochem Res. 2016;5(4):31–47. doi:10.3390/toxics5010001.
  • Ziarati P, Shirkhan F, Mostafidi M, et al. An overview of the heavy metal contamination in milk and dairy products. Acta Scientific Pharmaceu Sci. 2018;2(7):1–14. doi:10.5604/01.3001.0012.7111.
  • Abou-Arab AAK. Heavy metal contents in Egyptian meat and the role of detergent washing on their levels. Food Chem Toxicol. 2001; 39(6):593–599. doi: 10.1016/S0278-6915(00)00176-9
  • Sathyamoorthy K, Sivaruban T, Barathy S. Assessment of heavy metal pollution and contaminants in the cattle meat. J Ind Pollut Control. 2016;32(1):350–355.
  • Huq SI, Joardar JC, Parvin S, et al. Arsenic contamination in food-chain: transfer of arsenic into food materials through groundwater irrigation. J Health Popul Nutr. 2006;24(3):305.
  • Nkosi DV, Bekker JL, Hoffman LC. Toxic metals in wild ungulates and domestic meat animals slaughtered for food purposes: a systemic review. Foods. 2021;10(11):2853. doi:10.3390/foods10112853.
  • Rahaman MS, Mise N, Ichihara S. Arsenic contamination in food chain in Bangladesh: a review on health hazards, socioeconomic impacts and implications. Hygiene Environ Health Advances. 2022;2:100004. doi: 10.1016/j.heha.2022.100004
  • Muwanga A, Barifaijo E. Impact of industrial activities on heavy metal loading and their physico-chemical effects on wetlands of Lake Victoria Basin (Uganda). Afr J Sci Technol. 2006;7(1):51–63. doi:10.4314/ajst.v7i1.55197.
  • Mbabazi J, Wasswa J, Kwetegyeka J, et al. Heavy metal contamination in vegetables cultivated on a major urban wetland inlet drainage system of Lake Victoria, Uganda. Int J Environ Stud. 2010;67(3):333–348. doi: 10.1080/00207231003612613
  • Graber LK, Asher D, Anandaraja N, et al., … Trasande L. Childhood lead exposure after the phaseout of leaded gasoline: an ecological study of school-age children in Kampala, Uganda. Environ Health Perspect. 2010;118(6):884–889. doi:10.1289/ehp.0901768.
  • Nabulo G, Origa HO, Nasinyama GW, et al. Assessment of Zn, Cu, Pb and Ni contamination in wetland soils and plants in the Lake Victoria basin. Int J Environ Sci Technol. 2008;5(1):65–74. DOI:10.1007/BF03325998
  • Namuhani N, Kimumwe C. Soil Contamination with heavy metals around Jinja steel rolling mills in Jinja Municipality, Uganda. J Health Pollut. 2015;5(9):61–67. doi:10.5696/2156-9614-5-9.61.
  • Wikipedia. 2022. Kampala industrial and business park. PM East African Standard Time. [cited 2022 March 3]. at09:19 Available from: https://en.wikipedia.org/wiki/Kampala_Industrial_and_Business_Park#cite_note-3R-3.
  • Awange JL, Anyah R, Agola N, et al. Potential impacts of climate and environmental change on the stored water of Lake Victoria Basin and economic implications. Water Resour Res. 2013;49:8160–8173. doi: 10.1002/2013WR014350
  • Abidemi OO. Accumulation and contamination of heavy metals in soil and vegetation from industrial area of Ikirun, Osun State, Nigeria. Int Res J Pure Appl Chem. 2013;1(1):25–34.
  • Aini IN, Ezrin MH, Aimrun W. Relationship between soil apparent electrical conductivity and pH value of Jawa series in oil palm plantation. Agric Agric Sci Procedia. 2014;2:199–206. doi: 10.1016/j.aaspro.2014.11.028
  • Akintan OB, Olusola JA, Azeez AM. Heavy metals loads in soil, farmlands, and plant crop at an open dumpsite. Global J Environ Sci Manage. 2019;5(4). DOI:10.22034/gjesm.2019.04.0
  • Fosu-Mensah BY, Addae E, Yirenya-Tawiah D, et al. Heavy metals concentration and distribution in soils and vegetation at Korle Lagoon area in Accra, Ghana. Cogent Environ Sci. 2017;3(1):1405887. doi:10.1080/23311843.2017.1405887.
  • Ning D, Liang Y, Liu Z, et al. Impacts of steel-slag-based silicate fertilizer on soil acidity and silicon availability and metals-Immobilization in a Paddy Soil. PLoS One. 2016; 11(12):e0168163. doi: 10.1371/journal.pone.0168163
  • da Silva YJAB, Do Nascimento CWA, Biondi CM. Comparison of USEPA digestion methods to heavy metals in soil samples. Environ Monit Assess. 2014;186(1):47–53. doi:10.1007/s10661-013-3354-5.
  • U.S. EPA. Method 3051A (SW-846): microwave assisted acid digestion of sediments, sludges, and oils. Washington: U.S. EPA; 2007. Revision 1 https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf
  • Alloway, BJ. Sources of heavy metals and metalloids in soils. 3rd ed. Vol. 22, Heavy metals in soils. Dordrecht: Springer; 2012. p. 11–50.
  • Cusick SE, Jaramillo EG, Moody EC, et al. Assessment of blood levels of heavy metals including lead and manganese in healthy children living in the Katanga settlement of Kampala, Uganda. BMC Public Health. 2018;18(1):1–8. DOI:10.1186/s12889-018-5589-0
  • Baykuş N, Karpuzcu M. The Effects of Wastewater on the Chemical and Physical Properties of Fine-grained Soils. European J Sci Technol. 2021; 31(Supp. 1):771–775. doi: 10.31590/ejosat.1010488
  • Dave D, Vyas N. Impact of textile effluents on soil in and around pali, western rajasthan, India. Scientific Temper. 2022;13(1):150–153.
  • Ogundele DT, Adio AA, Oludele OE. Heavy metal concentrations in plants and soil along heavy traffic roads in North Central Nigeria. J Environ Analytical Toxicol. 2015;5(6). DOI:10.4172/2161-0525.1000334
  • Mirecki N, Agic R, Sunic L, et al. Transfer factor as indicator of heavy metals content in plants. Fresenius Environ Bulletin. 2015;24(11c):4212–4219.
  • He Z, Shentu J, Yang X, et al. Heavy metal contamination of soils: sources, indicators and assessment. Journal of Environmental Indicators. 2015;9(2015):17–18.
  • Hołtra A, Zamorska-Wojdyła D. The pollution indices of trace elements in soils and plants close to the copper and zinc smelting works in Poland’s Lower Silesia. Environ Sci Pollut Res. 2020;27(14):16086–16099. doi:10.1007/s11356-020-08072-0.
  • Manna A, Maiti R, Geochemical contamination in the mine affected soil of Raniganj Coalfield–A river basin scale assessment. Geoscience Frontiers. 2018;9(5):1577–1590.
  • Jolly YN, Islam A, Akbar S. Transfer of metals from soil to vegetables and possible health risk assessment. Springer Plus. 2013;2(1):1–8. doi:10.1186/2193-1801-2-385.
  • Cheshmazar E, Arfaeinia H, Karimyan K, et al. Dataset for effect comparison of irrigation by wastewater and ground water on amount of heavy metals in soil and vegetables: accumulation, transfer factor and health risk assessment. Data Brief. 2018;18(2018):1702–1710. doi:10.1016/j.dib.2018.04.108.
  • Adah CA, Abah J, Ubwa ST, et al., Soil availability and uptake of some heavy metals by three staple vegetables commonly cultivated along the south bank of River Benue, Makurdi, Nigeria. International Journal of Environment and Bioenergy. 2013;8(2):56–67.
  • R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2023. Available from: https://www.R-project.org/
  • R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. https://www.R-project.org/.
  • Lukin SV, Zhuikov DV. Content and balance of trace elements (Co, Mn, Zn) in agroecosystems of the Central Chernozemic Region of Russia. Agriculture. 2022; 12(2):154. doi: 10.3390/agriculture12020154
  • Schulin R, Johnson A, Frossard E. Trace Element-Deficient Soils. In: Hooda, editor. Trace elements in soils. Blackwell Publishing, Ltd; 2010. pp. 175–197. 10.1002/9781444319477.ch9.
  • Olowoyo JO, Lion N, Unathi T, et al. Concentrations of Pb and other associated elements in soil dust 15 years after the introduction of unleaded fuel and the human health implications in Pretoria, South Africa. Int J Environ Res Public Health. 2022;19(16):10238. DOI:10.3390/ijerph191610238
  • Gautam PK, Gautam RK, Banerjee S, et al. Heavy metals in the environment: fate, transport, toxicity and remediation technologies. Nova Sci Pub. 2016;60:101–130.
  • Su C, Meng J, Zhou Y, et al., … Wang T. Heavy metals in soils from intense industrial areas in south China: spatial distribution, source apportionment, and risk assessment. Front Environ Sci. 2022;10:820536. doi: 10.3389/fenvs.2022.820536
  • Wang J, Wang L, Wang Y, et al., … Zhao M. Emerging risks of toxic metal (loid) s in soil-vegetables influenced by steel-making activities and isotopic source apportionment. Environ Int. 2021;146(20R1):106207. doi:10.1016/j.envint.2020.106207.
  • Zhou XY, Wang XR. Impact of industrial activities on heavy metal contamination in soils in three major urban agglomerations of China. J Clean Prod. 2019;230(1):1–10. doi:10.1016/j.jclepro.2019.05.098.
  • Islam MS, Khanam MS, Sarker NI. Health risk assessment of metals transfer from soil to the edible part of some vegetables grown in Patuakhali province of Bangladesh. Arch Agri Environ Sci. 2018;3(2):180–186. doi:10.26832/24566632.2018.030201.
  • Shahbazi K, Marzi M, Rezaei H. Heavy metal concentration in the agricultural soils under the different climatic regions: a case study of Iran. Environ Earth Sci. 2020;79(13):1–13. doi:10.1007/s12665-020-09072-6.
  • Guo YB, Feng H, Chen C, et al. Heavy metal concentrations in soil and agricultural products near an industrial district. Polish J Environ Stud. 2013;22(5):1357–1362.
  • Zhao FJ, Ma JF, Meharg AA, et al. Arsenic uptake and metabolism in plants. New Phytol. 2009;181(4):777–794. DOI:10.1111/j.1469-8137.2008.02716.x
  • Corguinha APB, de Souza GA, Gonc¸alves VC, et al. Assessing arsenic, cadmium, and lead contents in major crops in Brazil for food safety purposes. J Food Compost Anal. 2015; 37(2015):143–150. doi: 10.1016/j.jfca.2014.08.004
  • Abbas G, Murtaza B, Bibi I, et al. Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. IJERPH. 2018;15(1):59. doi:10.3390/ijerph15010059.
  • Kabir T, Anwar S, Mourosi JT, et al. Arsenic hampered embryonic development: an in vivo study using local Bangladeshi Danio rerio model. Toxicol Rep. 2020;7(2020):155–161. doi:10.1016/j.toxrep.2019.12.009.
  • Arslan B, Djamgoz MB, Akün E. Arsenic: a review on exposure pathways, accumulation, mobility and transmission into the human food chain. Rev Environ Contam Toxicol. 2017;243:27–51.
  • Kabata-Pendias A, Mukherjee AB. Trace Elements of Group 12 (Previously Group IIb). Trace Elements Soil Human. Berlin, Heidelberg: Springer; 2007. p. 283–319. doi:10.1007/978-3-540-32714-1_19.
  • Ekhlaspour A, KhaliliMoghadam B, Soleimani M. Assessing heavy metal concentration in the soil and plants of surroundings Khuzestan steel factory. Iranian J Soil Water Res. 2019;50(3):603–613.
  • Remon E, Bouchardon JL, Cornier B, et al. Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: implications in risk assessment and site restoration. Environ Pollut. 2005;137(2):316–323. DOI:10.1016/j.envpol.2005.01.012
  • Shezi B, Street RA, Webster C, et al. Heavy metal contamination of soil in preschool facilities around industrial operations, Kuils River, Cape Town (South Africa). Int J Environ Res Public Health. 2022;19(7):4380. DOI:10.3390/ijerph19074380
  • Alejandro S, Höller S, Meier B, et al. Manganese in plants: from acquisition to subcellular allocation. Front Plant Sci. 2020;11:300. DOI:10.3389/fpls.2020.00300
  • Achmad RT, Auerkari EI. Effects of chromium on human body. ARRB. 2017;13(2):1–8. doi:10.9734/ARRB/2017/33462.
  • Ahmed S, Fatema-Tuj-Zohra KMSH, Hashem MA. Chromium from tannery waste in poultry feed: a potential cradle to transport human food chain. Cogent Environ Sci. 2017; 3(1):1–7. doi: 10.1080/23311843.2017.1312767
  • Miclean M, Cadar O, Levei EA, et al. Metal (Pb, Cu, Cd, and Zn) Transfer along Food Chain and health risk assessment through raw milk consumption from free-range Cows. Int J Environ Res Public Health. 2019;16(21):4064. doi:10.3390/ijerph16214064.
  • Odongo M, Mutagaya SA, Wanasolo W, et al. Investigation of levels of some selected heavy metals in raw bovine milk from Oyam District, Uganda and estimation of potential health risks. American J Applied Ind Chem. 2022; 6(1):1–6. doi: 10.11648/j.ajaic.20220601.11
  • Abedi T, Gavanji S, Mojiri A. Lead and zinc uptake and toxicity in maize and their management. Plants. 2022;11(15):1922. doi:10.3390/plants11151922.
  • Steingräber LF, Ludolphy C, Metz J, et al. Uptake of lead and zinc from soil by blackberry plants (Rubus fruticosus L. agg.) and translocation from roots to leaves. Environ Adv. 2022;9:100313. doi: 10.1016/j.envadv.2022.100313
  • Casentini B, Hug SJ, Nikolaidis NP. Arsenic accumulation in irrigated agricultural soils in Northern Greece. Sci Total Environ. 2011;409(22):4802–4810. doi:10.1016/j.scitotenv.2011.07.064.
  • Ibrahim AK, Muhammad HU. Effects of land use on concentration of some heavy metals in soil and plant leaves in Kashere Area, Akko local government area of Gombe state, Nigeria. Taraba J Agric Res. 2021;9(1):28–36.
  • Samarina VP, Skufina TP, Kostyukhin YY, et al. Relationship between iron ore deposits and spread of heavy metals in shallow water rivers: natural and man-caused factors. Ecology Environ Protec. 2020;19(2020):75–80. doi:10.17580/cisisr.2020.01.15.
  • Shahab A, Qi S, Zaheer M. Arsenic contamination, subsequent water toxicity, and associated public health risks in the lower Indus plain, Sindh province, Pakistan. Environ Sci Pollut Res. 2019;26(30):30642–30662. doi:10.1007/s11356-018-2320-8.
  • Oyeku OT, Eludoyin AO. Heavy metal contamination of groundwater resources in a Nigerian urban settlement. Afr J Environ Sci Tech. 2010;4(4):201–214.