562
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Elemental composition of PM10 in indoor environments of a scientific research institution and risk assessment

ORCID Icon, ORCID Icon &
Article: 2232108 | Received 04 May 2023, Accepted 27 Jun 2023, Published online: 03 Jul 2023

References

  • Szoboszlai Z, Furu E, Angyal A, et al. Investigation of indoor aerosols collected at various educational institutions in Debrecen, Hungary. X-Ray Spectrom. 2011;40(3):176–341. doi: 10.1002/xrs.1323
  • Elbayoumi M, Ramli NA, Yusof NFFM, et al. Spatial and seasonal variation of particulate matter (PM10 and PM2.5) in middle eastern classrooms. Atmospher Environ. 2013;80:389–397. doi: 10.1016/j.atmosenv.2013.07.067
  • Sotiriou M, Ferguson SF, Davey M, et al. Measurement of particle concentrations in a dental office. Environ Monit Assess. 2018;137(1–3):351–361. doi: 10.1007/s10661-007-9770-7
  • Seppänen O, Fisk WJ, Lei QH. Ventilation and performance in office work. Indoor Air. 2005;16(1):28–36. doi: 10.1111/j.1600-0668.2005.00394.x
  • Vilcekova S, Estokova A, Burdova EK, et al. Investigation of particulate matter concentration in offices. Fresen Environ Bulletin. 2017;26:1225–1233.
  • Ruan T, Rim D. Indoor air pollution in office buildings in mega-cities: effects of filtration efficiency and outdoor air ventilation rates. Sustainable Cities Soc. 2019;49:101–109. doi: 10.1016/j.scs.2019.101609
  • Mundackal A, Ngole-Jeme VM. Evaluation of indoor and outdoor air quality in university academic buildings and associated health risk. Int J Environ Health Res. 2020;32(5):1076–1094. doi: 10.1080/09603123.2020.1828304
  • Zhao X, Lin L, Zhang Y. Contamination and human health risks of metals in indoor dust from university libraries: a case study from Qingdao, China. Human Ecol Risk Assess. 2019;27(1):152–161. doi: 10.1080/10807039.2019.1697851
  • Taner S, Pekey B, Pekey H. Fine particulate matter in the indoor air of barbeque restaurants: elemental compositions, sources and health risks. Sci Total Environ. 2013;454:79–87. doi: 10.1016/j.scitotenv.2013.03.018
  • Kuo SC, Hsieh LY, Tsai CH, et al. Characterization of PM2.5 fugitive metal in the workplaces and the surrounding environment of a secondary aluminum smelter. Atmos Environ. 2007;41(32):6884–6900. doi: 10.1016/j.atmosenv.2007.04.038
  • Madureira J, Slezakova K, Silva AI, et al. Assessment of indoor air exposure at residential homes: inhalation dose and lung deposition of PM10, PM2.5 and ultrafine particles among newborn children and their mothers. Sci Total Environ. 2020;717:137293. doi: 10.1016/j.scitotenv.2020.137293
  • Embiale A, Chandravanshi BS, Zewge F, et al. Health risk assessment of trace elements through exposure of particulate matter-10 during the cooking of Ethiopian traditional dish sauces. Environ Toxicol Chem. 2020;102(1–4):151–169. doi: 10.1080/02772248.2020.1770257
  • Negral L, Suárez-Peña B, Zapico E, et al. Anthropogenic and meteorological influences on PM10 metal/semi-metal concentrations: implications for human health. Chemosph. 2020;243:125347. doi: 10.1016/j.chemosphere.2019.125347
  • Embiale A, Chandravanshi BS, Zewge F, et al. Health risk assessment of total volatile organic compounds, particulate matters and trace elements in PM10 in typical living rooms in Addis Ababa, Ethiopia. Int J Environ Anal Chem. 2022;102(18):6583–6601. doi: 10.1080/03067319.2020.1814266
  • Embiale A, Chandravanshi BS, Zewge F, et al. Investigation into trace elements in PM10 from the baking of injera using clean, improved and traditional stoves: emission and health risk assessment. Aerosol Sci Engg. 2019;3(4):150–163. doi: 10.1007/s41810-019-00049-y
  • Koukoulakis KG, Chrysohou E, Kanellopoulos PG, et al. Trace elements bound to airborne PM10 in a heavily industrialized site nearby Athens: seasonal patterns, emission sources, health implications. Atmos Pollut Res. 2019;10(4):1347–1356. doi: 10.1016/j.apr.2019.03.007
  • Rabha S, Subramanyam KSV, Sawant SS, et al. Rare-earth elements and heavy metals in atmospheric particulate matter in an urban area. ACS Earth Space Chem. 2022;6(7):1725–1732. doi: 10.1021/acsearthspacechem.2c00009
  • Morton-Bermea O, Garza-Galindo R, Hernández-Álvarez E, et al. Recognition of the importance of geogenic sources in the content of metals in PM2.5 collected in the Mexico City metropolitan area. Environ Monit Assess. 2018;190(2):83. doi: 10.1007/s10661-017-6443-z
  • Roy D, Seo YC, Kim S, et al. Human health risks assessment for airborne PM10-bound metals in Seoul, Korea. Environ Sci Pollut Res. 2019;26(23):24247–24261. doi: 10.1007/s11356-019-05213-y
  • Zhang J, Wu L, Fang X, et al. Elemental composition and health risk assessment of PM10 and PM2.5 in the roadside microenvironment in Tianjin, China. Aerosol Air Qual Res. 2018;18(7):1817–1827. doi: 10.4209/aaqr.2017.10.0383
  • Cerón Bretón JG, Cerón Bretón RM, Espinosa Guzmán AA, et al. Trace metal content and health risk assessment of PM10 in an urban environment of León, Mexico. Atmosph. 2019;10(10):573. doi: 10.3390/atmos10100573
  • Reynoso-Cruces S, Miranda-Martín-Del-Campo J, Pineda-Santamaría JC. A study of elemental composition and risk assessment due to exposure to indoor PM10 in two residences in Mexico City. Atmosph. 2023;14(4):734. doi: 10.3390/atmos14040734
  • Chen SJ, Lin TC, Tsai JH, et al. Characteristics of indoor aerosols in college laboratories. Aerosol Air Qual Res. 2013;13(2):649–661. doi: 10.4209/aaqr.2012.07.0176
  • Ugranli T, Toprak M, Gursoy G, et al. Indoor environmental quality in chemistry and chemical engineering laboratories at Izmir institute of technology. Atmos Pollut Res. 2015;6(1):147–153. doi: 10.5094/APR.2015.017
  • Ugranli T, Güngörmüş E, Sofuoğlu A, et al. Indoor air quality in chemical laboratories. Comprehens Analy Chem. 2016;73:859–878. doi: 10.1016/bs.coac.2016.04.007
  • Sulaiman FR, Suratmin MA. Composition of metal in indoor dust from university laboratories. Malaysian J Med Health Sci. 2020;16(SUPP11):28–32.
  • Perrino C, Pelliccioni A, Tofful L, et al. Indoor PM10 in university classrooms: chemical composition and source behaviour. Atmos Environ. 2022;287:119260. doi: 10.1016/j.atmosenv.2022.119260
  • Fuehne D, Gallagher P, Hjeresen D, et al. Environmental surveillance at Los Alamos during 2008 (no. LA-14407-ENV). Los Alamos National Lab; 2009. doi: 10.2172/1186657
  • Žitnik M, Kastelic A, Rupnik Z, et al. Time-resolved measurements of aerosol elemental concentrations in indoor working environments. Atmos Environ. 2010;44:4954–4963. doi: 10.1016/j.atmosenv.2010.08.017
  • Mishra AK, Mishra P, Gulia S, et al. Assessment of indoor fine and ultra-fine particulate matter in a research laboratory. In: Sharma A, Goyal R Mittal R, editors. Indoor environmental quality. Lecture notes in civil engineering. Vol. 60. Singapore: Springer Singapore; 2020. p. 19–26. doi: 10.1007/978-981-15-1334-3_3
  • Reynoso-Cruces S, Hernández-López AE, Miranda J, et al. Elemental characterization and risk assessment of indoor aerosols in an electrostatic particle accelerator laboratory. Environ Pollut Bioavailabil. 2021;33:334–346. doi: 10.1080/26395940.2021.1988869
  • Iavicoli I, Leso V, Fontana L, et al. Characterization of inhalable, thoracic, and respirable fractions and ultrafine particle exposure during grinding, brazing, and welding activities in a mechanical engineering factory. J Occup Environ Med. 2013;55(4):430–445. doi: 10.1097/JOM.0b013e31827cbabe
  • Demou E, Mutamba G, Wyss F, et al. Exposure to PM1 in a machine shop. Indoor Built Environ. 2009;18(6):514–523. doi: 10.1177/1420326X09347244
  • Isaxon C, Pagels J, Gudmundsson A, et al. Characteristics of welding fume aerosol investigated in three Swedish workshops. J Phys Conf Ser. 2009;151:012059. doi: 10.1088/1742-6596/151/1/012059
  • Zhou P, Guo J, Zhou X, et al. PM2.5, PM10 and health risk assessment of heavy metals in a typical printed circuit boards manufacturing workshop. J Environ Sci. 2014;26(10):2018–2026. doi: 10.1016/j.jes.2014.08.003
  • Reynoso-Cruces S, Hernández AE, Miranda J, et al. Calibration of MiniVol TA 5.0 atmospheric aerosol samplers. Mexico City(in Spanish): Instituto de Física, UNAM, internal report; 2023.
  • Retama A, Ramos-Cerón M, Rivera-Hernández O, et al. Aerosol optical properties and brown carbon in Mexico City. Environ Sci: Atmos. 2022;2(3):315–334. doi: 10.1039/d2ea00006g
  • Mejía-Ponce LV, Hernández-López AE, Miranda-Martín-Del-Campo J, et al. Elemental analysis of PM10 in southwest Mexico City and source apportionment using positive matrix factorization. J Atmos Chem. 2022;79(3):167–198. doi: 10.1007/s10874-022-09435-2
  • SEDEMA. [Data bases] Red Automática de Monitoreo Atmosférico (RAMA). Secretaría de Medio Ambiente, Mexico City. 2023 [cited 2023 Jan 15]. Available from: http://www.aire.cdmx.gob.mx/default.php?opc=%27aKBh%27
  • Espinosa AA, Reyes-Herrera J, Miranda J, et al. Development of an X-ray fluorescence spectrometer for environmental science applications. Instrument Sci Technol. 2012;40(6):603–617. doi: 10.1080/10739149.2012.693560
  • Mejía-Ponce LV, Hernández-López AE, Reynoso-Cruces S, et al. Improvements to the X-ray spectrometer at the aerosol laboratory, instituto de física, UNAM. J Nuclear Phys. 2018;6(1):57–60. doi: 10.15415/jnp.2018.61009
  • XRF Group. Quantitative X-ray analysis system, computer manual series no.21. Vienna: Austria; 2007. p. 138.
  • Espinosa AA, Miranda J, Pineda JC. Uncertainty evaluation in correlated quantities: application to elemental analysis of atmospheric aerosols. Rev Mexicana de Física. 2010;56:134–140.
  • Hernández-López AE, Miranda J, Mugica V, et al. A study of PM2.5 elemental composition in southwest Mexico City and development of receptor models with positive matrix factorization. RICA. 2021;37:67–88. doi: 10.20937/RICA.54066
  • EPA. Exposure factors handbook: 2011 edition. In: Environmental protection agency. Washington, DC, Springfield, VA: National Center for Environmental Assessment; 2011 [cited November 1, 2020], from National Technical Information Service and online at. http://www.epa.gov/ncea/efh
  • Paredes-Gutiérrez R, López-Suárez A, Miranda J, et al. Comparative study of elemental contents in atmospheric aerosols from three sites in Mexico City using PIXE. Rev internacional de contaminación ambiental. 1997;13:81–85.
  • Demayo A. Composition of average earth crust. In: Weast RC, editor. Handbook of chemistry and physics. 65th ed. Boca Raton: CRC Press; 1984. p F–146.
  • SSA. Mexican official standard NOM-025-SSA1-2021, environmental health. Permissible limits for PM10 and PM2.5 suspended particles concentrations in air and evaluation criteria. Mexico City: Secretaría de Salud. Diario Oficial de la Federación. 2023 [cited 2023 Feb 22].
  • World Health Organization. Occupational and Environmental Health Team. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment. Geneva: World Health Organization; 2006 [cited 2023 Feb 10]. Available from: https://apps.who.int/iris/handle/10665/69477
  • Hamdan NM, Alawadhi H, Jisrawi N. Elemental and chemical analysis of PM10 and PM2.5 indoor and outdoor pollutants in the UAE. Int J Environ Sci Develop. 2015;6(8):566–570. doi: 10.7763/IJESD.2015.V6.658
  • Cheng X, Huang Y, Zhang SP, et al. Characteristics, sources, and health risk assessment of trace elements in PM10 at an urban site in Chengdu, Southwest China. Aerosol Air Qual Res. 2018;18(2):357–370. doi: 10.4209/aaqr.2017.03.0112