532
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Spatial distribution, ecotoxicity and human health assessment of nutrients and heavy metals in river sediment under urbanization – A study case of Yitong River, China

, , &
Article: 2248384 | Received 19 Jun 2023, Accepted 10 Aug 2023, Published online: 01 Sep 2023

References

  • Zhang Y, Mao W, Li RH, et al. Distribution characteristics, risk assessment, and quantitative source apportionment of typical contaminants (HMs, N, P, and TOC) in river sediment under rapid urbanization: a study case of Shenzhen river, Pearl River Delta, China. Process SafEnviron Prot. 2022b;162:155–422. doi: 10.1016/j.psep.2022.03.032
  • Fujita M, Ide Y, Sato D, et al. Heavy metal contamination of coastal lagoon sediments: Fongafale Islet, Funafuti Atoll, Tuvalu. Chemosphere. 2014;95:628–634. doi: 10.1016/j.chemosphere.2013.10.023
  • Yang J, Chen L, Liu L-Z, et al. Comprehensive risk assessment of heavy metals in lake sediment from public parks in Shanghai. Ecotoxicol Environ Saf. 2014;102:129–135. doi: 10.1016/j.ecoenv.2014.01.010
  • Zou Y, Wang X, Khan A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol. 2016;50(14):7290–7304. doi: 10.1021/acs.est.6b01897
  • Liu Y, Tang Y, Zhong G, et al. A comparison study on heavy metal/metalloid stabilization in Maozhou River sediment by five types of amendments. J Soils Sediments. 2019;19(12):3922–3933. doi: 10.1007/s11368-019-02310-w
  • Wang F, Dong W, Zhao Z, et al. Heavy metal pollution in urban river sediment of different urban functional areas and its influence on microbial community structure. Sci Total Environ. 2021;778:146383. doi: 10.1016/j.scitotenv.2021.146383
  • Liang G, Zhang B, Lin M, et al. Evaluation of heavy metal mobilization in creek sediment: influence of RAC values and ambient environmental factors. Sci Total Environ. 2017;607-608:1339–1347. doi: 10.1016/j.scitotenv.2017.06.238
  • Gao XL, Chen CTA. Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res. 2012;46(6):1901–1911. doi: 10.1016/j.watres.2012.01.007
  • Brady JP, Ayoko GA, Martens WN, et al. Temporal trends and bioavailability assessment of heavy metals in the sediments of Deception Bay. Queensland Australia Mar Pollut Bull. 2014;89(1–2):464–472. doi: 10.1016/j.marpolbul.2014.09.030
  • Miranda LS, Ayoko GA, Egodawatta P, et al. Physico-chemical properties of sediments governing the bioavailability of heavy metals in urban waterways. Sci Total Environ. 2021;763:142984. doi: 10.1016/j.scitotenv.2020.142984
  • Castro MF, Almeida CA, Bazan C, et al. Impact of anthropogenic activities on an urban river through a comprehensive analysis of water and sediments. Environ Sci Pollut Res. 2021;28(28):37754–37767. doi: 10.1007/s11356-021-13349-z
  • Li XT, Wu PX, Delang CO, et al. Spatial-temporal variation, ecological risk, and source identification of nutrients and heavy metals in sediments in the peri-urban riverine system. Environ Sci Pollut Res. 2021;28(45):64739–64756. doi: 10.1007/s11356-021-15601-y
  • Caixeta ES, Meza Bravo JV, Pereira BB. Ecotoxicological assessment of water and sediment river samples to evaluate the environmental risks of anthropogenic contamination. Chemosphere. 2022;306:135595. doi: 10.1016/j.chemosphere.2022.135595
  • Zhang C, Shan B, Tang W, et al. Identifying sediment-associated toxicity in rivers affected by multiple pollutants from the contaminant bioavailability. Ecotoxicol Environ Saf. 2019;171:84–91. doi: 10.1016/j.ecoenv.2018.12.075
  • Bian JM, Ma HY, Sun XQ, 2011. Analysis on water quality change and influence factors in the Yitong River basin, In: Sun D, Sung WP, editors. Applied Mechanics and Materials. Vols. 71–78, p. 2970–2973 https://doi.org/10.4028/www.scientific.net/AMM.71-78.2970
  • Ji XY, Zhang WZ, Jiang MQ, et al. Black-odor water analysis and heavy metal distribution of Yitong River in Northeast China. Water Sci Technol. 2017;76(8):2051–2064. doi: 10.2166/wst.2017.372
  • Zhang L, Shen T, Cheng Y, et al. Temporal and spatial variations in the bacterial community composition in lake bosten, a large, brackish lake in China. Sci Rep. 2020;10(1):304–304. doi: 10.1038/s41598-019-57238-5
  • De Jonge M, Teuchies J, Meire P, et al. The impact of increased oxygen conditions on metal-contaminated sediments part I: effects on redox status, sediment geochemistry and metal bioavailability. Water Res. 2012;46(7):2205–2214. doi: 10.1016/j.watres.2012.01.052
  • Arain MB, Kazi TG, Jamali MK, et al. Time saving modified BCR sequential extraction procedure for the fraction of Cd, Cr, Cu, Ni, Pb and Zn in sediment samples of polluted lake. J Hazard Mater. 2008;160(1):235–239. doi: 10.1016/j.jhazmat.2008.02.092
  • Song Z, Shan B, Tang W. Evaluating the diffusive gradients in thin films technique for the prediction of metal bioaccumulation in plants grown in river sediments. J Hazard Mater. 2018b;344:360–368. doi: 10.1016/j.jhazmat.2017.10.049
  • Pan Y, Wu Z, Zhou J, et al. Chemical characteristics and risk assessment of typical municipal solid waste incineration (MSWI) fly ash in China. J Hazard Mater. 2013;261:269–276. doi: 10.1016/j.jhazmat.2013.07.038
  • Yu GB, Liu Y, Yu S, et al. Inconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sediments. Chemosphere. 2011;85(6):1080–1087. doi: 10.1016/j.chemosphere.2011.07.039
  • Song Z, Dong L, Shan B, et al. Assessment of potential bioavailability of heavy metals in the sediments of land-freshwater interfaces by diffusive gradients in thin films. Chemosphere. 2018a;191:218–225. doi: 10.1016/j.chemosphere.2017.10.048
  • Maanan M, Saddik M, Maanan M, et al. Environmental and ecological risk assessment of heavy metals in sediments of nador lagoon, morocco. Ecological Indicators. 2015;48:616–626. doi: 10.1016/j.ecolind.2014.09.034
  • Ji ZH, Zhang H, Zhang Y, et al. Distribution, ecological risk and source identification of heavy metals in sediments from the Baiyangdian lake. Chemosphere 237. Northern China, 2019.
  • Wang M, Song G, Zhang C, et al. Chemical fractionation and risk assessment of surface sediments in luhun reservoir, Luoyang city, China. Environ Sci Pollut Res. 2020;27(28):35319–35329. doi: 10.1007/s11356-020-09512-7
  • Zhang WQ, Jin X, Liu D, et al. Assessment of the sediment quality of freshwater ecosystems in eastern China based on spatial and temporal variation of nutrients. Environ Sci Pollut Res. 2017;24(23):19412–19421. doi: 10.1007/s11356-017-9532-1
  • Li Z, Fu ZH, Wang SH, et al. Spatial distribution, ecological risk, and human health assessment of heavy metals in lake surface sections — a case study of Qinghai Lake, China. Environ Sci Pollut Res. 2023;30(2):5137–5149. doi: 10.1007/s11356-022-22293-5
  • Jiang SX, Zhai FJ, Zhang C, et al. Speciation distribution and risk assessment of heavy metals in sediments from the Yitong River city area. Environ Sci. 2020;41:2653–2663.
  • Feng H, Han XF, Zhang WG, et al. A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Mar Pollut Bull. 2004;49(11–12):910–915. doi: 10.1016/j.marpolbul.2004.06.014
  • Islam MS, Ahmed MK, Raknuzzaman M, et al. Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecol Indic. 2015;48:282–291. doi: 10.1016/j.ecolind.2014.08.016
  • Xia PH, Ma L, Sun RG, et al. Evaluation of potential ecological risk, possible sources and controlling factors of heavy metals in surface sediment of Caohai Wetland, China. Sci Total Environ. 2020;740:140231. doi: 10.1016/j.scitotenv.2020.140231
  • Liu BX, Luo J, Jiang S, et al. Geochemical fractionation, bioavailability, and potential risk of heavy metals in sediments of the largest influent river into Chaohu lake, China. Environ Pollut [ Environmental pollution 290]. 2021;290:118018. doi: 10.1016/j.envpol.2021.118018
  • Soliman NF, Younis AM, Elkady EM. An insight into fractionation, toxicity, mobility and source apportionment of metals in sediments from El Temsah lake, Suez Canal. Chemosphere. 2019;222:165–174. doi: 10.1016/j.chemosphere.2019.01.009
  • Meng LZ, Zhao LF, Liu WT, et al. Risk assessment of bioavailable heavy metals in the water and sediments in the Yongding New River, North China. Environ Monit Assess. 2021;193(9). doi: 10.1007/s10661-021-09367-6
  • Baran A, Tarnawski M, Koniarz T, et al. Content of nutrients, trace elements, and ecotoxicity of sediment cores from Rożnów reservoir (Southern Poland). Environ Geochem Health. 2019;41(6):2929–2948. doi: 10.1007/s10653-019-00363-x
  • Sun X, Fan D, Liu M, et al. Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment. Environ Pollut. 2018;241:938–949. doi: 10.1016/j.envpol.2018.05.050
  • Zhao S, Feng CH, Quan WM, et al. Role of living environments in the accumulation characteristics of heavy metals in fishes and crabs in the Yangtze River Estuary, China. Mar Pollut Bull. 2012;64(6):1163–1171. doi: 10.1016/j.marpolbul.2012.03.023
  • Venditto T, Ponzelli M, Sarathy S, et al. A microsieve-based filtration process for combined sewer overflow treatment with nutrient control: modeling and experimental studies. Water Res 170. 2020;170:115328. doi: 10.1016/j.watres.2019.115328
  • Zhang J, Yu D, Dian L, et al. Metagenomics insights into the profiles of antibiotic resistome in combined sewage overflows from reads to metagenome assembly genomes. J Hazard Mater. 2022a;429:128277. doi: 10.1016/j.jhazmat.2022.128277
  • Mutzner L, Vermeirssen ELM, Mangold S, et al. Passive samplers to quantify micropollutants in sewer overflows: accumulation behaviour and field validation for short pollution events. Water Res. 2019;160:350–360. doi: 10.1016/j.watres.2019.04.012
  • Yu D, Dian L, Hai Y, et al. Effect of rainfall characteristics on the sewer sediment, hydrograph, and pollutant discharge of combined sewer overflow. J Environ Manage. 2022;303:114268. doi: 10.1016/j.jenvman.2021.114268
  • Ekhlas D, Kurisu F, Kasuga I, et al. Identification of new eligible indicator organisms for combined sewer overflow via 16S rRNA gene amplicon sequencing in Kanda River, Tokyo. J Environ Manage. 2021;284:284. doi: 10.1016/j.jenvman.2021.112059
  • Schertzinger G, Itzel F, Kerstein J, et al. Accumulation pattern and possible adverse effects of organic pollutants in sediments downstream of combined sewer overflows. Sci Total Environ. 2019;675:295–304. doi: 10.1016/j.scitotenv.2019.04.094
  • Iftikhar F, Liu SL, Sun YX, et al. Spatial distribution of trace elements associated with organic carbon along the Beiyun River basin, Beijing, China. Int J Of Sediment Res. 2022;37(3):335–345. doi: 10.1016/j.ijsrc.2021.10.005
  • Sun YB, Zhou QX, Xie XK, et al. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J Hazard Mater. 2010;174(1–3):455–462. doi: 10.1016/j.jhazmat.2009.09.074