867
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Evaluating the effects of pH and temperature on sulphate-reducing bacteria and modelling of their effects in stirred bioreactors

ORCID Icon, ORCID Icon, , , , , & show all
Article: 2257388 | Received 08 Jun 2023, Accepted 05 Sep 2023, Published online: 16 Sep 2023

References

  • Santucci L, Carol E, Tanjal C. Industrial waste as a source of surface and groundwater pollution for more than half a century in a sector of the Río de la Plata coastal plain (Argentina). Chemosphere. 2018;206:727–464. doi: 10.1016/j.chemosphere.2018.05.084
  • Moloantoa KM, Khetsha ZP, van Heerden E, et al. Nitrate water contamination from industrial activities and complete denitrification as a remediation option. Water. 2022;14(799):1–31. doi: 10.3390/w14050799
  • Albrighta TP, Mutiibwa D, Gerson AR, et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. PNAS. 2017;114(9):2282–2288. doi: 10.1073/pnas.1613625114
  • Derakhshani R, Alipour M. Remediation of acid mine drainage by using tailings decant water as a neutralization agent in Sarcheshmeh copper mine. Res J Environ Sci. 2010;4(3):250–260. doi: 10.3923/rjes.2010.250.260
  • Meyer JA, Casey NH. Exposure of potentially toxic trace elements in indigenous goats in the natural communal production system of the northern region of South Africa. South African J Animal Sci. 2004;34:219–222.
  • Bhateria R, Jain D. Water quality assessment of lake water: a review. Sustain Water Resr Man. 2016;2(2):161–173. doi: 10.1007/s40899-015-0014-7
  • Seckler D, Barker R, Amarasinghe U. Water scarcity in the twenty-first century. Int J Water Res Dev. 1999;15(1–2):29–42. doi: 10.1080/07900629948916
  • Akhtar N, Shak MIS, Bhawani SA, et al. Various natural and anthropogenic factors responsible for water quality degradation: a review. Water. 2021;13(9):2660. doi: 10.3390/w13192660
  • Hummer DR, Golden JJ, Hystad J, et al. Evidence for the oxidation of earth’s crust from the evolution of manganese minerals. Nat Commun. 2022;13(960):1–7. doi: 10.1038/s41467-022-28589-x
  • Moloantoa KM, Khetsha ZP, Kana GEB, et al. Metagenomic assessment of nitrate-contaminated mine wastewaters and optimization of complete denitrification by indigenous enriched bacteria. Front Environ Sci. 2023;11:1–20. doi: 10.3389/fenvs.2023.1148872
  • Dold B. Evolution of acid mine drainage formation in sulphidic mine tailings. Minerals. 2014;4(3):621–641. doi: 10.3390/min4030621
  • Baker BJ, Banfield JF. Microbial communities in acid mine drainage. FEMS Microbiol Ecol. 2003;44(2):139–152. doi: 10.1016/S0168-6496(03)00028-X
  • Baker BJ, Moser DP, MacGregor BJ, et al. Related assemblages of sulphate-reducing bacteria associated with ultra-deep gold mines of South Africa and deep basalt aquifers of Washington State. Environ Microbiol. 2003;5(4):267–277. doi: 10.1046/j.1462-2920.2003.00408.x
  • Kalin M, Fyson A, Wheeler WN. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Sci Total Environ. 2006;366(2–3):395–408. doi: 10.1016/j.scitotenv.2005.11.015
  • Matsumoto S, Ishimatsu H, Shimada H, et al. Characterization of mine waste and acid mine drainage prediction by simple testing methods in terms of the effects of sulfate-sulfur and carbonate minerals. Minerals. 2018;8(9):403. doi: 10.3390/min8090403
  • Cassidy J, Lubberding HJ, Esposito G, et al. Automated biological sulphate reduction: a review on mathematical models, monitoring and bioprocess control. FEMS. 2015;33:1–31.
  • Luptakova A, Kotulicova I, Macingova E, et al. Bacterial elimination of sulphates from mine waters. Chem Eng Trans. 2013;35:853–858.
  • Liamleam W, Annachhatre AP. Electron donors for biological sulfate reduction. Biotechnol Adv. 2007;25(5):452–463. doi: 10.1016/j.biotechadv.2007.05.002
  • Zhou X, Dorado AD, Gabriel X, et al. Mechanistic modelling of glycerol fermenting and sulfate-reducing process by granular sludge under sulfidogenic conditions. J Environ Chem Eng. 2022;10(3):1–12. doi: 10.1016/j.jece.2022.107937
  • Kaksonen AH, Puhakka JA. Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng Life Sci. 2007;7(6):541–564. doi: 10.1002/elsc.200720216
  • Knoblauch C, Sahm K, Jørgensen BB. Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of desulfofrigus oceanense ge. nov., sp. nov., desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., desulfotales psychrophilia gen. nov., sp. nov. And Desulfotalea artica sp. nov. Int J Bacteriol. 1999;49(4):1631–1643. doi: 10.1099/00207713-49-4-1631
  • Sekiguchi Y, Muramatsu M, Imachi H, et al. Thermodesulfovibrio aggregans sp. nov. And thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus thermosulfovibrio. Int J Bacteriol. 2008;58(11):2541–2548. doi: 10.1099/ijs.0.2008/000893-0
  • Kimura S, Hallberg KB, Johnson DB. Sulfidogenesis in low pH (3.8–4.2) media by a mixed population of acidophilic bacteria. Biodegradation. 2006;17(2):57–65. doi: 10.1007/s10532-005-3050-4
  • McCarthy S. The impact of acid mine drainage in South Africa. South African J Sci. 2011;107(5/6):1–7. doi: 10.4102/sajs.v107i5/6.712
  • van Eeden ES, Liefferink M, Durand JF. Legal issues concerning mine closure and social responsibility in the West Rand. TD: J Transdisciplinary Res Southern Africa. 2009;5(1):51–71. doi: 10.4102/td.v5i1.148
  • Ghazy EA, Mahmound MG, Asker MS, et al. Cultivation and detection of sulfate reducing bacteria (SRB) in sea water. J Am Sci. 2011;7(2):604–608.
  • Bertolino SM, Melgaco LA, Sá RG, et al. Comparing lactate and glycerol as a single-electron donor for sulfate reduction in fluidized bed reactors. Biodegradation. 2014;25(5):719–733. doi: 10.1007/s10532-014-9694-1
  • Klindworth A, Pruesse E, Schweer T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing based diversity studies. Nucleic Acids Res. 2013;41(1):e1–e1. doi: 10.1093/nar/gks808
  • Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high throughput community sequencing data. Nat Methods. 2010;7(5):335–336. doi: 10.1038/nmeth.f.303
  • Cason ED, Mahlomaholo BJ, Taole MM, et al. Bacterial and fungal dynamics during the fermentation process of sesotho, a traditional beer of Southern Africa. Frontier In Microbiol. 2020;11(1451):1–14. doi: 10.3389/fmicb.2020.01451
  • McMurdie PJ, Holmes S, Watson M. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):1–11. doi: 10.1371/journal.pone.0061217
  • Fonselius S, Dyrssen D, Yhlen B. Determination of hydrogen sulphide. In: Grasshoff K, Kremling K Ehrhardt M, editors. Methods of seawater analysis. Weinheim, New York, Chichester, Brisbane, Singapore: Wiley-VCHToronto; 2007. pp. 91–108. doi: 10.1002/9783527613984.ch5
  • Parkhurst DL, Appelo CAJ. PHREEQC (version 3)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Model Tech B. 2013;6:497. 99–4259.
  • Nicholas T. Loux, David S. Brown, Claudia R. Chafin, Jerry D. Allison and Sayed M. Hassan. Chemical speciation and competitive cationic partitioning on a sandy aquifer material. Chemical Speciation & Bioavailability. 1989;1:3. 111–125. doi: 10.1080/09542299.1989.11771987
  • Lotka AJ. Contribution to the theory of periodic reactions. J Phys Chem. 1909;14(3):271–274. doi: 10.1021/j150111a004
  • Kushkevych I, Dordevic D, Vitezova M, et al. Environmental impact of sulfate-reducing bacteria, their role in intestinal bowel diseases, and possible control of bacteriophages. Appl Sci. 2021;11(2):735. doi: 10.3390/app11020735
  • Nielsen PH, Raunkjær K, Hvitved-Jacobsen T. Sulfide production and wastewater quality in pressure mains. Water Sci Technol. 1998;37(1):97–104. doi: 10.2166/wst.1998.0024
  • Langmuir D. Aqueous environmental chemistry. 1st ed. Upper Saddle River, N.J: Prentice Hall; 1997. p. 445.
  • Moosa S, Nemati M, Harrison STL. A kinetic study on anaerobic reduction of sulphate, part II: incorporation of temperature effects in the kinetic model. Chem Eng Sci. 2005;60(13):3517–3524. doi: 10.1016/j.ces.2004.11.036
  • Rzeczycka M, Blaszczyk M. Growth and activity of sulphate-reducing bacteria in media containing phosphogypsum and different sources of carbon. Polish J Environ Stud. 2005;14(6):891–895.
  • Al-Zuhair S, El-Naas M, Al-Hassani H. Sulfate inhibition effect on sulfate reducing bacteria. J Biochem Tech. 2008;1(2):39–44.
  • Sawicka JE, Jørgensen BB, Brüchert V. Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments. Biogeosciences. 2012;9(8):3425–3435. doi: 10.5194/bg-9-3425-2012
  • Okabe S, Nielsen PH, Characklis WG. Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: limiting nutrients and sulfide concentration. Biotechnol Bioeng. 1992;40(6):725–734. doi: 10.1002/bit.260400612
  • Shimada T. Factors affecting the microclimate pH in rat jejunum. J Physiol. 1987;392(1):113–127. doi: 10.1113/jphysiol.1987.sp016772
  • Mathai JC, Missner A, Kugler P, et al. No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci. 2009;106(39):16633–16638. doi: 10.1073/pnas.0902952106
  • Omil F, Lens P, Hulshoff Pol L, et al. Effect of upward velocity and sulphide concentration on volatile fatty acid degradation in a sulphidogenic granular sludge reactor. Process Biochem. 1996;31(7):699–710. doi: 10.1016/S0032-9592(96)00015-5
  • Visser A, Hulshoff Pol LW, Lettinga G. Competition of methanogenic and sulfidogenic bacteria. Water Sci Technol. 1996;33(3):99–110. doi: 10.2166/wst.1996.0062
  • Dinkel VG, Frechen FB, Dinkel AV, et al. Kinetics of anaerobic biodegradation of glycerol by sulfate-reducing bacteria. Appl. Biochem Microbiol. 2010;46(7):712–718. doi: 10.1134/S0003683810070069
  • Maillacheruvu KY, Parkin GF, Peng CY, et al. Sulfide toxicity in anaerobic systems fed sulfate and various organics. Water Environ Res. 1993;65(2):100–109. doi: 10.2175/WER.65.2.2
  • Lettinga G, Rebac S, Zeeman G. Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol. 2001;19(9):363–370. doi: 10.1016/S0167-7799(01)01701-2
  • Auvinen H, Nevatalo LM, Kaksonen AH, et al. Low-temperature (9°C) AMD treatment in a sulfidogenic bioreactor dominated by a mesophilic desulfomicrobium species. Biotechnol Bioeng. 2009;104:740–751. doi: 10.1002/bit.22434
  • Ghose TK, Wiken T. Inhibition of bacterial sulphate-reduction in presence of short chain fatty acids. Physiol Plant. 1995;8(1):116–135. doi: 10.1111/j.1399-3054.1955.tb08965.x