614
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Transport of polypropylene, polyvinyl chloride, polyethylene terephthalate and polymethyl methacrylate microplastics in porous media under gradient ionic strength

, , , , &
Article: 2269315 | Received 14 Sep 2023, Accepted 05 Oct 2023, Published online: 15 Oct 2023

References

  • Henderson L, Green C. Making sense of microplastics? Public understandings of plastic pollution. Mar Pollut Bull. 2020;152:110908. doi: 10.1016/J.MARPOLBUL.2020.110908
  • Tirkey A, Upadhyay LSB. Microplastics: an overview on separation, identification and characterization of microplastics. Mar Pollut Bull. 2021;170:112604. doi: 10.1016/j.marpolbul.2021.112604
  • Zhang Y, Kang S, Allen S, et al. Atmospheric microplastics: a review on current status and perspectives. Earth-Sci Rev. 2020;203:103118. doi: 10.1016/j.earscirev.2020.103118
  • Erostate M, Huneau F, Garel E, et al. Groundwater dependent ecosystems in coastal mediterranean regions: characterization, challenges and management for their protection. Water Res. 2020;172:115461. doi: 10.1016/j.watres.2019.115461
  • Siebert S, Henrich V, Frenken K, et al. Update of the digital global map of irrigation areas to version 5. Rheinische Friedrich-Wilhelms-Universituy, Bonn, Germany and Food and Agriculture Organization of the United Nations, Rome, Italy. 2013.
  • Zhang M, Liu L, Xu D, et al. Small-sized microplastics (< 500 μm) in roadside soils of Beijing, China: accumulation, stability, and human exposure risk. Environ Pollut. 2022;304:119121. doi: 10.1016/j.envpol.2022.119121
  • Li R, Zhang S, Zhang L, et al. Field study of the microplastic pollution in sea snails (ellobium chinense) from mangrove forest and their relationships with microplastics in water/sediment located on the north of Beibu Gulf. Environ Pollut. 2020;263:114368. doi: 10.1016/j.envpol.2020.114368
  • Zhou Y, Yang Y, Liu G, et al. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: the roles of water pH, lead ions, natural organic matter and phenanthrene. Water Res. 2020;184:116209. doi: 10.1016/j.watres.2020.116209
  • Jin Y, Lu L, Tu W, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ. 2019;649:308317. doi: 10.1016/j.scitotenv.2018.08.353
  • Duan Z, Zhao S, Zhao L, et al. Microplastics in Yellow River Delta wetland: occurrence, characteristics, human influences, and marker. Environ Pollut. 2020;258:113232. doi: https://doi.org/10.1016/j.envpol.2019.113232
  • Gorman D, Moreira FT, Turra A, et al. Organic contamination of beached plastic pellets in the South Atlantic: risk assessments can benefit by considering spatial gradients. Chemosphere. 2019;223:608–528. doi: 10.1016/j.chemosphere.2019.02.094
  • Ye X, Wang P, Wu Y, et al. Microplastic acts as a vector for contaminants: the release behavior of dibutyl phthalate from polyvinyl chloride pipe fragments in water phase. Environ Sci Pollut Res. 2020;27(33):4208242091. doi: 10.1007/s11356-020-10136-0
  • Cao Y, Lin H, Zhang K, et al. Microplastics: a major source of phthalate esters in aquatic environments. J Hazard Mater. 2022;432:128731. doi: 10.1016/j.jhazmat.2022.128731
  • Deng H, Zhang Y, Li D, et al. Mangrove degradation retarded microplastics weathering and affected metabolic activities of microplastics-associated microbes. J Hazard Mater. 2023;445:130535. doi: 10.1016/j.jhazmat.2022.130535
  • Kolandhasamy P, Su L, Li J, et al. Adherence of microplastics to soft tissue of mussels: a novel way to uptake microplastics beyond ingestion. Scie Total Environ. 2018;610–611:635–640. doi: 10.1016/j.scitotenv.2017.08.053
  • Tang S, Lin L, Wang X, et al. Pb(ii) uptake onto nylon microplastics: interaction mechanism and adsorption performance. J Hazard Mater. 2020;386:121960. doi: 10.1016/j.jhazmat.2019.121960
  • Samandra S, Johnston JM, Jaeger JE, et al. Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia. Scie Total Environ. 2022;802:149727. doi: 10.1016/j.scitotenv.2021.149727
  • Lv W, Zhou W, Lu S, et al. Microplastic pollution in rice-fish co-culture system: a report of three farmland stations in Shanghai, China. Sci Total Environ. 2019;652:12091218. doi: 10.1016/j.scitotenv.2018.10.321
  • Corradini F, Meza P, Eguiluz R, et al. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci Total Environ. 2019;671:411420. doi: 10.1016/j.scitotenv.2019.03.368
  • Selvam S. Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal south India. J Hazard Mater. 2020;402:123786. doi: 10.1016/j.jhazmat.2020.123786
  • Dong S, Xia J, Sheng L, et al. Transport characteristics of fragmental polyethylene glycol terephthalate (PET) microplastics in porous media under various chemical conditions. Chemosphere. 2021b;276:130214. doi: 10.1016/j.chemosphere.2021.130214
  • Jiang Y, Yin X, Xi X, et al. Effect of surfactants on the transport of polyethylene and polypropylene microplastics in porous media. Water Res. 2021;196:117016. doi: 10.1016/j.watres.2021.117016
  • Li J, Guo K, Cao Y, et al. Enhance in mobility of oxytetracycline in a sandy loamy soil caused by the presence of microplastics. Environ Pollut. 2021a;269:116151. doi: 10.1016/j.envpol.2020.116151
  • Tong M, He L, Rong H, et al. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment. Water Res. 2020;169:115284. doi: 10.1016/j.watres.2019.115284
  • Dong S, Zhou M, Su X, et al. Transport and retention patterns of fragmental microplastics in saturated and unsaturated porous media: a real-time pore-scale visualization. Water Res. 2022;214:118195. doi: 10.1016/j.watres.2022.118195
  • He L, Rong H, Li M, et al. Bacteria have different effects on the transport behaviors of positively and negatively charged microplastics in porous media. J Hazard Mater. 2021;415:125550. doi: 10.1016/j.jhazmat.2021.125550
  • Amila A, Fujio K, Yoshikazu M, et al. Rapid sampling of suspended and floating microplastics in challenging riverine and coastal Water environments in Japan. Water. 2020;12(7):1903.
  • Andreas NA, Nicholas D, Vasileios AT. Water quality focusing on the hellenic world: from ancient to modern times and the future. Water. 2022;14(12):1887.
  • Kellie B, Banu O. Microplastics and nanoplastics in the freshwater and terrestrial environment: a review. Water. 2020;12(9):2633.
  • Liu F, Nadia BN, Kai B, et al. Microplastics removal from treated wastewater by a biofilter. Water[j]. 2020;12(4):1085. doi: 10.3390/w12041085
  • Dong S, Cai W, Xia J, et al. Aggregation kinetics of fragmental PET nanoplastics in aqueous environment: complex roles of electrolytes, pH and humic acid. Environ Pollut. 2021;268:115828. doi: 10.1016/j.envpol.2020.115828
  • Hierrezuelo J, Sadeghpour A, Szilagyi I, et al. Electrostatic stabilization of charged colloidal particles with adsorbed polyelectrolytes of opposite charge. Langmuir. 2010;26(19):1510915111. doi: 10.1021/la102912u
  • Bradford SA, Kim HN, Haznedaroglu BZ, et al. Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media. Environ Sci Technol. 2009;43(18):69967002. doi: 10.1021/es900840d
  • Alimi OS, Budarz JF, Hernandez LM, et al. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol. 2018;52(4):1704–1724. doi: 10.1021/acs.est.7b05559
  • Mitzel MR, Sand S, Whalen JK, et al. Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand. Water Res. 2016;92:113120. doi: 10.1016/j.watres.2016.01.026
  • Zhao P, Cui L, Zhao W, et al. Cotransport and deposition of colloidal polystyrene microplastic particles and tetracycline in porous media: the impact of ionic strength and cationic types. Sci Total Environ. 2020;753(142064):142064. doi: 10.1016/j.scitotenv.2020.142064
  • Xiang Q, Zhu D, Chen QL, et al. Adsorbed sulfamethoxazole exacerbates the effects of polystyrene (∼2 μm) on gut microbiota and the antibiotic resistome of a soil Collembolan. Environ Sci Technol. 2019;53(21):12823–12834. doi: 10.1021/acs.est.9b04795
  • Cai L, Zhu J, Hou Y, et al. Influence of gravity on transport and retention of representative engineered nanoparticles in quartz sand. J Contam Hydrol. 2015;181:153–160. doi: 10.1016/j.jconhyd.2015.02.005
  • Wan J, Wilson JL. Colloid transport in unsaturated porous media. Water Resour Res. 1994;30(4):857864. doi: 10.1029/93WR03017
  • Dong S, Gao B, Sun Y, et al. Visualization of graphene oxide transport in two-dimensional homogeneous and heterogeneous porous media. J Hazard Mater. 2019a;369:334e341. doi: 10.1016/j.jhazmat.2019.02.042
  • Fritz G, Schädler V, Willenbacher N, et al. Electrosteric stabilization of colloidal dispersions. Langmuir[j]. 2002;18(16):6381–6390. doi: 10.1021/la015734j
  • Petosa AR, Jaisi DP, Quevedo IR, et al. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol. 2010;44(17):6532–6549. doi: 10.1021/es100598h
  • Shaniv D, Dror I, Berkowitz B. Effects of particle size and surface chemistry on plastic nanoparticle transport in saturated natural porous media. Chemosphere. 2021;262:127854. doi: 10.1016/j.chemosphere.2020.127854
  • Sun Y, Gao B, Bradford SA, et al. Transport, retention, and size perturbation of graphene oxide in saturated porous media: effects of input concentration and grain size. Water Res. 2015;68:24–33. doi: 10.1016/J.WATRES.2014.09.025
  • Bourland LG. Multiphase PVC/styrenic copolymer alloys: internally reinforced by partial miscibility. J Vinyl Addit Technol. 1988;10(4):191–199. doi: 10.1002/vnl.730100407
  • Li JF, Yang R, Yu J, et al. Natural photo-aging degradation of polypropylene nanocomposites. Polymer Degradation And Stability. 2008;93(1):84–89. doi: 10.1016/j.polymdegradstab.2007.10.022
  • Horton AA, Dixon SJ. Microplastics: an introduction to environmental transport processes. Wiley Interdiscip Rev: Water. 2018;5(2):e1268. doi: 10.1002/wat2.1268
  • Hedayati M, Sharma P, Katyal D, et al. Transport and retention of carbon-based engineered and natural nanoparticles through saturated porous media. J Nanopart Res. 2016;18(3):57. doi: 10.1007/s11051-016-3365-6
  • Ma H, Pazmino EF, Johnson WP. Gravitational settling effects on unit cell predictions of colloidal retention in porous media in the absence of energy barriers. Environ Sci Technol. 2011;45(19):8306–8312. doi: 10.1021/es200696x