306
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Alternative stepwise adsorption process of environmental waste-based biochar for treating dental wastewater containing lead and chromium

, , &
Article: 2288877 | Received 15 Sep 2023, Accepted 23 Nov 2023, Published online: 29 Nov 2023

References

  • Gu M, Hao L, Wang Y, et al. The selective heavy metal ions adsorption of zinc oxide nanoparticles from dental wastewater. Chem Phys. 2020;534:110750. doi: 10.1016/j.chemphys.2020.110750
  • Binner H, Kamali N, Harding M, et al. Characteristics of wastewater originating from dental practices using predominantly mercury-free dental materials. Sci Total Environ. 2022;814:152632. doi: 10.1016/j.scitotenv.2021.152632
  • Khan NA, Vambol V, Vambol S, et al. Hospital effluent guidelines and legislation scenario around the globe: a critical review. J Environ Chem Eng. 2021;9(5):105874. doi: 10.1016/j.jece.2021.105874
  • Feng X, Zeng G, Zhang Q, et al. Joint association of polycyclic aromatic hydrocarbons and heavy metal exposure with pulmonary function in children and adolescents aged 6–19 years. Int J Hyg Envir Heal. 2022;244:114077. doi: 10.1016/j.ijheh.2022.114007
  • Liu J, Liu R, Yang Z, et al. Quantifying and predicting ecological and human health risks for binary heavy metal pollution accidents at the watershed scale using Bayesian networks. Environ Pollut. 2021;269:116125. doi: 10.1016/j.envpol.2020.116125
  • Yaqub M, Lee SH. Heavy metals removal from aqueous solution through micellar enhanced ultrafiltration: a review. Environ Eng Res. 2019;24(3):363–619. doi: 10.4491/eer.2018.249
  • Jahan N, Tahmid M, Shoronika AZ, et al. A comprehensive review on the sustainable treatment of textile wastewater: zero liquid discharge and resource recovery perspectives. Sustainability. 2022;14(22):15398. doi: 10.3390/su142215398
  • Chen Q, Yao Y, Li X, et al. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J Water Process. 2018;26:289–300. doi: 10.1016/j.jwpe.2018.11.003
  • Qasem NAA, Mohammed RH, Lawal DU. Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water. 2021;4(1):36. doi: 10.1038/s41545-021-00127-0
  • Sriram S, Nambi IM, Chetty R. Hexavalent chromium reduction through redox electrolytic cell with urea and cow urine as anolyte. J Environ Manage. 2019;232:554–563. doi: 10.1016/j.jenvman.2018.11.071
  • Du J, Zhang B, Li J, et al. Decontamination of heavy metal complexes by advanced oxidation processes: a review. Chin Chem Lett. 2020;31(10):2575–2582. doi: 10.1016/j.cclet.2020.07.050
  • Qiu M, He C. Efficient removal of heavy metal ions by forward osmosis membrane with a polydopamine modified zeolitic imidazolate framework incorporated selective layer. J Hazard Mater. 2019;367:339–347. doi: 10.1016/j.jhazmat.2018.12.096
  • Giwa A, Dindi A, Kujawa J. Membrane bioreactors and electrochemical processes for treatment of wastewaters containing heavy metal ions, organics, micropollutants and dyes: recent developments. J Hazard Mater. 2019;370:172–195. doi: 10.1016/j.jhazmat.2018.06.025
  • Islam MS, McPhedran KN, Messele SA, et al. Isotherm and kinetic studies on adsorption of oil sands process affected water organic compounds using granular activated carbon. Chemosphere. 2018;202:716–725. doi: 10.1016/j.chemosphere.2018.03.149
  • Chen Y, Mao W, Yang W, et al. A novel phosphate rock-magnetic biochar for Pb2+ and Cd2+ removal in wastewater: Characterization, performance and mechanisms. Environ Technol Innov. 2023;32:103268. doi: 10.1016/j.eti.2023.103268
  • Kahya N, Erim FB. Removal of fluoride ions from water by cerium-carboxymethyl cellulose beads doped with CeO2 nanoparticles. Int j biol macromol. 2023;242:124595. doi: 10.1016/j.ijbiomac.2023.124595
  • Lima ZJ, Nauerth IMR, Silva EF, et al. Competitive sorption and desorption of cadmium, lead, and zinc onto peat, compost, and biochar. J Environ Manage. 2023;344:118515. doi: 10.1016/j.jenvman.2023.118515
  • Mukherjee S, Kumari D, Joshi M, et al. Low-cost bio-based sustainable removal of lead and cadmium using a polyphenolic bioactive Indian curry leaf (Murraya koengii) powder. Int J Hyg Envir Heal. 2020;226:113471. doi: 10.1016/j.ijheh.2020.113471
  • Reza MS, Afroze S, Kuterbekov K, et al. Advanced applications of carbonaceous materials in sustainable water treatment, energy storage, and CO2 capture: a comprehensive review. Sustainability. 2023;15(11):8815. doi: 10.3390/su15118815
  • Roy H, Islam MS, Arifin MT, et al. Chitosan-ZnO decorated moringa oleifera seed biochar for sequestration of methylene blue: isotherms, kinetics, and response surface analysis. Environ NanotechnolMonitmanag. 2022;18:100752. doi: 10.1016/j.enmm.2022.100752
  • Khan MH, Akash NM, Akter S, et al. A comprehensive review of coconut-based porous materials for wastewater treatment and CO2 capture. J Environ Manage. 2023;338:117825. doi: 10.1016/j.jenvman.2023.117825
  • Roy H, Sarkar D, Pervez MN, et al. Synthesis, characterization and performance evaluation of Burmese grape (Baccaurea ramiflora) seed biochar for sustainable wastewater treatment. Water. 2023;15(3):394. doi: 10.3390/w15030394
  • Wang S, Kwak J, Islam MS, et al. Biochar surface complexation and Ni(II), Cu(II), and Cd(II) adsorption in aqueous solutions depend on feedstock type. Sci Total Environ. 2020a;712:136538. doi: 10.1016/j.scitotenv.2020.136538
  • Qiu B, Tao X, Wang H, et al. Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review. J Anal Appl Pyrol. 2021;155:105081. doi: 10.1016/j.jaap.2021.105081
  • Islam MS, Kwak JH, Nzediegwu C, et al. Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas. Environ Pollut. 2021;281:117094. doi: 10.1016/j.envpol.2021.117094
  • Ye Q, Li Q, Li X. Removal of heavy metals from wastewater using biochars: adsorption and mechanisms. Env Pollut Bioavail. 2022;34(1):385–394. doi: 10.1080/26395940.2022.2120542
  • Zhao C, Gu P, Zhang G. A hybrid process of powdered activated carbon countercurrent two-stage adsorption and microfiltration for petrochemical RO concentrate treatment. Desalination. 2013;330:9–15. doi: 10.1016/j.desal.2013.09.010
  • Hu J, Zhang Q, He C, et al. A multi-stage activated carbon impregnation system: isotherms, kinetics and multi-objective modeling optimization. Chem Eng Sci. 2020;227:115895. doi: 10.1016/j.ces.2020.115895
  • Zhang X, Liu M, Kang Z, et al. NIR-triggered photocatalytic/photothermal/photodynamic water remediation using eggshell-derived CaCO3/CuS nanocomposites. Chem Eng J. 2020;388:124304. doi: 10.1016/j.cej.2020.124304
  • Shi P, Chen C, Lu X, et al. Preparation, characterization and adsorption potentiality of magnetic activated carbon from eucalyptus sawdust for removal of amoxicillin: adsorption behavior and mechanism. Ind Crop Prod. 2023;203:117122. doi: 10.1016/j.indcrop.2023.117122
  • Ma F, Zhao H, Zheng X, et al. Enhanced adsorption of cadmium from aqueous solution by amino modification biochar and its adsorption mechanism insight. J Environ Chem Eng. 2023;11(3):109747. doi: 10.1016/j.jece.2023.109747
  • Moruzzi F, Zhang W, Purushothaman B, et al. Solution-processable polymers of intrinsic microporosity for gas-phase carbon dioxide photoreduction. Nat Commun. 2023;14(1):3443. doi: 10.1038/s41467-023-39161-6
  • Wang H, Wang W, Wang H, et al. Urchin-like boron nitride hierarchical structure assembled by nanotubes-nanosheets for effective removal of heavy metal ions. Ceram Int. 2018;44(11):12216–12224. doi: 10.1016/j.ceramint.2018.04.003
  • Singh J, Katnoria JK. A comparative study of experimental and advanced modelling analysis for adsorption of Cd (II) from aqueous solution by Melia azedarach L. charcoal powder. J Mol Liq. 2023;383:122079. doi: 10.1016/j.molliq.2023.122079
  • Wang J, Guo X. Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater. 2020b;390:122156. doi: 10.1016/j.jhazmat.2020.122156
  • Wang S, Ai S, Nzediegwu C, et al. Carboxyl and hydroxyl groups enhance ammonium adsorption capacity of iron (III) chloride and hydrochloric acid modified biochars. Bioresour Technol. 2020c;309:123390. doi: 10.1016/j.biortech.2020.123390
  • Silva LMS, Muñoz-Peñ MJ, Domínguez-Vargas JR, et al. Kinetic and equilibrium adsorption parameters estimation based on a heterogeneous intraparticle diffusion model. Surf Interfaces. 2021;22:100791. doi: 10.1016/j.surfin.2020.100791
  • Kwak J, Islam MS, Wang S, et al. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere. 2019;31:393–404. doi: 10.1016/j.chemosphere.2019.05.128
  • Li J, Dai J, Liu G, et al. Biomass and bioenergy biochar from microwave pyrolysis of biomass: a review. Biomass Bioenergy. 2016;94:228–244. doi: 10.1016/j.biombioe.2016.09.010
  • Manjunath SV, Ranu SB, Mathava K. Antagonistic and synergistic analysis of antibiotic adsorption on Prosopis juliflora activated carbon in multicomponent systems. Chem Eng J. 2020;381:122713. doi: 10.1016/j.cej.2019.122713
  • Swenson H, Stadie NP. Langmuir’s theory of adsorption: a centennial review. Langmuir. 2019;35(16):5409–5426. doi: 10.1021/acs.langmuir.9b00154
  • Meng Z, Xu T, Huang S, et al. Effects of competitive adsorption with Ni(II) and Cu(II) on the adsorption of Cd(II) by modified biochar co-aged with acidic soil. Chemosphere. 2022;293:133621. doi: 10.1016/j.chemosphere.2022.133621
  • Freundlich H. Über die Adsorption in Lösungen. J Phys Chem. 1907;57(1):385. doi: 10.1515/zpch-1907-5723
  • Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40(9):1361–1403. doi: 10.1021/ja02242a004