2,260
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Microplastic pollution in groundwater: a systematic review

, , &
Article: 2299545 | Received 20 Oct 2023, Accepted 21 Dec 2023, Published online: 04 Jan 2024

References

  • Lee JY, Kim H. Review and suggestions for sustainable development and conservation of groundwater under changing climate. J Geol Soc Korea. 2021;57(6):855–77. doi: 10.14770/jgsk.2021.57.6.855
  • Thomas B, Vinka C, Pawan L, et al. Sustainable groundwater treatment technologies for underserved rural communities in emerging economies. Sci Total Environ. 2022;813:152633. doi: 10.1016/j.scitotenv.2021.152633
  • De Graaf IE, van Beek LPH, Gleeson N, et al. A global-scale two-layer transient groundwater model: development and application to groundwater depletion. Adv Water Resour. 2017;102:53–67. doi: 10.1016/j.advwatres.2017.01.011
  • Conboy MJ, Goss MJ. Natural protection of groundwater against bacteria of fecal origin. J Contamin Hydrol. 2000;43(1):1–24. doi: 10.1016/S0169-7722(99)00100-X
  • Kayastha V, Patel J, Kathrani N, et al. New insights in factors affecting ground water quality with focus on health risk assessment and remediation techniques. Environ Res. 2022;212:113171. doi: 10.1016/j.envres.2022.113171
  • Huo P, Li H, Huang X, et al. Dissolved greenhouse gas emissions from agricultural groundwater irrigation in the Guanzhong Basin of China. Environ Pollut. 2022;309:119714. doi: 10.1016/j.envpol.2022.119714
  • Gao XY, Huo ZL, Qu ZY, et al. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area. Sci Rep. 2017;7(1):4312. doi: 10.1038/srep43122
  • Nsabimana A, Li P. Hydrogeochemical characterization and appraisal of groundwater quality for industrial purpose using a novel industrial water quality index (IndWQI) in the Guanzhong Basin, China. Geochem. 2023;83(1):125922. doi: 10.1016/j.chemer.2022.125922
  • Badruzzaman M, Anazi JR, Al-Wohaib FA, et al. Municipal reclaimed water as makeup water for cooling systems: water efficiency, biohazards, and reliability. Water Resour Indus. 2022;28:100188. doi: 10.1016/j.wri.2022.100188
  • Eamus D, Froend R, Loomes R, et al. A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation. Austral J Botany. 2006;54(2):97–114. doi: 10.1071/BT05031
  • Zimmerman OR, Pearce DW, Woodman SG, et al. Increasing contribution of alluvial groundwater to riparian cottonwood forest water use through warm and dry summers. Agricul Forest Meteorol. 2023;329:109292. doi: 10.1016/j.agrformet.2022.109292
  • Tanguy M, Chevuturi A, Marchant BP, et al. How will climate change affect the spatial coherence of streamflow and groundwater droughts in Great Britain? Environ Res Lett. 2023;18(6):064048. doi: 10.1088/1748-9326/acd655
  • Rachunok B, Fletcher S. Socio-hydrological drought impacts on urban water affordability. Nature Water. 2023;1(1):83–94. doi: 10.1038/s44221-022-00009-w
  • Stigter TY, Miller J, Chen J, et al. Águas subterrâneas e mudanças climáticas: ameaças e oportunidades. Hydrogeol J. 2023;31(1):7–10. doi: 10.1007/s10040-022-02554-w
  • Kundzewicz Z, Doll P. Will groundwater ease freshwater stress under climate change? Hydrol Sci J. 2009;54(4):665–675. doi: 10.1623/hysj.54.4.665
  • Langridge R, Daniels B. Accounting for climate change and drought in implementing sustainable groundwater management. Water Resour Manag. 2017;31(11):3287–3298. doi: 10.1007/s11269-017-1607-8
  • Viaroli S, Lancia M, Re V. Microplastics contamination of groundwater: current evidence and future perspective. A review. Sci Total Environ. 2022;824:153851. doi: 10.1016/j.scitotenv.2022.153851
  • Chia RW, Lee JY, Kim H, et al. Microplastic pollution in soil and groundwater: a review. Environ Chem Lett. 2021;19(6):4211–4224. doi: 10.1007/s10311-021-01297-6
  • Lee JY, Cha J, Chia RW. Current status of researches on microplastics in groundwater and perspectives. J Geol Soc Korea. 2022;58(2):233–241. doi: 10.14770/jgsk.2022.58.2.233
  • Cha J, Lee JY, Chia RW. Microplastics contamination and characteristics of agricultural groundwater in Haean Basin of Korea. Sci Total Environ. 2023;864:161027. doi: 10.1016/j.scitotenv.2022.161027
  • Al-Zawaidah H, Ravazzolo D, Friedrich H. Macroplastics in rivers: present knowledge, issues and challenges. Environ Sci Proc Impacts. 2021;23(4):535–552. doi: 10.1039/D0EM00517G
  • Blettler MCM, Abrial E, Khan FR, et al. Freshwater plastic pollution: recognizing research biases and identifying knowledge gaps. Water Res. 2018;143:416–424. doi: 10.1016/j.watres.2018.06.015
  • Woods JS, Rodder G, Verones F. An effect factor approach for quantifying the entanglement impact on marine species of macroplastic debris within life cycle impact assessment. Ecol Indic. 2019;99:61–66. doi: 10.1016/j.ecolind.2018.12.018
  • Re V. Iluminando o invisível: abordando o potencial de contaminação da água subterrânea por microfibras de plástico. Hydrogeol J. 2019;27(7):2719–2727. doi: 10.1007/s10040-019-01998-x
  • Zhang Y, Pu S, Lv X, et al. Global trends and prospects in microplastics research: a bibliometric analysis. J Hazard Mater. 2020;400:123110. doi: 10.1016/j.jhazmat.2020.123110
  • Kaur M, Ghosh D, Guleria S, et al. Microplastics/Nanoplastics released from facemasks as contaminants of emerging concern. Mari Pollut Bullet. 2023;191:114954. doi: 10.1016/j.marpolbul.2023.114954
  • Shi J, Dong Y, Shi Y, et al. Groundwater antibiotics and microplastics in a drinking-water source area, northern China: occurrence, spatial distribution, risk assessment, and correlation. Environ Res. 2022;210:112855. doi: 10.1016/j.envres.2022.112855
  • Srihari S, Subramani T, Prapanchan VN, et al. Human health risk perspective study on characterization, quantification and spatial distribution of microplastics in surface water, groundwater and coastal sediments of thickly populated Chennai coast of South India. Human Ecol Risk Assess Int J. 2023;29(1):222–244. doi: 10.1080/10807039.2022.2154635
  • Karim MM. Arsenic in groundwater and health problems in Bangladesh. Water Res. 2000;34(1):304–310. doi: 10.1016/S0043-1354(99)00128-1
  • Lee JY, Cheon JY, Lee KK, et al. Statistical evaluation of geochemical parameter distribution in a groundwater system contaminated with petroleum hydrocarbons. J Environ Qual. 2001;30(5):1548–1563. doi: 10.2134/jeq2001.3051548x
  • Burow KR, Nolan BT, Rupert MG, et al. Nitrate in groundwater of the United States, 1991−2003. Environ Sci Technol. 2010;44(13):4988–4997. doi: 10.1021/es100546y
  • Toccalino PL, Gilliom RJ, Lindsey BD, et al. Pesticides in groundwater of the United States: decadal-scale changes, 1993–2011. Groundwater. 2014;52(S1):112–125. doi: 10.1111/gwat.12176
  • Coffin S, Wyer H, Leapman JC, et al. Addressing the environmental and health impacts of microplastics requires open collaboration between diverse sectors. PLoS Biol. 2021;19(3):e3000932. doi: 10.1371/journal.pbio.3000932
  • Alfonso MB, Arias AH, Ronda AC, et al. Continental microplastics: presence, features, and environmental transport pathways. Sci Total Environ. 2021;799:149447. doi: 10.1016/j.scitotenv.2021.149447
  • Goeppert N, Goldscheider N. Experimental field evidence for transport of microplastic tracers over large distances in an alluvial aquifer. J Hazard Mater. 2021;408:124844. doi: 10.1016/j.jhazmat.2020.124844
  • Chia RW, Lee JY, Jang J, et al. Soil health and microplastics: a review of the impacts of microplastic contamination on soil properties. J Soils Sedimen. 2022;22(10):2690–2705. doi: 10.1007/s11368-022-03254-4
  • Kumar R, Sharma P. Recent developments in extraction, identification, and quantification of microplastics from agricultural soil and groundwater. Fate And Transport Of Subsurface Pollutants. 2021;125–143.
  • Zhang J, Li Z, Zhou X, et al. Long-term application of organic compost is the primary contributor to microplastic pollution of soils in a wheat-maize rotation. Sci Total Environ. 2023;866:161123. doi: 10.1016/j.scitotenv.2022.161123
  • Selvam S, Jesuraja K, Venkatramanan S, et al. Hazardous microplastics and its role as a vector of heavy metals in groundwater and surface water of coastal south India. J Hazard Mater. 2021;402:123786. doi: 10.1016/j.jhazmat.2020.123786
  • Huang J, Chen H, Zheng Y, et al. Microplastic pollution in soils and groundwater: characteristics, analytical methods and impacts. Chem Engin J. 2021;425:131870. doi: 10.1016/j.cej.2021.131870
  • Danopoulos E, Twiddy M, Rotchell JM, et al. Microplastic contamination of drinking water: a systematic review. PLoS One. 2020;15(7):e0236838. doi: 10.1371/journal.pone.0236838
  • Mamun AA, Prasetya TAE, Dewi IR, et al. Microplastics in human food chains: food becoming a threat to health safety. Sci Total Environ. 2023;858:159834. doi: 10.1016/j.scitotenv.2022.159834
  • Smith M, Love DC, Rochman CM, et al. Microplastics in seafood and the implications for human health. Curr Environ Health Rep. 2018;5(3):375–386. doi: 10.1007/s40572-018-0206-z
  • Zhang Q, He Y, Cheng R, et al. Recent advances in toxicological research and potential health impact of microplastics and nanoplastics in vivo. Environ Sci Pollut Res. 2022;29(27):40415–40448. doi: 10.1007/s11356-022-19745-3
  • Noventa S, Boyles MSP, Seifert A, et al. Paradigms to assess the human health risks of nano- and microplastics. Microplast Nanoplast. 2021;1(1):9. doi: 10.1186/s43591-021-00011-1
  • Gundogdu S, Mihai FC, Fischer EK, et al. Micro and nano plastics in groundwater systems: a review of current knowledge and future perspectives. Trends Analyt Chem. 2023;165:117119. doi: 10.1016/j.trac.2023.117119
  • Sangkham S, Islam MA, Adhikari S, et al. Evidence of microplastics in groundwater: a growing risk for human health. Groundw Sustain Dev. 2023;23:100981. doi: 10.1016/j.gsd.2023.100981
  • Kumar V, Singh E, Singh S, et al. Micro– and nano–plastics (MNPs) as emerging pollutant in ground water: environmental impact, potential risks, limitations and way forward towards sustainable management. Chem Eng J. 2023;459:141568. doi: 10.1016/j.cej.2023.141568
  • Horton AA, Walton A, Spurgeon DJ, et al. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ. 2017;586:127–141. doi: 10.1016/j.scitotenv.2017.01.190
  • Kim YI, Jeong E, Lee JY, et al. Microplastic contamination in groundwater on a volcanic Jeju Island of Korea. Environ Res. 2023;226:115682. doi: 10.1016/j.envres.2023.115682
  • Walker TR, Fequet L. Current trends of unsustainable plastic production and micro(nano)plastic pollution. TrAc Trends Analyt Chem. 2023;160:116984. doi: 10.1016/j.trac.2023.116984
  • Wang S. International law-making process of combating plastic pollution: Status Quo, debates and prospects. Mar Policy. 2023;147:105376. doi: 10.1016/j.marpol.2022.105376
  • UNESCO World Water Assessment Programme. The united nations world water development report 2020: water and climate change. Un Water. 2020;219. https://unesdoc.unesco.org/ark:/48223/pf0000372985
  • Lee JY, Jung J, Raza M. Good field practice and hydrogeological knowledge are essential to determine reliable concentrations of microplastics in groundwater. Environ Pollut. 2022;308:119617. doi: 10.1016/j.envpol.2022.119617
  • Panno SV, Kelly WR, Scott J, et al. Microplastic contamination in karst groundwater systems. Groundwater. 2019;57(2):189–196. doi: 10.1111/gwat.12862
  • Alvarado-Zambrano D, Rivera-Hernandez JR, Green-Ruiz C. First insight into microplastic groundwater pollution in Latin America: the case of a coastal aquifer in Northwest Mexico. Environ Sci Pollut Res. 2023;30(29):73600–73611. doi: 10.1007/s11356-023-27461-9
  • Shu X, Xu L, Yang M, et al. Spatial distribution characteristics and migration of microplastics in surface water, groundwater and sediment in karst areas: the case of Yulong River in Guilin, Southwest China. Sci Total Environ. 2023;868:161578. doi: 10.1016/j.scitotenv.2023.161578
  • Patterson J, Laju RL, Jeyasanta KI, et al. Qualidade hidroquímica e níveis de micro plástico nas águas subterrâneas de Tutucorin, costa sudeste da Índia. Hydrogeol J. 2023;31(1):167–184. doi: 10.1007/s10040-022-02582-6
  • Balestra V, Vigna B, Costanzo SD, et al. Preliminary investigations of microplastic pollution in karst systems, from surface watercourses to cave waters. J Contamin Hydrol. 2023;252:104117. doi: 10.1016/j.jconhyd.2022.104117
  • Jeong E, Kim YI, Lee JY, et al. Microplastic contamination in groundwater of rural area, eastern part of Korea. Sci Total Environ. 2023;895:165006. doi: 10.1016/j.scitotenv.2023.165006
  • Samandra S, Johnston JM, Jaeger JE, et al. Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia. Sci Total Environ. 2022;802:149727. doi: 10.1016/j.scitotenv.2021.149727
  • Ren Z, Gui X, Xu X, et al. Microplastics in the soil-groundwater environment: aging, migration, and co-transport of contaminants – a critical review. J Hazard Mater. 2021;419:126455. doi: 10.1016/j.jhazmat.2021.126455
  • Cha J, Lee JY, Lee J. Effects of groundwater sample volume on identified microplastics in groundwater of an agricultural area in Korea. Sci Total Environ. 2023;911:168650. doi: 10.1016/j.scitotenv.2023.168650
  • An X, Li W, Lan J, et al. Preliminary study on the distribution, source, and ecological risk of typical microplastics in karst groundwater in Guizhou Province, China. Int J Environ Res Public Health. 2022;19(22):14751. doi: 10.3390/ijerph192214751
  • Liu YC, Wu L, Shi GW, et al. Characteristics and sources of microplastic pollution in the water and sediments of the Jinjiang River Basin, Fujian Province, China. China Geol. 2022;5:429–438. doi: 10.31035/cg2022051
  • Wu B, Li LW, Zu YX, et al. Microplastics contamination in groundwater of a drinking-water source area, northern China. Environ Res. 2022;214:114048. doi: 10.1016/j.envres.2022.114048
  • Xu Y, Ou Q, Jiao M, et al. Identification and Quantification of Nanoplastics in surface water and groundwater by pyrolysis gas chromatography–Mass spectrometry. Environ Sci Technol. 2022;56(8):4988–4997. doi: 10.1021/acs.est.1c07377
  • Wan Y, Chen X, Liu Q, et al. Informal landfill contributes to the pollution of microplastics in the surrounding environment. Environ Pollut. 2022;293:118586. doi: 10.1016/j.envpol.2021.118586
  • Pittroff M, Müller YK, Witzig CS, et al. Microplastic analysis in drinking water based on fractionated filtration sampling and Raman microspectroscopy. Environ Sci Pollut Res. 2021;28(42):59439–59451. doi: 10.1007/s11356-021-12467-y
  • Manikanda Bharath K, Usha N, Vaikunth R, et al. Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater. Chemosphere. 2021;277:130263. doi: 10.1016/j.chemosphere.2021.130263
  • Esfandiari A, Abbasi S, Peely AB, et al. Distribution and transport of microplastics in groundwater (Shiraz aquifer, southwest Iran). Water Res. 2022;220:118622. doi: 10.1016/j.watres.2022.118622
  • Severini E, Ducci L, Sutti A, et al. River–groundwater interaction and recharge effects on microplastics contamination of groundwater in confined alluvial aquifers. Water. 2022;14(12):1913. doi: 10.3390/w14121913
  • Mendoza-Olea IJ, Leal-Bautista RM, Cejudo E, et al. Contaminación por microplásticos en el acuífero kárstico de la península de Yucatán. Ecosis Recur Agropec. 2022;9(3):e3360. doi: 10.19136/era.a9n3.3360
  • Bauerlein PS, Hofman-Caris RCHM, Pieke EN, et al. Fate of microplastics in the drinking water production. Water Res. 2022;221:118790. doi: 10.1016/j.watres.2022.118790
  • Mu H, Wang Y, Zhang H, et al. High abundance of microplastics in groundwater in Jiaodong Peninsula, China. Sci Total Environ. 2022;839:156318. doi: 10.1016/j.scitotenv.2022.156318
  • Koelmans AA, Nor NHM, Hermsen E, et al. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res. 2019;155:410–422. doi: 10.1016/j.watres.2019.02.054
  • Ryu HS, Moon J, Kim H, et al. Modeling and parametric simulation of microplastic transport in groundwater environments. Appl Sci. 2021;11(16):7189. doi: 10.3390/app11167189
  • Ye X, Cheng Z, Wu M, et al. Effects of clay minerals on the transport of polystyrene nanoplastic in groundwater. Water Res. 2022;223:118978. doi: 10.1016/j.watres.2022.118978
  • Frei S, Piehl S, Gilfedder BS, et al. Occurrence of microplastics in the hyporheic zone of rivers. Sci Rep. 2019;9(1):15256. doi: 10.1038/s41598-019-51741-5
  • Drummond JD, Nel HA, Packman AI, et al. Significance of hyporheic exchange for predicting microplastic fate in rivers. Environ Sci Technol Lett. 2020;7(10):727–732. doi: 10.1021/acs.estlett.0c00595
  • Re V. Incorporating the social dimension into hydrogeochemical investigations for rural development: the Bir Al-Nas approach for socio-hydrogeology. Hydrogeol J. 2015;23(7):1293–1304. doi: 10.1007/s10040-015-1284-8
  • Re V, Thin MM, Tringali C, et al. Laying the groundwork for raising awareness on water related issues with a socio-hydrogeological approach: the Inle Lake Case Study (Southern Shan State, Myanmar). Water. 2021;13(17):2434. doi: 10.3390/w13172434
  • Cui Q, Wang F, Wang X, et al. Environmental toxicity and ecological effects of micro(nano)plastics: a huge challenge posed by biodegradability. Trends Analyt Chem. 2023;164:117092. doi: 10.1016/j.trac.2023.117092
  • Liu Z, Bacha AUR, Yang L. Control strategies for microplastic pollution in groundwater. Environ Pollut. 2023;335:122323. doi: 10.1016/j.envpol.2023.122323
  • Belkhiri AH, Carre F, Quiot F. State of knowledge and future research needs on microplastics in groundwater. J Water Health. 2022;20(10):1479–1496. doi: 10.2166/wh.2022.048
  • Napper IE, Barrett AC, Thompson RC. The efficiency of devices intended to reduce microfibre release during clothes washing. Sci Total Environ. 2020;738:140412. doi: 10.1016/j.scitotenv.2020.140412
  • McIlwraith HK, Lin J, Erdle LM, et al. Capturing microfibers – marketed technologies reduce microfiber emissions from washing machines. Mar Pollut Bullet. 2019;139:40–45. doi: 10.1016/j.marpolbul.2018.12.012