383
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Monitoring of Cu2+ release from controllably synthesized nano-copper pesticides

, , &
Article: 2300477 | Received 06 Dec 2023, Accepted 25 Dec 2023, Published online: 07 Jan 2024

References

  • Chhipa H. Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett. 2016;15(1):15–85. doi: 10.1007/s10311-016-0600-4
  • Kookana RS, Boxall ABA, Reeves PT, et al. Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem. 2014;62(19):4227–4240. doi: 10.1021/jf500232f
  • Ding Y, Wang Q, Zhu G, et al. Application and perspectives of nanopesticides in agriculture. J Nanopart Res. 2023;25(8):159. doi: 10.1007/s11051-023-05811-5
  • Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol. 2017;8:1014. doi: 10.3389/fmicb.2017.01014
  • Bakshi M, Kumar A. Copper-based nanoparticles in the soil-plant environment: assessing their applications, interactions, fate and toxicity. Chemosphere. 2021;281:130940. doi: 10.1016/j.chemosphere.2021.130940
  • Wang D, Saleh NB, Byro A, et al. Nano-enabled pesticides for sustainable agriculture and global food security. Nat Nanotech. 2022;17(4):347–360. doi: 10.1038/s41565-022-01082-8
  • Tegenaw A, Tolaymat T, Al-Abed S, et al. Characterization and potential environmental implications of select cu-based fungicides and bactericides employed in U.S. markets. Environ Sci Technol. 2015;49(3):1294–1302. doi: 10.1021/es504326n
  • Zhao S, Su X, Wang Y, et al. Copper oxide nanoparticles inhibited denitrifying enzymes and electron transport system activities to influence soil denitrification and N2O emission. Chemosphere. 2020;245:125394. doi: 10.1016/j.chemosphere.2019.125394
  • Gomes DG, Sanada K, Pieretti JC, et al. Nanoencapsulation boosts the copper-induced defense responses of a susceptible coffea arabica cultivar against hemileia vastatrix. Antibiotics. 2023;12(2):249. doi: 10.3390/antibiotics12020249
  • Portelinha J, Duay SS, Yu SI, et al. Antimicrobial peptides and copper(II) ions: novel therapeutic opportunities. Chem Rev. 2021;121(4):2648–2712. doi: 10.1021/acs.chemrev.0c00921
  • Truong HT, Nguyen LCT, Quang Le L. Synthesis and antifungal activity of copper nanoparticles against fusarium oxysporum pathogen of plants. Mater Res Express. 2023;10(6):065001. doi: 10.1088/2053-1591/acdb34
  • Kah M, Kookana RS, Gogos A, et al. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol. 2018;13(8):677–684. doi: 10.1038/s41565-018-0131-1
  • Gan Y, Wu Y, Pang S, et al. Comparison of antibacterial properties of silver ions,copper ions and zinc ions on common candida. J Xinxiang Medical University. 2023;40(1):24–28.
  • Küpper H, Setlik I, Setliková E, et al. Copper-induced inhibition of photosynthesis: limiting steps of in vivo copper chlorophyll formation in scenedesmus quadricauda. Functional Plant Biol. 2003;30(12):1187–1196. doi: 10.1071/FP03129
  • Liu W, Qin Y, Liu S, et al. Synthesis and antifungal activity of slow-release pyridinylcarbonyl chitooligosaccharide copper complexes. Carbohydr Polym. 2022;291:119663. doi: 10.1016/j.carbpol.2022.119663
  • Vencalek BE, Laughton SN, Spielman-Sun E, et al. In situ measurement of CuO and Cu(OH)2 nanoparticle dissolution rates in quiescent freshwater mesocosms. Environ Sci Technol Lett. 2016;3(10):375–380. doi: 10.1021/acs.estlett.6b00252
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature Mater. 2013;12(11):991–1003. doi: 10.1038/nmat3776
  • Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–1397. doi: 10.3390/polym3031377
  • Wu GH, Milkhailovsky A, Khant HA, et al. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J Am Chem Soc. 2008;130(26):8175–8177. doi: 10.1021/ja802656d
  • Zhou J, Liu G, Guo Z, et al. Stimuli-responsive pesticide carriers based on porous nanomaterials: a review. Chem Eng J. 2023;455:140167. doi: 10.1016/j.cej.2022.140167
  • Ma X, Zhu X, Mu Y, et al. Fabrication of polydopamine reduced CuO nanoparticle–alginate composite nanogels for management of pseudomonas synringae pv. tabaci in tobacco. Pest Manag Sci. 2022;79(3):1213–1224. doi: 10.1002/ps.7298
  • Zhu X, Ma X, Gao C, et al. Fabrication of CuO nanoparticles composite ε-polylysine-alginate nanogel for high-efficiency management of alternaria alternate. Int J Biol macromol. 2022;223:1208–1222. doi: 10.1016/j.ijbiomac.2022.11.072
  • Hering I, Eilebrecht E, Parnham MJ, et al. Evaluation of potential environmental toxicity of polymeric nanomaterials and surfactants. Environ Toxicol Pharmacol. 2020;76:103353. doi: 10.1016/j.etap.2020.103353
  • Hortin JM, Anderson AJ, Britt DW, et al. Copper oxide nanoparticle dissolution at alkaline pH is controlled by dissolved organic matter: influence of soil-derived organic matter, wheat, bacteria, and nanoparticle coating. Environ Sci Nano. 2020;7(9):2618–2631. doi: 10.1039/D0EN00574F
  • Luna IZ, Hilary LN, Chowdhury AMS, et al. Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method. OALib. 2015;2(3):1–8. doi: 10.4236/oalib.1101409
  • Zhang W, Yao Y, Sullivan N, et al. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol. 2011;45(10):4422–4428. doi: 10.1021/es104205a