441
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Efficacy and mechanism of Microcystis aeruginosa removal by activated carbon fiber/nanoscale zero-valent iron/nickel foam cathodic electrochemical system

, , , , , , & show all
Article: 2302499 | Received 06 Nov 2023, Accepted 02 Jan 2024, Published online: 11 Jan 2024

References

  • Wu Y, Ding H, Wan L, et al. Single and combined toxic effects of clarithromycin and levofloxacin on Microcystis aeruginosa. Environ Pollut Bioavailabil. 2022;34(1):482–101. doi: 10.1080/26395940.2022.2130825
  • Hadiyanto H, Khoironi A, Dianratri I, et al. Biodegradation of oxidized high-density polyethylene and oxo-degradable plastic using microalgae dunaliella salina. Environ Pollut Bioavailabil. 2022;34(1):469–481. doi: 10.1080/26395940.2022.2128884
  • Zhang Y, Zhang J, Song K, et al. Potential of biochar derived from three biomass wastes as an electrode catalyzing oxygen reduction reaction. Environ Pollut Bioavailabil. 2022;34(1):42–50. doi: 10.1080/26395940.2021.2022538
  • Che N, Liu L, Liu Y, et al. Application and influence factors of capacitive deionization method for removing inorganic contaminated ions. Environ Pollut Bioavailabil. 2021;33(1):365–376. doi: 10.1080/26395940.2021.1990798
  • Brillas E, Sires I, Oturan MA. Electro-fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev. 2009;109(12):6570–6631. doi: 10.1021/cr900136g
  • Nidheesh PV, Gandhimathi R. Trends in electro-fenton process for water and wastewater treatment: an overview. Desalination. 2012;299:1–15. doi: 10.1016/j.desal.2012.05.011
  • Li N, He X, Ye J, et al. H2O2 activation and contaminants removal in heterogeneous Fenton-like systems. J Hazard Mater. 2023;458:131926. doi: 10.1016/j.jhazmat.2023.131926
  • Zhao H, Wang Y, Wang Y, et al. Electro-Fenton oxidation of pesticides with a novel Fe3O4@Fe2O3/activated carbon aerogel cathode: high activity, wide pH range and catalytic mechanism. Appl Catal B Environ. 2012;125:120–127. doi: 10.1016/j.apcatb.2012.05.044
  • Li H, Lei H, Chen K, et al. A nano-Fe0/ACF cathode applied to neutral electro-Fenton degradation of orange II. J Chem Tech Biotech. 2011;86(3):398–405. doi: 10.1002/jctb.2530
  • Li T, Zhu F, Gao Y, et al. Efficient elimination of Cr(vi) in groundwater using nano zero-valent iron synthesized with ginkgo biloba extracts: enhanced mechanism and reduced toxicity. Environ Sci Water Res Technol. 2024. doi: 10.1039/d3ew00479a
  • Zhu F, Wu Y, Liang Y, et al. Degradation mechanism of norfloxacin in water using persulfate activated by BC@nZVI/Ni. Chem Eng J. 2020;389:124276. doi: 10.1016/j.cej.2020.124276
  • Zhu F, Ma S, Liu T, et al. Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater. J Clean Prod. 2018;174:184–190. doi: 10.1016/j.jclepro.2017.10.302
  • An J, Li N, Wang S, et al. A novel electro-coagulation-fenton for energy efficient cyanobacteria and cyanotoxins removal without chemical addition. J Hazard Mater. 2019;365:650–658. doi: 10.1016/j.jhazmat.2018.11.058
  • Das S, Raj R, Ghangrekar MM. Efficient algal lipid extraction via a green bio-electro-fenton process and its conversion into biofuel and bioelectricity with concurrent wastewater treatment in a photosynthetic microbial fuel cell. Green Chem. 2023;25(18):7166–7182. doi: 10.1039/D3GC01548C
  • Long Y, Li H, Xing X, et al. Enhanced removal of Microcystis aeruginosa in BDD-CF electrochemical system by simple addition of Fe2+. Chem Eng J. 2017;325:360–368. doi: 10.1016/j.cej.2017.05.067
  • Zhang J, Wang H. Study on mechanism of algal inactivation and pollution removal by Fe-ACF electro fenton-like process. Water Sci Technol. 2015;72(10):1700–1712. doi: 10.2166/wst.2015.388
  • Liu Y, Zhao Y, Wang J. Fenton/fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: advances and prospects. J Hazard Mater. 2021;404:124191. doi: 10.1016/j.jhazmat.2020.124191
  • Sun M, Ru X-R, Zhai L-F. In-situ fabrication of supported iron oxides from synthetic acid mine drainage: high catalytic activities and good stabilities towards electro-Fenton reaction. Appl Catal B Environ. 2015;165:103–110. doi: 10.1016/j.apcatb.2014.09.077
  • He J, Yang X, Men B, et al. Interfacial mechanisms of heterogeneous fenton reactions catalyzed by iron-based materials: a review. J Environ Sci. 2016;39:97–109. doi: 10.1016/j.jes.2015.12.003
  • Yu F, Wang Y, Ma H, et al. Enhancing the yield of hydrogen peroxide and phenol degradation via a synergistic effect of photoelectrocatalysis using a g-C3N4/ACF electrode. Int J Hydrogen Energy. 2018;43(42):19500–19509. doi: 10.1016/j.ijhydene.2018.08.217
  • Lian H, Xiang P, Xue Y, et al. Efficiency and mechanisms of simultaneous removal of Microcystis aeruginosa and microcystins by electrochemical technology using activated carbon fiber/nickel foam as cathode material. Chemosphere. 2020;252:126431. doi: 10.1016/j.chemosphere.2020.126431
  • Ma X, Chen Y, Liu F, et al. Enhanced tolerance and resistance characteristics of scenedesmus obliquus FACHB-12 with K3 carrier in cadmium polluted water. Algal Res. 2021;55:102267. doi: 10.1016/j.algal.2021.102267
  • Palanivel B, Hu C, Shkir M, et al. Fluorine doped g-C3N4 coupled NiFe2O4 heterojunction: consumption of H2O2 for production of hydroxyl radicals towards paracetamol degradation. Coll Inter Sci Commun. 2021;42:100410. doi: 10.1016/j.colcom.2021.100410
  • Zhang G, Wang S, Yang F. Efficient adsorption and combined heterogeneous/homogeneous Fenton oxidation of Amaranth using supported nano-FeOOH as cathodic catalysts. J Phys Chem C. 2012;116(5):3623–3634. doi: 10.1021/jp210167b
  • Li J, Ai Z, Zhang L. Design of a neutral electro-Fenton system with Fe@Fe2O3/ACF composite cathode for wastewater treatment. J Hazard Mater. 2009;164(1):18–25. doi: 10.1016/j.jhazmat.2008.07.109
  • Hou B, Han H, Jia S, et al. Heterogeneous electro-Fenton oxidation of catechol catalyzed by nano-Fe3O4: kinetics with the Fermi’s equation. J Taiwan Inst Chem Eng. 2015;56:138–147. doi: 10.1016/j.jtice.2015.04.017
  • Khataee AR, Safarpour M, Zarei M, et al. Electrochemical generation of H2O2 using immobilized carbon nanotubes on graphite electrode fed with air: investigation of operational parameters. J Electroanal Chem. 2011;659(1):63–68. doi: 10.1016/j.jelechem.2011.05.002
  • Wang X, Xiang P, Zhang Y, et al. The inhibition of microcystis aeruginos by electrochemical oxidation using boron-doped diamond electrode. Environ Sci Pollut Res Int. 2018;25(21):20631–20639. doi: 10.1007/s11356-018-1977-3
  • Rastegar SO, Mousavi SM, Shojaosadati SA, et al. Optimization of petroleum refinery effluent treatment in a UASB reactor using response surface methodology. J Hazard Mater. 2011;197:26–32. doi: 10.1016/j.jhazmat.2011.09.052
  • He S, Zhu F, Li L, et al. Box–Behnken design for the optimization of the removal of Cr(VI) in soil leachate using nZVI/Ni bimetallic particles. Soil Sediment Contam An Int J. 2018;27(8):658–673. doi: 10.1080/15320383.2018.1502744
  • Zhang Z, Ren W, Zhang J, et al. Electrokinetic remediation of Pb near the e-waste dismantle site with Fe(NO3)3 as cathode electrolyte. Environ Technol. 2021;42(6):884–893. doi: 10.1080/09593330.2019.1648559
  • Bakheet B, Islam MA, Beardall J, et al. Electrochemical inactivation of Cylindrospermopsis raciborskii and removal of the cyanotoxin cylindrospermopsin. J Hazard Mater. 2018;344:241–248. doi: 10.1016/j.jhazmat.2017.10.024
  • Zhu F, Li L, Ma S, et al. Effect factors, kinetics and thermodynamics of remediation in the chromium contaminated soils by nanoscale zero valent Fe/Cu bimetallic particles. Chem Eng J. 2016;302:663–669. doi: 10.1016/j.cej.2016.05.072
  • Zhu F, Liu T, Zhang Z, et al. Remediation of hexavalent chromium in column by green synthesized nanoscale zero-valent iron/nickel: factors, migration model and numerical simulation. Ecotoxicol Environ Saf. 2021;207:111572. doi: 10.1016/j.ecoenv.2020.111572
  • Huang J, Graham N, Templeton MR, et al. A comparison of the role of two blue–green algae in THM and HAA formation. Water Res. 2009;43(12):3009–3018. doi: 10.1016/j.watres.2009.04.029
  • Le Cloirec P, Brasquet C, Subrenat E. Adsorption onto fibrous activated carbon: applications to water treatment. Energy Fuels. 1997;11(2):331–336. doi: 10.1021/ef9601430
  • Liu Z, Zhao C, Wang P, et al. Removal of carbamazepine in water by electro-activated carbon fiber-peroxydisulfate: comparison, optimization, recycle, and mechanism study. Chem Eng J. 2018;343:28–36. doi: 10.1016/j.cej.2018.02.114
  • Mishra S, Dwivedi J, Kumar A, et al. Studies on salophen anchored micro/meso porous activated carbon fibres for the removal and recovery of uranium. RSC Adv. 2015;5(42):33023–33036. doi: 10.1039/C5RA03168K
  • Liu LF, Zhang PH, Yang FL. Adsorptive removal of 2,4-DCP from water by fresh or regenerated chitosan/ACF/TiO2 membrane. Sep Purif Technol. 2010;70(3):354–361. doi: 10.1016/j.seppur.2009.10.022
  • Li T, Zhu F, Liang W, et al. Simultaneous removal of p-nitrophenol and Cr(VI) using biochar supported green synthetic nano zero valent iron-copper: mechanistic insights and toxicity evaluation. Process Saf Environ Prot. 2022;167:629–640. doi: 10.1016/j.psep.2022.09.049
  • Dung NT, Duong LT, Hoa NT, et al. A comprehensive study on the heterogeneous electro-Fenton degradation of tartrazine in water using CoFe2O4/carbon felt cathode. Chemosphere. 2022;287:132141. doi: 10.1016/j.chemosphere.2021.132141
  • Lan H, Wang A, Liu R, et al. Heterogeneous photo-Fenton degradation of acid red B over Fe2O3 supported on activated carbon fiber. J Hazard Mater. 2015;285:167–172. doi: 10.1016/j.jhazmat.2014.10.057
  • Kim DJ, Lee HI, Yie JE, et al. Ordered mesoporous carbons: implication of surface chemistry, pore structure and adsorption of methyl mercaptan. Carbon. 2005;43(9):1868–1873. doi: 10.1016/j.carbon.2005.02.035
  • Yi ZJ, Yao J, Chen HL, et al. Uranium biosorption from aqueous solution onto Eichhornia crassipes. J Environ Radioact. 2016;154:43–51. doi: 10.1016/j.jenvrad.2016.01.012
  • Wang H, Wang H, Zhao H, et al. Adsorption and Fenton-like removal of chelated nickel from Zn-ni alloy electroplating wastewater using activated biochar composite derived from taihu blue algae. Chem Eng J. 2020;379:122372. doi: 10.1016/j.cej.2019.122372
  • Mecozzi M, Onorati F, Oteri F, et al. Characterisation of a bioassay using the marine alga Dunaliella tertiolecta associated with spectroscopic (visible and infrared) detection. Int J Environ Pollut. 2008;32(1):104–120. doi: 10.1504/IJEP.2008.016902
  • Fernando IPS, Sanjeewa KKA, Samarakoon KW, et al. FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae. Algae. 2017;32(1):75–86. doi: 10.4490/algae.2017.32.12.1
  • Zou W, Zhao L. Removal of uranium(VI) from aqueous solution using citric acid modified pine sawdust: batch and column studies. J Radioanal Nucl Chem. 2011;292(2):585–595. doi: 10.1007/s10967-011-1452-9
  • Xiong Q, Hu LX, Liu YS, et al. New insight into the toxic effects of chloramphenicol and roxithromycin to algae using FTIR spectroscopy. Aquat Toxicol. 2019;207:197–207. doi: 10.1016/j.aquatox.2018.12.017
  • Xu C, Li W, Tan B, et al. Adsorption of Gardenia jasminoides fruits extract on the interface of Cu/H2SO4 to inhibit Cu corrosion: experimental and theoretical studies. J Mol Liq. 2022;345:116996. doi: 10.1016/j.molliq.2021.116996
  • Xiaoling Z, Gaofang Y, Nanjing Z, et al. Chromophoric dissolved organic matter influence correction of algal concentration measurements using three-dimensional fluorescence spectra. Spectrochim Acta A Mol Biomol Spectrosc. 2019;210:405–411. doi: 10.1016/j.saa.2018.10.050
  • Kang J, Ma T, Zhou Q, et al. New insight into DOC and DON in a drinking water Biological Aerated Filter (BAF) by multimethod and correlation analysis of 3D-EEM. Anal Methods. 2015;7(23):9885–9893. doi: 10.1039/C5AY02156A
  • Fan G, Chen Z, Yan Z, et al. Efficient integration of plasmonic Ag/AgCl with perovskite-type LaFeO3: enhanced visible-light photocatalytic activity for removal of harmful algae. J Hazard Mater. 2021;409:125018. doi: 10.1016/j.jhazmat.2020.125018
  • Kozmér Z, Takács E, Wojnárovits L, et al. The influence of radical transfer and scavenger materials in various concentrations on the gamma radiolysis of phenol. Radiat Phys Chem. 2016;124:52–57. doi: 10.1016/j.radphyschem.2015.12.011
  • Lee W, Lee Y, Allard S, et al. Mechanistic and kinetic understanding of the UV254 Photolysis of chlorine and bromine species in water and formation of oxyhalides. Environ Sci Technol. 2020;54(18):11546–11555. doi: 10.1021/acs.est.0c02698