422
Views
0
CrossRef citations to date
0
Altmetric
Short Communications

Particle size and co-presence of PFOA alter the transport of microplastics in saturated natural sediment

, &
Article: 2308116 | Received 12 Dec 2023, Accepted 17 Jan 2024, Published online: 29 Jan 2024

References

  • Drummond JD, Schneidewind U, Li A, et al. Microplastic accumulation in riverbed sediment via hyporheic exchange from headwaters to mainstems. Sci Adv. 2022;8(2):eabi9305. doi: 10.1126/sciadv.abi9305
  • Lebreton LCM, Van Der Zwet J, Damsteeg J-W, et al. River plastic emissions to the world’s oceans. Nat Commun. 2017;8(1):15611. doi: 10.1038/ncomms15611
  • Van Cauwenberghe L, Devriese L, Galgani F, et al. Microplastics in sediments: a review of techniques, occurrence and effects. Marine Environ Res. 2015;111:5–109. doi: 10.1016/j.marenvres.2015.06.007
  • Wu M, Yang C, Du C, et al. Microplastics in waters and soils: occurrence, analytical methods and ecotoxicological effects. Ecotoxicol Environ Saf. 2020;202:110910. doi: 10.1016/j.ecoenv.2020.110910
  • Sun N, Shi H, Li X, et al. Combined toxicity of micro/nanoplastics loaded with environmental pollutants to organisms and cells: role, effects, and mechanism. Environ Int. 2023;171:107711. doi: 10.1016/j.envint.2022.107711
  • Wang L, Wu W-M, Bolan NS, et al. Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. J Hazard Mater. 2021;401:123415. doi: 10.1016/j.jhazmat.2020.123415
  • Dong S, Xia J, Sheng L, et al. Transport characteristics of fragmental polyethylene glycol terephthalate (PET) microplastics in porous media under various chemical conditions. Chemosphere. 2021;276:130214. doi: 10.1016/j.chemosphere.2021.130214
  • Gao J, Pan S, Li P, et al. Vertical migration of microplastics in porous media: multiple controlling factors under wet-dry cycling. J Hazard Mater. 2021;419:126413. doi: 10.1016/j.jhazmat.2021.126413
  • Gui X, Ren Z, Xu X, et al. Dispersion and transport of microplastics in three water-saturated coastal soils. J Hazard Mater. 2022;424:127614. doi: 10.1016/j.jhazmat.2021.127614
  • Hou J, Xu X, Lan L, et al. Transport behavior of micro polyethylene particles in saturated quartz sand: impacts of input concentration and physicochemical factors. Environ Pollut. 2020;263:114499. doi: 10.1016/j.envpol.2020.114499
  • Ling X, Yan Z, Lu G. Vertical transport and retention behavior of polystyrene nanoplastics in simulated hyporheic zone. Water Res. 2022;219:118609. doi: 10.1016/j.watres.2022.118609
  • Shaniv D, Dror I, Berkowitz B. Effects of particle size and surface chemistry on plastic nanoparticle transport in saturated natural porous media. Chemosphere. 2021;262:127854. doi: 10.1016/j.chemosphere.2020.127854
  • Kang P, Zhao Y, Zuo C, et al. The unheeded inherent connections and overlap between microplastics and poly- and perfluoroalkyl substances: a comprehensive review. Sci Total Environ. 2023;878:163028. doi: 10.1016/j.scitotenv.2023.163028
  • Hu E, Shang S, Fu Z, et al. Cotransport of naphthalene with polystyrene nanoplastics (PSNP) in saturated porous media: effects of PSNP/naphthalene ratio and ionic strength. Chemosphere. 2020;245:125602. doi: 10.1016/j.chemosphere.2019.125602
  • Jiang Y, Yin X, Xi X, et al. Effect of surfactants on the transport of polyethylene and polypropylene microplastics in porous media. Water Res. 2021;196:117016. doi: 10.1016/j.watres.2021.117016
  • Li S, Yang M, Wang H, et al. Cotransport of microplastics and sulfanilamide antibiotics in groundwater: the impact of MP/SA ratio and aquifer media. Environ Res. 2023;218:114403. doi: 10.1016/j.envres.2022.114403
  • Quevedo IR, Tufenkji N. Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand. Environ Sci Technol. 2012;46(8):4449–4457. doi: 10.1021/es2045458
  • Xu L, Liang Y, Zhang R, et al. Facilitated transport of microplastics and nonylphenol in porous media with variations in physicochemical heterogeneity. Environ Pollut. 2022;315:120297. doi: 10.1016/j.envpol.2022.120297
  • Zhao P, Cui L, Zhao W, et al. Cotransport and deposition of colloidal polystyrene microplastic particles and tetracycline in porous media: the impact of ionic strength and cationic types. Sci Total Environ. 2021;753:142064. doi: 10.1016/j.scitotenv.2020.142064
  • Lam NH, Cho C-R, Kannan K, et al. A nationwide survey of perfluorinated alkyl substances in waters, sediment and biota collected from aquatic environment in Vietnam: distributions and bioconcentration profiles. J Hazard Mater. 2017;323:116–127. doi: 10.1016/j.jhazmat.2016.04.010
  • Yang L, Zhu L, Liu Z. Occurrence and partition of perfluorinated compounds in water and sediment from Liao River and Taihu Lake, China. Chemosphere. 2011;83(6):806–814. doi: 10.1016/j.chemosphere.2011.02.075
  • Rong H, Qin J, He L, et al. Cotransport of different electrically charged microplastics with PFOA in saturated porous media. Environ Pollut. 2023;331:121862. doi: 10.1016/j.envpol.2023.121862
  • Aravinthasamy P, Karunanidhi D, Subramani T, et al. Fluoride contamination in groundwater of the Shanmuganadhi River basin (south India) and its association with other chemical constituents using geographical information system and multivariate statistics. Geochemistry. 2020;80(4):125555. doi: 10.1016/j.chemer.2019.125555
  • Hájek M, Jiménez-Alfaro B, Hájek O, et al. A European map of groundwater pH and calcium. Earth Syst Sci Data. 2021;13(3):1089–1105. doi: 10.5194/essd-13-1089-2021
  • Tian Y, Gao B, Ziegler KJ. High mobility of SDBS-dispersed single-walled carbon nanotubes in saturated and unsaturated porous media. J Hazard Mater. 2011;186(2–3):1766–1772. doi: 10.1016/j.jhazmat.2010.12.072
  • Fisher-Power LM, Cheng T. Nanoscale titanium dioxide (nTiO2) transport in natural sediments: importance of soil organic matter and Fe/Al Oxyhydroxides. Environ Sci Technol. 2018;52(5):2668–2676. doi: 10.1021/acs.est.7b05062
  • Shams M, Alam I, Chowdhury I. Aggregation and stability of nanoscale plastics in aquatic environment. Water Res. 2020;171:115401. doi: 10.1016/j.watres.2019.115401
  • Sun H, Jiao R, Wang D. The difference of aggregation mechanism between microplastics and nanoplastics: role of Brownian motion and structural layer force. Environ Pollut. 2021;268:115942. doi: 10.1016/j.envpol.2020.115942
  • Nguyen T-B, Ho T-B-C, Huang CP, et al. Adsorption of lead(II) onto PE microplastics as a function of particle size: influencing factors and adsorption mechanism. Chemosphere. 2022;304:135276. doi: 10.1016/j.chemosphere.2022.135276
  • Rong H, Li M, He L, et al. Transport and deposition behaviors of microplastics in porous media: Co-impacts of N fertilizers and humic acid. J Hazard Mater. 2022;426:127787. doi: 10.1016/j.jhazmat.2021.127787
  • Wang Y, Xu L, Chen H, et al. Retention and transport behavior of microplastic particles in water-saturated porous media. Sci Total Environ. 2022;808:152154. doi: 10.1016/j.scitotenv.2021.152154
  • Guan Z, Tang X-Y, Nishimura T, et al. Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil. J Environ Sci. 2018;64:197–206. doi: 10.1016/j.jes.2017.06.006
  • Jia H, Wu H, Wei X, et al. Investigation on the effects of AlOOH nanoparticles on sodium dodecylbenzenesulfonate stabilized o/w emulsion stability for EOR. Colloids Surf A Physicochem Eng Asp. 2020;603:125278. doi: 10.1016/j.colsurfa.2020.125278
  • Kowalczyk D, Kaminska I. Effect of pH and surfactants on the electrokinetic properties of nanoparticles dispersions and their application to the PET fibres modification. J Mol Liq. 2020;320:114426. doi: 10.1016/j.molliq.2020.114426
  • Mejías C, Martín J, Santos JL, et al. Adsorption of perfluoroalkyl substances on polyamide microplastics: effect of sorbent and influence of environmental factors. Environ Res. 2023;216:114834. doi: 10.1016/j.envres.2022.114834
  • Cui R, Jong M-C, You L, et al. Size-dependent adsorption of waterborne benzophenone-3 on microplastics and its desorption under simulated gastrointestinal conditions. Chemosphere. 2022;286:131735. doi: 10.1016/j.chemosphere.2021.131735
  • Wu C, Tanaka K, Tani Y, et al. Effect of particle size on the colonization of biofilms and the potential of biofilm-covered microplastics as metal carriers. Sci Total Environ. 2022;821:153265. doi: 10.1016/j.scitotenv.2022.153265
  • Higgins CP, Luthy RG. Sorption of perfluorinated surfactants on sediments. Environ Sci Technol. 2006;40(23):7251–7256. doi: 10.1021/es061000n
  • Shih K, Wang F. Adsorption behavior of perfluorochemicals (PFCs) on boehmite: influence of solution chemistry. Procedia Environ Sci. 2013;18:106–113. doi: 10.1016/j.proenv.2013.04.015
  • Lv X, Gao B, Sun Y, et al. Effects of humic acid and solution chemistry on the retention and transport of cerium dioxide nanoparticles in saturated porous media. Water Air Soil Pollut. 2014;225(10):2167. doi: 10.1007/s11270-014-2167-7
  • Bradford SA, Bettahar M. Concentration dependent transport of colloids in saturated porous media. J Contam Hydrol. 2006;82(1–2):99–117. doi: 10.1016/j.jconhyd.2005.09.006
  • Knappett PSK, Emelko MB, Zhuang J, et al. Transport and retention of a bacteriophage and microspheres in saturated, angular porous media: effects of ionic strength and grain size. Water Res. 2008;42(16):4368–4378. doi: 10.1016/j.watres.2008.07.041
  • Tufenkji N, Miller GF, Ryan JN, et al. Transport of cryptosporidium oocysts in porous media: role of straining and physicochemical filtration. Environ Sci Technol. 2004;38(22):5932–5938. doi: 10.1021/es049789u
  • Brewer A, Dror I, Berkowitz B. The mobility of plastic nanoparticles in aqueous and soil environments: a critical review. ACS ES&T Water. 2020;1(1):48–57. doi: 10.1021/acsestwater.0c00130
  • Wu X, Lyu X, Li Z, et al. Transport of polystyrene nanoplastics in natural soils: effect of soil properties, ionic strength and cation type. Sci Total Environ. 2020;707:136065. doi: 10.1016/j.scitotenv.2019.136065
  • Lu Y, Yang K, Lin D. Transport of surfactant-facilitated multiwalled carbon nanotube suspensions in columns packed with sized soil particles. Environ Pollut. 2014;192:36–43. doi: 10.1016/j.envpol.2014.05.008
  • Wang D, Su C, Liu C, et al. Transport of fluorescently labeled hydroxyapatite nanoparticles in saturated granular media at environmentally relevant concentrations of surfactants. Colloids Surf A Physicochem Eng Asp. 2014;457:58–66. doi: 10.1016/j.colsurfa.2014.05.041