339
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Aqueous norfloxacin removal by novel biochar adsorbent prepared through ethanol-combined ball milling

, , , , , & show all
Article: 2311675 | Received 11 Dec 2023, Accepted 24 Jan 2024, Published online: 06 Feb 2024

References

  • Duan WZ, Li MH, Xiao WL, et al. Enhanced adsorption of three fluoroquinolone antibiotics using polypyrrole functionalized calotropis gigantea fiber. Colloids Surf A Physicochem Eng Asp. 2019;574:178–123. doi: 10.1016/j.colsurfa.2019.04.068
  • Gao Y, Wang Q, Ji GZ, et al. Degradation of antibiotic pollutants by persulfate activated with various carbon materials. Chem Eng J. 2022;429:132387. doi: 10.1016/j.cej.2021.132387
  • Maia AS, Paiga P, Delerue-Matos C, et al. Quantification of fluoroquinolones in wastewaters by liquid chromatography-tandem mass spectrometry. Environ Pollut. 2020;259:113927. doi: 10.1016/j.envpol.2020.113927
  • Kovalakova P, Cizmas L, Mcdonald TJ, et al. Occurrence and toxicity of antibiotics in the aquatic environment: a review. Chemosphere. 2020;251:126351. doi: 10.1016/j.chemosphere.2020.126351
  • Malakootian M, Nasiri A, Gharaghani MA. Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chem Eng Commun. 2020;207(1):56–72. doi: 10.1080/00986445.2019.1573168
  • Nasiri A, Tamaddon F, Mosslemin MH, et al. New magnetic nanobiocomposite CoFe2O4@methycellulose: facile synthesis, characterization, and photocatalytic degradation of metronidazole. J Mater Sci Mater Electron. 2019;30(9):8595–8610. doi: 10.1007/s10854-019-01182-7
  • Yang SX, Pan H, Shi ZQ, et al. Enhancing the adsorption of Cephalexin onto the pristine and iron-impregnated biochars via mechanical ball milling. Water Air Soil Pollut. 2023;234(5):318. doi: 10.1007/s11270-023-06339-z
  • He YL, Gao M, Zhou YB, et al. Efficient photocatalytic remediation of typical antibiotics in water via Mn3O4 decorated carbon nitride nanotube. Chemosphere. 2023;311:136925. doi: 10.1016/j.chemosphere.2022.136925
  • Qiu QLL, Li GX, Dai Y, et al. Removal of antibiotic resistant microbes by Fe(II)-activated persulfate oxidation. J Hazard Mater. 2020;396:122733. doi: 10.1016/j.jhazmat.2020.122733
  • Yang YK, Ling YF, Wang LF, et al. Mechanism of sulfamethoxazole adsorption on wastewater-sludge-based biochar: sludge type and modification improvement. Korean J Chem Eng. 2023;40(5):1094–1102. doi: 10.1007/s11814-022-1274-1
  • Tang W, Jing FQ, Laurent Z, et al. High-temperature and freeze-thaw aged biochar impacts on sulfonamide sorption and mobility in soil. Chemosphere. 2021;276:130106. doi: 10.1016/j.chemosphere.2021.130106
  • Zhang W, Yan LG, Wang QD, et al. Ball milling boosted the activation of peroxymonosulfate by biochar for tetracycline removal. J Environ Chem Eng. 2021;9(6):106870. doi: 10.1016/j.jece.2021.106870
  • Li YF, Zimmerman AR, He F, et al. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue. Sci Total Environ. 2020;722:137972. doi: 10.1016/j.scitotenv.2020.137972
  • Kumar M, Xiong XN, Wan ZH, et al. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Biores Technol. 2020;312:123613. doi: 10.1016/j.biortech.2020.123613
  • Qi GD, Pan ZF, Zhang XY, et al. Effect of ball milling with hydrogen peroxide or ammonia hydroxide on sorption performance of volatile organic compounds by biochar from different pyrolysis temperatures. Chem Eng J. 2022;450:138027. doi: 10.1016/j.cej.2022.138027
  • Amusat SO, Kebede TG, Dube S, et al. Ball-milling synthesis of biochar and biochar-based nanocomposites and prospects for removal of emerging contaminants: a review. Water Proc Eng. 2021;41:101993. doi: 10.1016/j.jwpe.2021.101993
  • Harindintwali JD, He C, Xiang LL, et al. Effects of ball milling on biochar adsorption of contaminants in water: a meta-analysis. Sci Total Environ. 2023;882:163643. doi: 10.1016/j.scitotenv.2023.163643
  • Naghdi M, Taheran M, Brar SK, et al. A green method for production of nanobiochar by ball milling-optimization and characterization. J Clean Prod. 2017;164:1394–1405. doi: 10.1016/j.jclepro.2017.07.084
  • Zhang DW, He QQ, Hu XL, et al. Enhanced adsorption for the removal of tetracycline hydrochloride (TC) using ball-milled biochar derived from crayfish shell. Colloids Surf A Physicochem Eng Asp. 2021;615:126254. doi: 10.1016/j.colsurfa.2021.126254
  • Zhang XY, Miao XD, Xiang W, et al. Ball milling biochar with ammonia hydroxide or hydrogen peroxide enhances its adsorption of phenyl volatile organic compounds (VOCs). J Hazard Mater. 2021;403:123540. doi: 10.1016/j.jhazmat.2020.123540
  • Yang XD, Wang LL, Shao XQ, et al. Preparation of biosorbent for the removal of organic dyes from aqueous solution via one-step alkaline ball milling of hickory wood. Biores Technol. 2022;348:126831. doi: 10.1016/j.biortech.2022.126831
  • Medyńska-Juraszek A, Álvarez ML, Białowiec A, et al. Characterization and sodium cations sorption capacity of chemically modified biochars produced from agricultural and forestry wastes. Materials. 2021;14(16):4714. doi: 10.3390/ma14164714
  • Chen Z, Qian M, Liu C, et al. Surface modification of rice husk–based carbon–silica dual‐phase filler by ethanol‐assisted milling and its reinforcing on natural rubber. Polym Eng Sci. 2021;62(2):382–391. doi: 10.1002/pen.25850
  • Jing X-R, Wang Y-Y, Liu W-J, et al. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chem Eng J. 2014;248:168–174. doi: 10.1016/j.cej.2014.03.006
  • Hu X, Ding ZH, Zimmerman AR, et al. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res. 2015;68:206–216. doi: 10.1016/j.watres.2014.10.009
  • Li Q, Yue QY, Su Y, et al. Equilibrium and a two-stage batch adsorber design for reactive or disperse dye removal to minimize adsorbent amount. Biores Technol. 2011;102(9):5290–5296. doi: 10.1016/j.biortech.2010.11.032
  • Ma S, Wang XZ, Wang SS, et al. Effects of temperature on physicochemical properties of rice straw biochar and its passivation ability to Cu2+ in soil. J Soils Sediments. 2022;22(5):1418–1430. doi: 10.1007/s11368-022-03144-9
  • Lyu HH, Gao B, He F, et al. Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms. Environ Pollut. 2018;233:54–63. doi: 10.1016/j.envpol.2017.10.037
  • Eduah JO, Henriksen SW, Nartey EK, et al. Nonlinear sorption of phosphorus onto plant biomass-derived biochars at different pyrolysis temperatures. Environ Technol Innov. 2020;19:100808. doi: 10.1016/j.eti.2020.100808
  • Rouahna N, Salem DB, Bouchareb I, et al. Reduction of crystal violet dye from water by pomegranate peel–derived efficient biochar: influencing factors and adsorption behaviour. Water Air Soil Pollut. 2023;234(5):324. doi: 10.1007/s11270-023-06338-0
  • Hadj-Otmane C, Ouakouak A, Touahra F, et al. Date palm petiole–derived biochar: effect of pyrolysis temperature and adsorption properties of hazardous cationic dye from water. Biomass Convers Biorefin. 2022. doi: 10.1007/s13399-022-03127-3
  • Zhao HY, Wang ZQ, Liang YH, et al. Adsorptive decontamination of antibiotics from livestock wastewater by using alkaline-modified biochar. Environ Res. 2023;226:115676. doi: 10.1016/j.envres.2023.115676
  • Wei XQ, Wang X, Gao B, et al. Facile ball-milling synthesis of CuO/Biochar nanocomposites for efficient removal of reactive red 120. ACS Omega. 2020;5(11):5748–5755. doi: 10.1021/acsomega.9b03787
  • Guan JJ, Liu YY, Jing FQ, et al. Contrasting impacts of chemical and physical ageing on hydrochar properties and sorption of norfloxacin with coexisting Cu2+. Sci Total Environ. 2021;772:145502. doi: 10.1016/j.scitotenv.2021.145502
  • Wu JQ, Wang TS, Liu YY, et al. Norfloxacin adsorption and subsequent degradation on ball-milling tailored N-doped biochar. Chemosphere. 2022;303:135264. doi: 10.1016/j.chemosphere.2022.135264
  • Li XY, Jiang YY, Chen TY, et al. Adsorption of norfloxacin from wastewater by biochar with different substrates. Environ Geochem Health. 2023;45(6):3331–3344. doi: 10.1007/s10653-022-01414-6
  • Zhang M, Zhang K, Wang JP, et al. Study on optimal adsorption conditions of norfloxacin in water based on response surface methodology. Water Supply. 2022;22(4):3661–3672. doi: 10.2166/ws.2022.008
  • Luo JW, Li X, Ge CJ, et al. Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems. Biores Technol. 2018;263:385–392. doi: 10.1016/j.biortech.2018.05.022
  • Ouakouak A, Abdelhamid M, Thouraya B, et al. Development of a novel adsorbent prepared from dredging sediment for effective removal of dye in aqueous solutions. Appl Sci Basel. 2021;11(22):10722. doi: 10.3390/app112210722
  • De D, Santosha S, Aniya V, et al. Assessing the applicability of an agro-industrial waste to engineered bio-char as a dynamic adsorbent for fluoride sorption. J Environ Chem Eng. 2018;6(2):2998–3009. doi: 10.1016/j.jece.2018.04.021
  • Veni DK, Kannan P, Edison T, et al. Biochar from green waste for phosphate removal with subsequent disposal. Waste Manage. 2017;68:752–759. doi: 10.1016/j.wasman.2017.06.032
  • Soltani R, Marjani A, Shirazian S. Facile one-pot synthesis of thiol-functionalized mesoporous silica submicrospheres for Tl(I) adsorption: isotherm, kinetic and thermodynamic studies. J Hazard Mater. 2019;371:146–155. doi: 10.1016/j.jhazmat.2019.02.076
  • Foucaud Y, Canevesi RLS, Celzard A, et al. Hydration mechanisms of scheelite from adsorption isotherms and ab initio molecular dynamics simulations. Appl Surface Sci. 2021;562:150137. doi: 10.1016/j.apsusc.2021.150137
  • Sharipova AA, Aidarova SB, Bekturganova NE, et al. Triclosan as model system for the adsorption on recycled adsorbent materials. Colloids Surf A Physicochem Eng Asp. 2016;505:193–196. doi: 10.1016/j.colsurfa.2016.04.049
  • Lins PVD, Henrique DC, Ide AH, et al. Evaluation of caffeine adsorption by MgAl-LDH/biochar composite. Environ Sci Pollut Res. 2019;26(31):31804–31811. doi: 10.1007/s11356-019-06288-3
  • Acelas N, Lopera SM, Porras J, et al. Evaluating the removal of the antibiotic cephalexin from aqueous solutions using an adsorbent obtained from palm oil fiber. Molecules. 2021;26(11):3340. doi: 10.3390/molecules26113340
  • Afshin S, Rashtbari Y, Vosough M, et al. Application of box-behnken design for optimizing parameters of hexavalent chromium removal from aqueous solutions using Fe3O4 loaded on activated carbon prepared from alga: kinetics and equilibrium study. Water Proc Eng. 2021;42:102113. doi: 10.1016/j.jwpe.2021.102113
  • Ding ZH, Zhang LY, Mo HJ, et al. Microwave-assisted catalytic hydrothermal carbonization of laminaria japonica for hydrochars catalyzed and activated by potassium compounds. Biores Technol. 2021;341:125835. doi: 10.1016/j.biortech.2021.125835
  • Lima JZ, Da Silva EF, Patinha C, et al. Sorption of arsenic by composts and biochars derived from the organic fraction of municipal solid wastes: kinetic, isotherm and oral bioaccessibility study. Environ Res. 2022;204:111988. doi: 10.1016/j.envres.2021.111988
  • Amari A, Alawameleh HSK, Isam M, et al. Thermodynamic investigation and study of kinetics and mass transfer mechanisms of oily wastewater adsorption on UIO-66–MnFe2O4 as a metal–organic framework (MOF). Sustainability. 2023;15(3):2488. doi: 10.3390/su15032488
  • Cocco NM, Pauletto PS, Dotto GL, et al. Mass transfer models for the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) and atrazine herbicides from agricultural wastewaters. Chem Eng Commun. 2023;210(2):247–258. doi: 10.1080/00986445.2022.2036727
  • Nworie FS, Nwabue FI, Oti W, et al. Removal of methylene blue from aqueous solution using activated rice husk biochar: adsorption isotherms, kinetics and error analysis. J Chil Chem Soc. 2019;64(1):4365–4376. doi: 10.4067/s0717-97072019000104365
  • Wang JL, Guo X. Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater. 2020;390:122156. doi: 10.1016/j.jhazmat.2020.122156
  • Sen TK, Afroze S, Ang HM. Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of pinus radiata. Water Air Soil Pollut. 2010;218(1–4):499–515. doi: 10.1007/s11270-010-0663-y
  • Soule MEZ, Flores FM, Sanchez RMT, et al. Norfloxacin adsorption on montmorillonite and carbon/montmorillonite hybrids: pH effects on the adsorption mechanism, and column assays. J Environ SciHealth A. 2020;56(1):113–122. doi: 10.1080/10934529.2020.1842042
  • Wang Z, Kang SB, Won SW. Selective adsorption of palladium(II) from aqueous solution using epichlorohydrin crosslinked polyethylenimine-chitin adsorbent: batch and column studies. J Environ Chem Eng. 2021;9(2):105058. doi: 10.1016/j.jece.2021.105058
  • Islam MA, Dada TK, Parvin MI, et al. Silver ions and silver nanoparticles removal by coffee derived biochar using a continuous fixed-bed adsorption column. Water Proc Eng. 2022;48:102935. doi: 10.1016/j.jwpe.2022.102935
  • Gokulan R, Prabhu GG, Jegan J. A novel sorbent ulva lactuca-derived biochar for remediation of remazol brilliant orange 3R in packed column. Water Environ Res. 2019;91(7):642–649. doi: 10.1002/wer.1092
  • Mcdevitt B, Mclaughlin M, Cravotta CA, et al. Emerging investigator series: radium accumulation in carbonate river sediments at oil and gas produced water discharges: implications for beneficial use as disposal management. Environ Sci Processes Impacts. 2019;21(2):324–338. doi: 10.1039/C8EM00336J
  • Prokic D, Vukcevic M, Kalijadis A, et al. Removal of estrone, 17β-estradiol, and 17α-ethinylestradiol from water by adsorption onto chemically modified activated carbon cloths. Fibers Polym. 2020;21(10):2263–2274. doi: 10.1007/s12221-020-9758-2
  • Lyu HH, Gao B, He F, et al. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chem Eng J. 2018;335:110–119. doi: 10.1016/j.cej.2017.10.130
  • Yang X, Wang L, Shao X, et al. Characteristics and aqueous dye removal ability of novel biosorbents derived from acidic and alkaline one-step ball milling of hickory wood. Chemosphere. 2022;309:136610. doi: 10.1016/j.chemosphere.2022.136610
  • Ahmed MB, Zhou JL, Ngo HH, et al. Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment. Biores Technol. 2017;238:306–312. doi: 10.1016/j.biortech.2017.04.042
  • Cao X, Meng Z, Song E, et al. Co-adsorption capabilities and mechanisms of bentonite enhanced sludge biochar for de-risking norfloxacin and Cu2+ contaminated water. Chemosphere. 2022;299:134414. doi: 10.1016/j.chemosphere.2022.134414
  • Pei ZG, Shan XQ, Zhang SZ, et al. Insight to ternary complexes of co-adsorption of norfloxacin and Cu(II) onto montmorillonite at different pH using EXAFS. J Hazard Mater. 2011;186(1):842–848. doi: 10.1016/j.jhazmat.2010.11.076
  • Chen JY, Zhu DQ, Sun C. Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal. Environ Sci Technol. 2007;41:2536–2541.